forked from opengeos/segment-geospatial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_sam.py
721 lines (611 loc) · 25.6 KB
/
text_sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
"""The LangSAM model for segmenting objects from satellite images using text prompts.
The source code is adapted from the https://github.com/luca-medeiros/lang-segment-anything repository.
Credits to Luca Medeiros for the original implementation.
"""
import argparse
import inspect
import os
import warnings
import numpy as np
import torch
from PIL import Image
from segment_anything import sam_model_registry
from segment_anything import SamPredictor
from huggingface_hub import hf_hub_download
from .common import *
from .samgeo2 import SamGeo2
try:
import rasterio
except ImportError:
print("Installing rasterio...")
install_package("rasterio")
warnings.filterwarnings("ignore")
try:
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util import box_ops
from groundingdino.util.inference import predict
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
except ImportError:
print("Installing GroundingDINO...")
install_package("groundingdino-py")
print("Please restart the kernel and run the notebook again.")
# Mode checkpoints
SAM_MODELS = {
"vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
"vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
"vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
}
# Cache path
CACHE_PATH = os.environ.get(
"TORCH_HOME", os.path.expanduser("~/.cache/torch/hub/checkpoints")
)
def load_model_hf(
repo_id: str, filename: str, ckpt_config_filename: str, device: str = "cpu"
) -> torch.nn.Module:
"""
Loads a model from HuggingFace Model Hub.
Args:
repo_id (str): Repository ID on HuggingFace Model Hub.
filename (str): Name of the model file in the repository.
ckpt_config_filename (str): Name of the config file for the model in the repository.
device (str): Device to load the model onto. Default is 'cpu'.
Returns:
torch.nn.Module: The loaded model.
"""
cache_config_file = hf_hub_download(
repo_id=repo_id,
filename=ckpt_config_filename,
force_filename=ckpt_config_filename,
)
args = SLConfig.fromfile(cache_config_file)
model = build_model(args)
model.to(device)
cache_file = hf_hub_download(
repo_id=repo_id, filename=filename, force_filename=filename
)
checkpoint = torch.load(cache_file, map_location="cpu")
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
return model
def transform_image(image: Image) -> torch.Tensor:
"""
Transforms an image using standard transformations for image-based models.
Args:
image (Image): The PIL Image to be transformed.
Returns:
torch.Tensor: The transformed image as a tensor.
"""
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_transformed, _ = transform(image, None)
return image_transformed
# Class definition for LangSAM
class LangSAM:
"""
A Language-based Segment-Anything Model (LangSAM) class which combines GroundingDINO and SAM.
"""
def __init__(self, model_type="vit_h", checkpoint=None):
"""Initialize the LangSAM instance.
Args:
model_type (str, optional): The model type. It can be one of the SAM 1
models () vit_h, vit_l, vit_b) or SAM 2 models (sam2-hiera-tiny,
sam2-hiera-small, sam2-hiera-base-plus, sam2-hiera-large)
Defaults to 'vit_h'. See https://bit.ly/3VrpxUh for more details.
checkpoint_url (str, optional): The URL to the checkpoint file. Defaults to None
"""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.build_groundingdino()
self.build_sam(model_type, checkpoint)
self.source = None
self.image = None
self.masks = None
self.boxes = None
self.phrases = None
self.logits = None
self.prediction = None
def build_sam(self, model_type, checkpoint_url=None):
"""Build the SAM model.
