-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmaxrects.ml
272 lines (243 loc) · 7.9 KB
/
maxrects.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
type 'bin bin = {
bin_x : int;
bin_y : int;
bin_w : int;
bin_h : int;
bin_root : 'bin bin;
bin_tag : 'bin;
}
type 'bin t = {
free: 'bin bin list;
}
type 'tag box =
{ tag : 'tag
; width : int
; height : int
; allow_rotation : bool
}
let box ?(allow_rotation=false) tag width height =
{ allow_rotation; width; height; tag }
type ('bin, 'tag) rect =
{ x : int ; y : int ; w : int ; h : int
; rotated: bool
; bin: 'bin
; box: 'tag box
}
type heuristic =
[ `Short_side_fit
| `Long_side_fit
| `Area_fit
| `Bottom_left
]
let empty = { free = [] }
let add_bin bin_tag bin_w bin_h t =
let rec bin = { bin_x = 0 ; bin_y = 0 ; bin_w; bin_h; bin_tag; bin_root = bin } in
{ free = bin :: t.free }
type score = { hi : int ; lo : int }
let score_heuristic = function
| `Short_side_fit ->
fun rect w h ->
let dw = rect.bin_w - w and dh = rect.bin_h - h in
{ hi = min dw dh; lo = max dw dh }
| `Long_side_fit ->
fun rect w h ->
let dw = rect.bin_w - w and dh = rect.bin_h - h in
{ hi = max dw dh; lo = min dw dh }
| `Bottom_left ->
fun rect _w h ->
{ hi = rect.bin_y + h; lo = rect.bin_x }
| `Area_fit ->
fun rect w h ->
let area_fit = rect.bin_w * rect.bin_h - w * h in
let dw = rect.bin_w - w and dh = rect.bin_h - h in
{ hi = area_fit; lo = min dw dh }
let null_score = { hi = max_int; lo = max_int }
let null_acc tag bin = (tag, bin, { hi = max_int; lo = max_int })
let score_is_better a b =
a.hi < b.hi || (a.hi = b.hi && a.lo < b.lo)
let select_best score_fun tag w h (_, _, score0 as acc) rect =
if rect.bin_w >= w && rect.bin_h >= h then
let score = score_fun rect w h in
if score_is_better score score0 then
(tag, rect, score)
else
acc
else
acc
let split_free_node bin used free =
let aux rects free =
if free.bin_root != bin.bin_root ||
(used.x >= free.bin_x + free.bin_w || used.x + used.w <= free.bin_x ||
used.y >= free.bin_y + free.bin_h || used.y + used.h <= free.bin_y)
then free :: rects
else
let rects = ref rects in
if (used.x < free.bin_x + free.bin_w && used.x + used.w > free.bin_x) then (
if (used.y > free.bin_y && used.y < free.bin_y + free.bin_h) then
(* New node at the top side of the used node. *)
rects := { free with bin_h = used.y - free.bin_y } :: !rects;
if (used.y + used.h < free.bin_y + free.bin_h) then
(* New node at the bottom side of the used node. *)
rects := { free with bin_y = used.y + used.h;
bin_h = (free.bin_y + free.bin_h) - (used.y + used.h) } :: !rects
);
if (used.y < free.bin_y + free.bin_h && used.y + used.h > free.bin_y) then (
if (used.x > free.bin_x && used.x < free.bin_x + free.bin_w) then
(* New node at the left side of the used node. *)
rects := {free with bin_w = used.x - free.bin_x} :: !rects;
if (used.x + used.w < free.bin_x + free.bin_w) then
(* New node at the right side of the used node. *)
rects := {free with bin_x = used.x + used.w;
bin_w = (free.bin_x + free.bin_w) - (used.x + used.w) } :: !rects
);
!rects
in
List.fold_left aux [] free
module Pop_array = struct
type 'a t = {
mutable len: int;
arr: 'a array;
}
let of_list l =
let arr = Array.of_list l in
{ len = Array.length arr; arr }
let length t = t.len
let get t n =
if n < 0 || n >= t.len then
invalid_arg "Pop_array.get: index out of bounds";
t.arr.(n)
let pop t n =
if n < 0 || n >= t.len then
invalid_arg "Pop_array.pop: index out of bounds";
let x = t.arr.(n) in
let len = t.len - 1 in
t.arr.(n) <- t.arr.(len);
t.len <- len;
x
let filter t f =
let i = ref 0 in
