-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtimeplots.py
161 lines (111 loc) · 7.44 KB
/
timeplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
from math import sqrt
from statistics import stdev, mean
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
def get_episode_cumulative_time_list(file_name):
episodes_durations = np.genfromtxt(file_name, delimiter=',')
acc_sum = 0
accumulative_episode_duration_list = []
for i in range(0, len(episodes_durations), 10):
acc_sum += sum(episodes_durations[i:i + 10])
accumulative_episode_duration_list.append(acc_sum)
return accumulative_episode_duration_list
def get_grad_time_list(file_name):
grad_durations = np.genfromtxt(file_name, delimiter=',')
acc_sum = 0
accumulative_episode_duration_list = []
for i in range(len(grad_durations)):
acc_sum += grad_durations[i]
accumulative_episode_duration_list.append(acc_sum)
return accumulative_episode_duration_list
colors = ["g", "b", "r", "m", "navy", "darkorange"]
colors_light = ["limegreen", "cornflowerblue", "lightcoral", "violet", "slateblue", "wheat"]
def cummulative_time_plot(filename_list, legend_names, figure_file=None):
fig, ax = plt.subplots()
axes = plt.gca()
# axes.set_ylim([start, end])
# colors = sns.color_palette("husl", 5)
with sns.axes_style("darkgrid"):
for c, file_name_sublist in enumerate(filename_list):
epidode_durations_merge_lists, grad_updates_durations_merge_lists = [], []
for file_name in file_name_sublist:
epidode_durations = get_episode_cumulative_time_list(file_name+"epidode_durations.csv")
grad_updates_durations = get_grad_time_list(file_name+"grad_updates_durations.csv")
epidode_durations_merge_lists.append(epidode_durations)
grad_updates_durations_merge_lists.append(grad_updates_durations)
epidode_durations_means, grad_updates_means, x_axis = [0], [0], []
total_time_means, stds = [], []
for i in range(len(epidode_durations_merge_lists[0])):
epidode_durations_data_points, grad_updates_data_points = [], []
for j in range(len(epidode_durations_merge_lists)):
epidode_durations_data_points.append(epidode_durations_merge_lists[j][i])
grad_updates_data_points.append(grad_updates_durations_merge_lists[j][i])
epidode_durations_means.append(mean(epidode_durations_data_points)/60)
grad_updates_means.append(mean(grad_updates_data_points) / 60)
total_time_means.append(mean(epidode_durations_data_points)/60+mean(grad_updates_data_points)/60)
stds.append(stdev(epidode_durations_data_points)/60+stdev(grad_updates_data_points)/60 / sqrt(len(epidode_durations_means+grad_updates_means)))
x_axis.append(i+1)
# x_axis.append(7)
epidode_durations_means, grad_updates_means, x_axis = np.asarray(epidode_durations_means), np.asarray(grad_updates_means), np.asarray(x_axis)
total_time_means, stds = np.asarray(total_time_means), np.asarray(stds)
# ax.plot(x_axis, epidode_durations_means, c=colors[c], label=legend_names[c], marker='*')
# ax.plot(x_axis, grad_updates_means, c=colors[c], label=legend_names[c], marker='*')
ax.plot(x_axis, total_time_means, c=colors[c], label=legend_names[c], marker='*')
ax.fill_between(x_axis, total_time_means - stds, total_time_means + stds, facecolor=colors_light[c], alpha=0.5)
# ax.yaxis.set_ticks(np.arange(start, end, 10))
ax.set_ylabel('Cumulative Total Time Elapsed(min)')
ax.set_xlabel('Offline Gradient Update Sessions')
plt.grid()
plt.legend(loc='upper left')
plt.savefig(figure_file)
dir = "figures/times/"
file_name_1 = "tmp/expert_alg1_online_154K_every10_sparse2_1/"
file_name_2 = "tmp/expert_alg1_online_154K_every10_sparse2_2/"
