# A family of Hofstadter's recursive functions : more on G and beyond

Pierre Letouzey

Journées PPS, 25 juin 2024

## Hofstadter's functions G and H

From Douglas Hofstadter, "Gödel, Escher, Bach", chapter 5 :

$$egin{aligned} G:\mathbb{N} o\mathbb{N}\ G(0)&=0\ G(n)&=n-G(G(n-1)) \end{aligned}$$
 otherwise

$$H : \mathbb{N} \to \mathbb{N}$$
  
 $H(0) = 0$   
 $H(n) = n - H(H(H(n-1)))$  otherwise

In the On-Line Encyclopedia of Integer Sequences (OEIS): A5206 and A5374

# Beyond : a family $F_k$ of functions

For any number k of nested recursive calls:

$$egin{aligned} &F_k:\mathbb{N} o\mathbb{N}\ &F_k(0)=0\ &F_k(n)=n-F_k^{(k)}(n-1)\ & ext{otherwise} \end{aligned}$$

where  $F_k^{(k)}$  is the *k*-th iterate  $F_k \circ F_k \circ \cdots \circ F_k$ . In particular,  $G = F_2$  and  $H = F_3$ .

This is suggested in Hofstadter's text, but does not appear explicitly.

# What about $F_0$ and $F_1$ ?

 $\blacktriangleright$   $F_0$  is a degenerate, non-recursive situation:

 $F_0(n) = 1$  when n > 0.

Too different from the rest of the  $F_k$  family !

We'll ignore it and only consider k > 0 from now on.

# What about $F_0$ and $F_1$ ?

F<sub>0</sub> is a degenerate, non-recursive situation:
 F<sub>0</sub>(n) = 1 when n > 0.
 Too different from the rest of the F<sub>k</sub> family !
 We'll ignore it and only consider k > 0 from now on.
 F<sub>1</sub> is simply a division by 2 :

F<sub>1</sub> is simply a division by 2 :  

$$F_1(n) = n - F_1(n-1) = 1 + F_1(n-2) \text{ when } n \ge 2.$$
Actually  $F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil.$ 

Plotting the first  $F_k$ 



## Some early properties of $F_k$

$$F_k(n) = n - F_k^{(k)}(n-1)$$

- Well-defined since  $0 \le F_k(n) \le n$
- $F_k(0) = 0$ ,  $F_k(1) = 1$  then  $n/2 \le F_k(n) < n$
- F<sub>k</sub> is made of a mix of flats (+0) and steps (+1)
- Hence each  $F_k$  is increasing, onto, but not one-to-one
- Never two flats in a row
- At most k steps in a row

Monotony of the  $F_k$  family

Pointwise order for functions :  $f \leq h \iff \forall n, f(n) \leq h(n)$ .

Theorem:  $\forall k, F_k \leq F_{k+1}$ 

# Monotony of the $F_k$ family

Pointwise order for functions :  $f \leq h \iff \forall n, f(n) \leq h(n)$ .

Theorem:  $\forall k, F_k \leq F_{k+1}$ 

Conjectured in 2018.

- First proof by Shuo Li (Nov 2023).
- Improved version by Wolfgang Steiner.
- Completely proved in Coq (as most of this talk).
- Proof ingredient : "detour" via some infinite morphic words.

#### More monotony

For k > 0 and  $0 \le j \le k$ :



#### More monotony



#### Linear Equivalent

Let  $\alpha_k$  be the positive root of  $X^k + X - 1$ .

Theorem:  $\forall k > 0$ , when  $n \to \infty$  we have  $F_k(n) = \alpha_k \cdot n + o(n)$ 

## Linear Equivalent

$$\blacktriangleright F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$$

• 
$$G(n) = F_2(n) = \lfloor \alpha_2 . (n+1) \rfloor$$
 with  $\alpha_2 = \phi - 1 \approx 0.618...$ 

No more exact expression based on integral part of affine function. Instead:

$$\blacktriangleright H(n) = F_3(n) \in \lfloor \alpha_3 \cdot n \rfloor + \{0, 1\}$$

$$\blacktriangleright F_4(n) \in \lfloor \alpha_4.n \rfloor + \{-1, 0, 1, 2\}$$

For  $k \ge 5$ ,  $F_k(n) - \alpha_k \cdot n$  is no longer bounded.