while !i < t.len do
while !i < t.len && f !i t.arr.(!i) do
ignore (pop t !i);
done;
incr i
done
let fold t f acc =
let len = t.len in
let acc = ref acc in
for i = 0 to len - 1 do
acc := f i t.arr.(i) !acc;
if t.len <> len then
invalid_arg "Pop_array.fold: functional argument is mutating the array"
done;
!acc
let maximums pred = function
| ([] | [_]) as l -> l
| [a;b] as l ->
if pred a b then [b]
else if pred b a then [a]
else l
| l ->
let a = of_list l in
let result = ref [] in
while length a > 0 do
let item' = ref (get a 0) in
filter a
(fun _ item ->
if pred item !item' then
true
else if pred !item' item then
(item' := item; true)
else
false);
result := !item' :: !result
done;
!result
end
let is_contained_in a b =
a.bin_root == b.bin_root
&& a.bin_x >= b.bin_x
&& a.bin_y >= b.bin_y
&& a.bin_x+a.bin_w <= b.bin_x+b.bin_w
&& a.bin_y+a.bin_h <= b.bin_y+b.bin_h
(*let rec prune_free_list_reference = function
| [] -> []
| r :: rects ->
let rec aux r = function
| r' :: rects when is_contained_in r r' ->
aux r' rects
| r' :: rects when is_contained_in r' r ->
aux r rects
| r' :: rects ->
r' :: aux r rects
| [] -> [r]
in
aux r (prune_free_list_reference rects)*)
let prune_free_list l = Pop_array.maximums is_contained_in l
let used_rect bin box rotated =
let w, h = if rotated then box.height, box.width else box.width, box.height in
{ x = bin.bin_x; y = bin.bin_y; w; h; rotated; bin = bin.bin_tag; box }
let update_free bin used {free} =
{ free = prune_free_list (split_free_node bin used free) }
let insert t ?(heuristic=`Short_side_fit) ({ width = w; height = h; _ } as box) =
match t.free with
| [] -> t, None
| default_bin :: _ ->
let (rotated, bin, score) =
let score_fun = score_heuristic heuristic in
let acc = null_acc false default_bin in
let acc = List.fold_left (select_best score_fun false w h) acc t.free in
if box.allow_rotation && w <> h then
List.fold_left (select_best score_fun true h w) acc t.free
else
acc
in
if score = null_score then
(t, None)
else
let rect = used_rect bin box rotated in
(update_free bin rect t, Some rect)
let insert_global t ?(heuristic=`Short_side_fit) boxes =
match t.free with
| [] -> t, List.map (fun _ -> None) boxes
| default_bin :: _ ->
let boxes = boxes |> List.mapi (fun i r -> i,r) |> Pop_array.of_list in
let result = Array.make (Pop_array.length boxes) None in
let score_fun = score_heuristic heuristic in
let t = ref t in
let select_candidate i (_,{ allow_rotation; width=w; height=h; _ }) acc =
let free = (!t).free in
let acc = List.fold_left (select_best score_fun (i,false) w h) acc free in
if allow_rotation && w <> h then
List.fold_left (select_best score_fun (i,true) h w) acc free
else acc
in
begin try
while Pop_array.length boxes > 0 do
let (pidx, rotated), bin, _score =
Pop_array.fold boxes select_candidate
(null_acc (-1, false) default_bin) in
if pidx = -1 then raise Exit;
let (idx, box) = Pop_array.pop boxes pidx in
let rect = used_rect bin box rotated in
t := update_free bin rect !t;
result.(idx) <- Some rect;
done;
with Exit -> ()
end;
!t, Array.to_list result
let insert_batch t ?(heuristic=`Bottom_left) boxes =
let cmp (_, b1) (_, b2) =
match compare (min b1.width b1.height) (min b2.width b2.height) with
| 0 -> compare (max b1.width b1.height) (max b2.width b2.height)
| n -> n
in
let boxes = boxes |> List.mapi (fun i r -> i,r) |> List.sort cmp in
let results = Array.make (List.length boxes) None in
let t = List.fold_left (fun t (idx, box) ->
let t, rect = insert t ~heuristic box in
results.(idx) <- rect;
t
) t boxes
in
(t, Array.to_list results)