Args:
model_type (str, optional): The model type. It can be one of the SAM 1
models () vit_h, vit_l, vit_b) or SAM 2 models (sam2-hiera-tiny,
sam2-hiera-small, sam2-hiera-base-plus, sam2-hiera-large)
Defaults to 'vit_h'. See https://bit.ly/3VrpxUh for more details.
checkpoint_url (str, optional): The URL to the checkpoint file. Defaults to None
"""
sam1_models = ["vit_h", "vit_l", "vit_b"]
sam2_models = [
"sam2-hiera-tiny",
"sam2-hiera-small",
"sam2-hiera-base-plus",
"sam2-hiera-large",
]
if model_type in sam1_models:
if checkpoint_url is not None:
sam = sam_model_registry[model_type](checkpoint=checkpoint_url)
else:
checkpoint_url = SAM_MODELS[model_type]
sam = sam_model_registry[model_type]()
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)
sam.load_state_dict(state_dict, strict=True)
sam.to(device=self.device)
self.sam = SamPredictor(sam)
self._sam_version = 1
elif model_type in sam2_models:
self.sam = SamGeo2(model_id=model_type, device=self.device, automatic=False)
self._sam_version = 2
def build_groundingdino(self):
"""Build the GroundingDINO model."""
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filename = "groundingdino_swinb_cogcoor.pth"
ckpt_config_filename = "GroundingDINO_SwinB.cfg.py"
self.groundingdino = load_model_hf(
ckpt_repo_id, ckpt_filename, ckpt_config_filename, self.device
)
def predict_dino(self, image, text_prompt, box_threshold, text_threshold):
"""
Run the GroundingDINO model prediction.
Args:
image (Image): Input PIL Image.
text_prompt (str): Text prompt for the model.
box_threshold (float): Box threshold for the prediction.
text_threshold (float): Text threshold for the prediction.
Returns:
tuple: Tuple containing boxes, logits, and phrases.
"""
image_trans = transform_image(image)
boxes, logits, phrases = predict(
model=self.groundingdino,
image=image_trans,
caption=text_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=self.device,
)
W, H = image.size
boxes = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
return boxes, logits, phrases
def predict_sam(self, image, boxes):
"""
Run the SAM model prediction.
Args:
image (Image): Input PIL Image.
boxes (torch.Tensor): Tensor of bounding boxes.
Returns:
Masks tensor.
"""
if self._sam_version == 1:
image_array = np.asarray(image)
self.sam.set_image(image_array)
transformed_boxes = self.sam.transform.apply_boxes_torch(
boxes, image_array.shape[:2]
)
masks, _, _ = self.sam.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(self.sam.device),
multimask_output=False,
)
return masks.cpu()
elif self._sam_version == 2:
self.sam.set_image(self.source)
self.sam.boxes = boxes.numpy().tolist()
masks, _, _ = self.sam.predict(
boxes=boxes.numpy().tolist(),
multimask_output=False,
return_results=True,
)
self.masks = masks
return masks
def set_image(self, image):
"""Set the input image.
Args:
image (str): The path to the image file or a HTTP URL.
"""
if isinstance(image, str):
if image.startswith("http"):
image = download_file(image)
if not os.path.exists(image):
raise ValueError(f"Input path {image} does not exist.")
self.source = image
else:
self.source = None
def predict(
self,
image,
text_prompt,
box_threshold,
text_threshold,
output=None,
mask_multiplier=255,
dtype=np.uint8,
save_args={},
return_results=False,
return_coords=False,
detection_filter=None,
**kwargs,
):
"""
Run both GroundingDINO and SAM model prediction.
Parameters:
image (Image): Input PIL Image.
text_prompt (str): Text prompt for the model.
box_threshold (float): Box threshold for the prediction.
text_threshold (float): Text threshold for the prediction.
output (str, optional): Output path for the prediction. Defaults to None.
mask_multiplier (int, optional): Mask multiplier for the prediction. Defaults to 255.
dtype (np.dtype, optional): Data type for the prediction. Defaults to np.uint8.
save_args (dict, optional): Save arguments for the prediction. Defaults to {}.
return_results (bool, optional): Whether to return the results. Defaults to False.
detection_filter (callable, optional):
Callable with box, mask, logit, phrase, and index args returns a boolean.
If provided, the function will be called for each detected object.
Defaults to None.
Returns:
tuple: Tuple containing masks, boxes, phrases, and logits.
