-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·186 lines (152 loc) · 6.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import flwr as fl
import torch
from dataset_utils import get_cifar_10, do_fl_partitioning,get_cifar_100
from utils import set_params,test,tell_history,pile_str,get_tensor_parameters
import time
import multiprocess as mp
mp.set_start_method('spawn',force=True)
from args import args
from datetime import datetime
import time
from binaryconnect import BC
#torch.backends.cudnn.benchmark = True
if(args.model == "resnet18"):
from models.resnets import ResNet18
resnet_model = ResNet18
elif(args.model == "resnet20"):
from models.resnets import ResNet20
resnet_model = ResNet20
elif(args.model == "resnet12"):
from models.resnet12 import ResNet12
resnet_model = ResNet12
elif(args.model == "resnet8"):
from models.resnets import ResNet8
resnet_model = ResNet8
elif(args.model == "qresnet12"):
from models.resnet12_brev import QResNet12
resnet_model = QResNet12
elif(args.model == "qresnet8"):
from models.qresnets import QResNet8
resnet_model = QResNet8
def fit_config(server_round):
"""Return a configuration with static batch size and (local) epochs."""
config = {
"epochs": args.cl_epochs, # number of local epochs
"batch_size": args.cl_bs,
"cl_lr": args.cl_lr,
"cl_momentum": args.cl_momentum,
}
return config
def get_evaluate_fn( testset,dataset_info) :
"""Return an evaluation function for centralized evaluation."""
def evaluate(server_round, parameters, config) :
"""Use the entire CIFAR-10 test set for evaluation."""
# determine device
if(args.only_cpu):
device = torch.device("cpu")
else:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = resnet_model(args.feature_maps, dataset_info["input_shape"], dataset_info["num_classes"],batchn=False)
if(args.bnn):
model = BC(model)
#model = Net()
set_params(model, parameters)
model.to(device)
testloader = torch.utils.data.DataLoader(testset, batch_size=50)
loss, accuracy = test(model, testloader, device=device)
# return statistics
return loss, {"accuracy": accuracy}
return evaluate
def start_server(srv_addr,strategy,num_rounds,server_queue):
"""Start the server."""
server_queue.put(
fl.server.start_server(
server_address=srv_addr ,
config=fl.server.ServerConfig(num_rounds=num_rounds),
strategy=strategy))
def start_client(model, dataset_info, saddr,cid,fed_dir,features_maps,only_cpu):
from client import FlowerClient
client = FlowerClient(model,dataset_info,saddr,cid,fed_dir,features_maps,only_cpu)
client.start_client()
# Start simulation (a _default server_ will be created)
if __name__ == "__main__":
saddr = "0.0.0.0:8080"
processes = []
pool_size = args.num_clients # number of dataset partions (= number of total clients)
file_name = args.model
file_name=pile_str(file_name,args.dataset)
file_name=pile_str(file_name,str(args.wbits))
file_name=pile_str(file_name,"cle_"+str(args.cl_epochs))
if(args.prune):
file_name=pile_str(file_name,"prune")
file_name=pile_str(file_name,str(args.prate))
infos_dict = vars(args)
start = time.time()
log = open("log.txt","a")
now = datetime.now().strftime("%H:%M")
log.write(f"Starting Exp : {file_name} at {now}\n")
log.flush()
# Download dataset
if(args.dataset == "cifar10"):
train_path, testset,num_classes,input_shape = get_cifar_10()
elif(args.dataset == "cifar100"):
train_path, testset,num_classes,input_shape = get_cifar_100()
else:
print("Wrong dataset name")
exit(-1)
if(args.alpha_inf):
alpha = float('inf')
file_name=pile_str(file_name,"uniform")
else:
alpha = args.alpha
file_name=pile_str(file_name,str(alpha))
fed_dir = do_fl_partitioning(
train_path, pool_size=pool_size, alpha=alpha, num_classes=num_classes, val_ratio=args.val_ratio
)
model = resnet_model(args.feature_maps,input_shape,num_classes)
if(args.bnn):
model = BC(model)
model.binarization()
initial_weights = model
dataset_info = {"name" : args.dataset,"input_shape" : input_shape, "num_classes":num_classes}
# configure the strategy
strategy = fl.server.strategy.FedAvg(
fraction_fit=args.samp_rate,
fraction_evaluate=0.0,
min_fit_clients=int(pool_size*args.samp_rate),
min_evaluate_clients=int(pool_size*args.samp_rate),
min_available_clients=pool_size, # All clients should be available
initial_parameters =get_tensor_parameters(initial_weights),
on_fit_config_fn=fit_config,
evaluate_fn=get_evaluate_fn(testset,dataset_info), # centralised evaluation of global model,
)
# Start the server
server_queue = mp.Queue()
server_process = mp.Process(
target=start_server,
args=(saddr,strategy,args.num_rounds,server_queue)
)
server_process.start()
time.sleep(2)
processes.append(server_process)
for cid in range(pool_size):
client_process = mp.Process(target=start_client,
args=(resnet_model,
dataset_info,
saddr,
str(cid),
fed_dir,
args.feature_maps,
args.only_cpu))
client_process.start()
processes.append(client_process)
# Block until all processes are finished
for p in processes:
p.join()
hist = server_queue.get()
tell_history(hist,file_name,infos=infos_dict,path='results/')
end = time.time()
now = datetime.now().strftime("%H:%M")
log.write(f"Finishing Exp at {now} - Elapsed time {(end-start)/60:.2f} mins\n")
log.write("\n")
log.close()