-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_test_digit.py
60 lines (50 loc) · 1.71 KB
/
main_test_digit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import os
import numpy as np
import click
import pandas as pd
from network import mnist_net
import data_loader
from main_base import evaluate
from utils import log
@click.command()
@click.option('--gpu', type=str, default='0', help='选择GPU编号')
@click.option('--modelpath', type=str, default='saved/best.pkl')
@click.option('--svpath', type=str, default=None, help='保存日志的路径')
@click.option('--channels', type=int, default=3)
def main(gpu, modelpath, svpath, channels):
evaluate_digit(gpu, modelpath, svpath, channels)
def evaluate_digit(gpu, modelpath, svpath, channels=3):
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
# 加载模型
if channels == 3:
cls_net = mnist_net.ConvNet().cuda()
elif channels == 1:
cls_net = mnist_net.ConvNet(imdim=channels).cuda()
saved_weight = torch.load(modelpath)
cls_net.load_state_dict(saved_weight['cls_net'])
#cls_net.eval()
# 测试
str2fun = {
'mnist': data_loader.load_mnist,
'mnist_m': data_loader.load_mnist_m,
'usps': data_loader.load_usps,
'svhn': data_loader.load_svhn,
'syndigit': data_loader.load_syndigit,
}
columns = ['mnist', 'mnist_m', 'usps', 'svhn', 'syndigit']
rst = []
for data in columns:
teset = str2fun[data]('test', channels=channels)
teloader = DataLoader(teset, batch_size=128, num_workers=8)
teacc = evaluate(cls_net, teloader)
rst.append(teacc)
df = pd.DataFrame([rst], columns=columns)
print(df)
if svpath is not None:
df.to_csv(svpath)
if __name__=='__main__':
main()