#### Rauzy Fractal

Let  $\delta(n) = F_3(n) - \alpha_3 . n$ . Then plotting  $(\delta(i), \delta(F_3(i)))$  leads to this Rauzy fractal



Let k > 0. We say that a set of integers S is k-sparse if two distinct elements of S are always separated by at least k. How many k-sparse subsets of  $\{1..n\}$  could you form ?

#### Generalized Fibonacci

For k > 0:

$$\begin{cases} A_{k,n} = n+1 \\ A_{k,n} = A_{k,n-1} + A_{k,n-k} \end{cases}$$

when  $n \le k$ when  $n \ge k$ 

# Generalized Fibonacci

For k > 0:

$$\begin{cases} A_{k,n} &= n+1 & \text{when } n \leq k \\ A_{k,n} &= A_{k,n-1} + A_{k,n-k} & \text{when } n \geq k \end{cases}$$

## Zeckendorf decomposition

Let k > 0.

Theorem (Zeckendorf): all natural number can be written as a sum of  $A_{k,i}$  numbers. This decomposition is unique when its indices *i* form a *k*-sparse set.

Theorem:  $F_k$  is a right shift for such a decomposition :  $F_k(\Sigma A_{k,i}) = \Sigma A_{k,i-1}$  (with the convention  $A_{k,0-1} = A_{k,0} = 1$ )

NB: This shifted decomposition might not be k-sparse anymore

Key property :  $F_k$  is "flat" at *n* iff the decomposition of *n* contains  $A_{k,0} = 1$ .

More generally,  $F_k^{(j)}$  is "flat" at *n* iff j > rank(n) where the rank of *n* is the smallest index in the decomposition of *n*.

#### A letter substitution

Let k > 0. We use  $\mathcal{A} = [1..k]$  as alphabet.

$$egin{aligned} \mathcal{A} &
ightarrow \mathcal{A}^* \ au_k(n) &= (n+1) \ au_k(k) &= k.1 \end{aligned}$$
 pour  $n < k$ 

Starting from letter k, this generates an infinite word  $x_k$  (this word is said *morphic*).

#### Recursive equation on words

 $x_k$  is the limit of  $\tau_k^n(k)$  when  $n \to \infty$ 

It is also the limit of the following prefixes  $M_{k,n}$ :

▶ 
$$M_{k,n} = k.0...(n-1)$$
 when  $n \le k$   
▶  $M_{k,n} = M_{k,n-1}.M_{k,n-k}$  when  $k \le n$ 

#### Recursive equation on words

 $x_k$  is the limit of  $\tau_k^n(k)$  when  $n \to \infty$ 

It is also the limit of the following prefixes  $M_{k,n}$ :

▶ 
$$M_{k,n} = k.0...(n-1)$$
 when  $n \le k$   
▶  $M_{k,n} = M_{k,n-1}.M_{k,n-k}$  when  $k \le n$   
Note:  $|M_{k,n}| = A_{k,n}$ 

# Link with $F_k$

- The *n*-th letter lettre  $x_k[n]$  of the infinite word  $x_k$  is  $\min(1+rank(n), k)$ .
- In particular this letter is 1 iff  $F_k(n) = F_k(n+1)$

The count of letter 1 in  $x_k$  between 0 and n-1 is  $n - F_k(n)$ .

More generally, counting letters above p gives  $F_k^{(p)}$ . In particular the count of letter k is  $F_k^{(k-1)}$ .

# No time today for:

...

- F<sub>k</sub> admits a right adjoint (Galois connection), and this function behave as a left shift on the previous decompositions.
- A variant of F<sub>k</sub> is already known to be a more conventional right shift on these decompositions (Meek & van Rees, 1981).
- ► An algebraic expression for A<sub>k,n</sub> fully based on the roots of X<sup>k</sup> X<sup>k-1</sup> 1.

Thank you for your attention

Coq Development : https://github.com/letouzey/hofstadter\_g