file_name_3 = "tmp/expert_alg1_online_154K_every10_sparse2_3/"
file_name_4 = "tmp/expert_alg1_offline_154K_every10_sparse2_1/"
file_name_5 = "tmp/expert_alg1_offline_154K_every10_sparse2_2/"
file_name_6 = "tmp/expert_alg1_offline_154K_every10_sparse2_3/"
file_name_7 = 'tmp/expert_alg1_online_28K_every10_sparse2_1/'
file_name_8 = 'tmp/expert_alg1_online_28K_every10_sparse2_2/'
file_name_9 = 'tmp/expert_alg1_online_28K_every10_sparse2_3/'
file_name_10 = 'tmp/expert_alg1_offline_28K_every10_sparse2_1/'
file_name_11 = 'tmp/expert_alg1_offline_28K_every10_sparse2_2/'
file_name_12 = 'tmp/expert_alg1_offline_28K_every10_sparse2_3/'
file_name_13 = 'tmp/expert_alg1_online_28K_every10_sparse2_descending_1/'
file_name_14 = 'tmp/expert_alg1_online_28K_every10_sparse2_descending_2/'
file_name_15 = 'tmp/expert_alg1_online_28K_every10_sparse2_descending_3/'
file_name_16 = 'tmp/expert_alg1_offline_28K_every10_sparse2_descending_1/'
file_name_17 = 'tmp/expert_alg1_offline_28K_every10_sparse2_descending_2/'
file_name_18 = 'tmp/expert_alg1_offline_28K_every10_sparse2_descending_3/'
file_name_1t = 'tmp/thanasis/loop1_O_O_a_154K_every10_Sparse_2_normal_thanasis_1/'
file_name_2t = 'tmp/thanasis/loop1_O_O_a_154K_every10_Sparse_2_normal_thanasis_2/'
file_name_3t = 'tmp/thanasis/loop1_O_O_a_154K_every10_Sparse_2_normal_thanasis_3/'
file_name_4t = 'tmp/thanasis/loop1_O_a_154K_every10_Sparse_2_normal_thanasis_1/'
file_name_5t = 'tmp/thanasis/loop1_O_a_154K_every10_Sparse_2_normal_thanasis_2/'
file_name_6t = 'tmp/thanasis/loop1_O_a_154K_every10_Sparse_2_normal_thanasis_3/'
file_name_7t = 'tmp/thanasis/loop1_O_O_a_28K_every10_Sparse_2_normal_thanasis_1/'
file_name_8t = 'tmp/thanasis/loop1_O_O_a_28K_every10_Sparse_2_normal_thanasis_2/'
file_name_9t = 'tmp/thanasis/loop1_O_O_a_28K_every10_Sparse_2_normal_thanasis_3/'
file_name_10t = 'tmp/thanasis/loop1_O_a_28K_every10_Sparse_2_normal_thanasis_1/'
file_name_11t = 'tmp/thanasis/loop1_O_a_28K_every10_Sparse_2_normal_thanasis_2/'
file_name_12t = 'tmp/thanasis/loop1_O_a_28K_every10_Sparse_2_normal_thanasis_3/'
file_name_13t = 'tmp/thanasis/loop1_O_O_a_28K_every10_Sparse_2_descending_thanasis_1/'
file_name_14t = 'tmp/thanasis/loop1_O_O_a_28K_every10_Sparse_2_descending_thanasis_2/'
file_name_15t = 'tmp/thanasis/loop1_O_O_a_28K_every10_Sparse_2_descending_thanasis_3/'
file_name_16t = 'tmp/thanasis/loop1_O_a_28K_every10_Sparse_2_descending_thanasis_1/'
file_name_17t = 'tmp/thanasis/loop1_O_a_28K_every10_Sparse_2_descending_thanasis_2/'
file_name_18t = 'tmp/thanasis/loop1_O_a_28K_every10_Sparse_2_descending_thanasis_3/'
episodes_duration_file = "epidode_durations.csv"
grad_updates_file = "grad_updates_durations.csv"
# grad_durations = np.genfromtxt(main_dir + grad_updates_file, delimiter=',')
legend_names = ["O-O-a 154K", "O-a 154K", "O-O-a 28K", "O-a 28K", "O-O-a 28K Descending", "O-a 28K Descending"]
cummulative_time_plot([[file_name_1, file_name_2, file_name_3, file_name_1t, file_name_2t, file_name_3t],
[file_name_4, file_name_5, file_name_6, file_name_4t, file_name_5t, file_name_6t],
[file_name_7, file_name_8, file_name_9, file_name_7t, file_name_8t, file_name_9t],
[file_name_10, file_name_11, file_name_12, file_name_10t, file_name_11t, file_name_12t],
[file_name_13, file_name_14, file_name_15, file_name_13t, file_name_14t, file_name_15t],
[file_name_16, file_name_17, file_name_18, file_name_16t, file_name_17t, file_name_18t]],
legend_names,
figure_file=dir + "Cumulative Time 156K vs 28K vs 28K Descending 2 users")