"""
if isinstance(image, str):
if image.startswith("http"):
image = download_file(image)
if not os.path.exists(image):
raise ValueError(f"Input path {image} does not exist.")
self.source = image
# Load the georeferenced image
with rasterio.open(image) as src:
image_np = src.read().transpose(
(1, 2, 0)
) # Convert rasterio image to numpy array
self.transform = src.transform # Save georeferencing information
self.crs = src.crs # Save the Coordinate Reference System
if self.crs is None:
warnings.warn(
"The CRS (Coordinate Reference System) "
"of input image is None. "
"Please define a projection on the input image "
"before running segment-geospatial, "
"or manually set CRS on result object "
"like `sam.crs = 'EPSG:3857'`.",
UserWarning,
)
image_pil = Image.fromarray(
image_np[:, :, :3]
) # Convert numpy array to PIL image, excluding the alpha channel
else:
image_pil = image
image_np = np.array(image_pil)
self.image = image_pil
boxes, logits, phrases = self.predict_dino(
image_pil, text_prompt, box_threshold, text_threshold
)
masks = torch.tensor([])
if len(boxes) > 0:
masks = self.predict_sam(image_pil, boxes)
if 1 in masks.shape:
masks = masks.squeeze(1)
if boxes.nelement() == 0: # No "object" instances found
print("No objects found in the image.")
return
else:
# Create an empty image to store the mask overlays
mask_overlay = np.zeros_like(
image_np[..., 0], dtype=dtype
) # Adjusted for single channel
# Validate the detection_filter argument
if detection_filter is not None:
if not callable(detection_filter):
raise ValueError("detection_filter must be callable.")
if not len(inspect.signature(detection_filter).parameters) == 5:
raise ValueError(
"detection_filter required args: "
"box, mask, logit, phrase, and index."
)
for i, (box, mask, logit, phrase) in enumerate(
zip(boxes, masks, logits, phrases)
):
# Convert tensor to numpy array if necessary and ensure it contains integers
if isinstance(mask, torch.Tensor):
mask = (
mask.cpu().numpy().astype(dtype)
) # If mask is on GPU, use .cpu() before .numpy()
# Apply the user-supplied filtering logic if provided
if detection_filter is not None:
if not detection_filter(box, mask, logit, phrase, i):
continue
mask_overlay += ((mask > 0) * (i + 1)).astype(
dtype
) # Assign a unique value for each mask
# Normalize mask_overlay to be in [0, 255]
mask_overlay = (
mask_overlay > 0
) * mask_multiplier # Binary mask in [0, 255]
if output is not None:
array_to_image(mask_overlay, output, self.source, dtype=dtype, **save_args)
self.masks = masks
self.boxes = boxes
self.phrases = phrases
self.logits = logits
self.prediction = mask_overlay
if return_results:
return masks, boxes, phrases, logits
if return_coords:
boxlist = []
for box in self.boxes:
box = box.cpu().numpy()
boxlist.append((box[0], box[1]))
return boxlist
def predict_batch(
self,
images,
out_dir,
text_prompt,
box_threshold,
text_threshold,
mask_multiplier=255,
dtype=np.uint8,
save_args={},
merge=True,
verbose=True,
**kwargs,
):
"""
Run both GroundingDINO and SAM model prediction for a batch of images.
Parameters:
images (list): List of input PIL Images.
out_dir (str): Output directory for the prediction.
text_prompt (str): Text prompt for the model.
box_threshold (float): Box threshold for the prediction.
text_threshold (float): Text threshold for the prediction.
mask_multiplier (int, optional): Mask multiplier for the prediction. Defaults to 255.
dtype (np.dtype, optional): Data type for the prediction. Defaults to np.uint8.
save_args (dict, optional): Save arguments for the prediction. Defaults to {}.
merge (bool, optional): Whether to merge the predictions into a single GeoTIFF file. Defaults to True.
