-
Notifications
You must be signed in to change notification settings - Fork 0
/
rsatool.py
172 lines (129 loc) · 5 KB
/
rsatool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python2
import base64, fractions, optparse, random
try:
import gmpy
except ImportError as e:
try:
import gmpy2 as gmpy
except ImportError:
raise e
from pyasn1.codec.der import encoder
from pyasn1.type.univ import *
PEM_TEMPLATE = '-----BEGIN RSA PRIVATE KEY-----\n%s-----END RSA PRIVATE KEY-----\n'
DEFAULT_EXP = 65537
def factor_modulus(n, d, e):
"""
Efficiently recover non-trivial factors of n
See: Handbook of Applied Cryptography
8.2.2 Security of RSA -> (i) Relation to factoring (p.287)
http://www.cacr.math.uwaterloo.ca/hac/
"""
t = (e * d - 1)
s = 0
while True:
quotient, remainder = divmod(t, 2)
if remainder != 0:
break
s += 1
t = quotient
found = False
while not found:
i = 1
a = random.randint(1,n-1)
while i <= s and not found:
c1 = pow(a, pow(2, i-1, n) * t, n)
c2 = pow(a, pow(2, i, n) * t, n)
found = c1 != 1 and c1 != (-1 % n) and c2 == 1
i += 1
p = fractions.gcd(c1-1, n)
q = n // p
return p, q
class RSA:
def __init__(self, p=None, q=None, n=None, d=None, e=DEFAULT_EXP):
"""
Initialize RSA instance using primes (p, q)
or modulus and private exponent (n, d)
"""
self.e = e
if p and q:
assert gmpy.is_prime(p), 'p is not prime'
assert gmpy.is_prime(q), 'q is not prime'
self.p = p
self.q = q
elif n and d:
self.p, self.q = factor_modulus(n, d, e)
else:
raise ArgumentError('Either (p, q) or (n, d) must be provided')
self._calc_values()
def _calc_values(self):
self.n = self.p * self.q
if self.p != self.q:
phi = (self.p - 1) * (self.q - 1)
else:
phi = (self.p ** 2) - self.p
self.d = gmpy.invert(self.e, phi)
# CRT-RSA precomputation
self.dP = self.d % (self.p - 1)
self.dQ = self.d % (self.q - 1)
self.qInv = gmpy.invert(self.q, self.p)
def to_pem(self):
"""
Return OpenSSL-compatible PEM encoded key
"""
return (PEM_TEMPLATE % base64.encodestring(self.to_der()).decode()).encode()
def to_der(self):
"""
Return parameters as OpenSSL compatible DER encoded key
"""
seq = Sequence()
for x in [0, self.n, self.e, self.d, self.p, self.q, self.dP, self.dQ, self.qInv]:
seq.setComponentByPosition(len(seq), Integer(x))
return encoder.encode(seq)
def dump(self, verbose):
vars = ['n', 'e', 'd', 'p', 'q']
if verbose:
vars += ['dP', 'dQ', 'qInv']
for v in vars:
self._dumpvar(v)
def _dumpvar(self, var):
val = getattr(self, var)
parts = lambda s, l: '\n'.join([s[i:i+l] for i in range(0, len(s), l)])
if len(str(val)) <= 40:
print('%s = %d (%#x)\n' % (var, val, val))
else:
print('%s =' % var)
print(parts('%x' % val, 80) + '\n')
if __name__ == '__main__':
parser = optparse.OptionParser()
parser.add_option('-p', dest='p', help='prime', type='int')
parser.add_option('-q', dest='q', help='prime', type='int')
parser.add_option('-n', dest='n', help='modulus', type='int')
parser.add_option('-d', dest='d', help='private exponent', type='int')
parser.add_option('-e', dest='e', help='public exponent (default: %d)' % DEFAULT_EXP, type='int', default=DEFAULT_EXP)
parser.add_option('-o', dest='filename', help='output filename')
parser.add_option('-f', dest='format', help='output format (DER, PEM) (default: PEM)', type='choice', choices=['DER', 'PEM'], default='PEM')
parser.add_option('-v', dest='verbose', help='also display CRT-RSA representation', action='store_true', default=False)
try:
(options, args) = parser.parse_args()
if options.p and options.q:
print('Using (p, q) to initialise RSA instance\n')
rsa = RSA(p=options.p, q=options.q, e=options.e)
elif options.n and options.d:
print('Using (n, d) to initialise RSA instance\n')
rsa = RSA(n=options.n, d=options.d, e=options.e)
else:
parser.print_help()
parser.error('Either (p, q) or (n, d) needs to be specified')
rsa.dump(options.verbose)
if options.filename:
print('Saving %s as %s' % (options.format, options.filename))
if options.format == 'PEM':
data = rsa.to_pem()
elif options.format == 'DER':
data = rsa.to_der()
fp = open(options.filename, 'wb')
fp.write(data)
fp.close()
except optparse.OptionValueError as e:
parser.print_help()
parser.error(e.msg)