"""
import glob
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if isinstance(images, str):
images = list(glob.glob(os.path.join(images, "*.tif")))
images.sort()
if not isinstance(images, list):
raise ValueError("images must be a list or a directory to GeoTIFF files.")
for i, image in enumerate(images):
basename = os.path.splitext(os.path.basename(image))[0]
if verbose:
print(
f"Processing image {str(i+1).zfill(len(str(len(images))))} of {len(images)}: {image}..."
)
output = os.path.join(out_dir, f"{basename}_mask.tif")
self.predict(
image,
text_prompt,
box_threshold,
text_threshold,
output=output,
mask_multiplier=mask_multiplier,
dtype=dtype,
save_args=save_args,
**kwargs,
)
if merge:
output = os.path.join(out_dir, "merged.tif")
merge_rasters(out_dir, output)
if verbose:
print(f"Saved the merged prediction to {output}.")
def save_boxes(self, output=None, dst_crs="EPSG:4326", **kwargs):
"""Save the bounding boxes to a vector file.
Args:
output (str): The path to the output vector file.
dst_crs (str, optional): The destination CRS. Defaults to "EPSG:4326".
**kwargs: Additional arguments for boxes_to_vector().
"""
if self.boxes is None:
print("Please run predict() first.")
return
else:
boxes = self.boxes.tolist()
coords = rowcol_to_xy(self.source, boxes=boxes, dst_crs=dst_crs, **kwargs)
if output is None:
return boxes_to_vector(coords, self.crs, dst_crs, output)
else:
boxes_to_vector(coords, self.crs, dst_crs, output)
def show_anns(
self,
figsize=(12, 10),
axis="off",
cmap="viridis",
alpha=0.4,
add_boxes=True,
box_color="r",
box_linewidth=1,
title=None,
output=None,
blend=True,
**kwargs,
):
"""Show the annotations (objects with random color) on the input image.
Args:
figsize (tuple, optional): The figure size. Defaults to (12, 10).
axis (str, optional): Whether to show the axis. Defaults to "off".
cmap (str, optional): The colormap for the annotations. Defaults to "viridis".
alpha (float, optional): The alpha value for the annotations. Defaults to 0.4.
add_boxes (bool, optional): Whether to show the bounding boxes. Defaults to True.
box_color (str, optional): The color for the bounding boxes. Defaults to "r".
box_linewidth (int, optional): The line width for the bounding boxes. Defaults to 1.
title (str, optional): The title for the image. Defaults to None.
output (str, optional): The path to the output image. Defaults to None.
blend (bool, optional): Whether to show the input image. Defaults to True.
kwargs (dict, optional): Additional arguments for matplotlib.pyplot.savefig().
"""
import warnings
import matplotlib.pyplot as plt
import matplotlib.patches as patches
warnings.filterwarnings("ignore")
anns = self.prediction
if anns is None:
print("Please run predict() first.")
return
elif len(anns) == 0:
print("No objects found in the image.")
return
plt.figure(figsize=figsize)
plt.imshow(self.image)
if add_boxes:
for box in self.boxes:
# Draw bounding box
box = box.cpu().numpy() # Convert the tensor to a numpy array
rect = patches.Rectangle(
(box[0], box[1]),
box[2] - box[0],
box[3] - box[1],
linewidth=box_linewidth,
edgecolor=box_color,
facecolor="none",
)
plt.gca().add_patch(rect)
if "dpi" not in kwargs:
kwargs["dpi"] = 100
if "bbox_inches" not in kwargs:
kwargs["bbox_inches"] = "tight"
plt.imshow(anns, cmap=cmap, alpha=alpha)
if title is not None:
plt.title(title)
plt.axis(axis)
if output is not None:
if blend:
plt.savefig(output, **kwargs)
else:
array_to_image(self.prediction, output, self.source)
def raster_to_vector(self, image, output, simplify_tolerance=None, **kwargs):
"""Save the result to a vector file.
Args:
image (str): The path to the image file.
output (str): The path to the vector file.
simplify_tolerance (float, optional): The maximum allowed geometry displacement.
The higher this value, the smaller the number of vertices in the resulting geometry.
"""
raster_to_vector(image, output, simplify_tolerance=simplify_tolerance, **kwargs)
def show_map(self, basemap="SATELLITE", out_dir=None, **kwargs):
"""Show the interactive map.
Args:
basemap (str, optional): The basemap. It can be one of the following: SATELLITE, ROADMAP, TERRAIN, HYBRID.
out_dir (str, optional): The path to the output directory. Defaults to None.
Returns:
leafmap.Map: The map object.
"""
return text_sam_gui(self, basemap=basemap, out_dir=out_dir, **kwargs)
def region_groups(
self,
image: Union[str, "xr.DataArray", np.ndarray],
connectivity: int = 1,
min_size: int = 10,
max_size: Optional[int] = None,
threshold: Optional[int] = None,
properties: Optional[List[str]] = None,
intensity_image: Optional[Union[str, "xr.DataArray", np.ndarray]] = None,
out_csv: Optional[str] = None,
out_vector: Optional[str] = None,
out_image: Optional[str] = None,
**kwargs: Any,
) -> Union[
Tuple[np.ndarray, "pd.DataFrame"], Tuple["xr.DataArray", "pd.DataFrame"]
]:
"""
Segment regions in an image and filter them based on size.
Args:
image (Union[str, xr.DataArray, np.ndarray]): Input image, can be a file
path, xarray DataArray, or numpy array.
connectivity (int, optional): Connectivity for labeling. Defaults to 1
for 4-connectivity. Use 2 for 8-connectivity.
min_size (int, optional): Minimum size of regions to keep. Defaults to 10.
max_size (Optional[int], optional): Maximum size of regions to keep.
Defaults to None.
threshold (Optional[int], optional): Threshold for filling holes.
Defaults to None, which is equal to min_size.
properties (Optional[List[str]], optional): List of properties to measure.
See https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops
Defaults to None.
intensity_image (Optional[Union[str, xr.DataArray, np.ndarray]], optional):
Intensity image to use for properties. Defaults to None.
out_csv (Optional[str], optional): Path to save the properties as a CSV file.
Defaults to None.
out_vector (Optional[str], optional): Path to save the vector file.
Defaults to None.
out_image (Optional[str], optional): Path to save the output image.
Defaults to None.
Returns:
Union[Tuple[np.ndarray, pd.DataFrame], Tuple[xr.DataArray, pd.DataFrame]]: Labeled image and properties DataFrame.
"""
return self.sam.region_groups(
image,
connectivity=connectivity,
min_size=min_size,
max_size=max_size,
threshold=threshold,
properties=properties,
intensity_image=intensity_image,
out_csv=out_csv,
out_vector=out_vector,
out_image=out_image,
**kwargs,
)
def main():
parser = argparse.ArgumentParser(description="LangSAM")
parser.add_argument("--image", required=True, help="path to the image")
parser.add_argument("--prompt", required=True, help="text prompt")
parser.add_argument(
"--box_threshold", default=0.5, type=float, help="box threshold"
)
parser.add_argument(
"--text_threshold", default=0.5, type=float, help="text threshold"
)
args = parser.parse_args()
with rasterio.open(args.image) as src:
image_np = src.read().transpose(
(1, 2, 0)
) # Convert rasterio image to numpy array
transform = src.transform # Save georeferencing information
crs = src.crs # Save the Coordinate Reference System
model = LangSAM()
image_pil = Image.fromarray(
image_np[:, :, :3]
) # Convert numpy array to PIL image, excluding the alpha channel
image_np_copy = image_np.copy() # Create a copy for modifications
masks, boxes, phrases, logits = model.predict(
image_pil, args.prompt, args.box_threshold, args.text_threshold
)
if boxes.nelement() == 0: # No "object" instances found
print("No objects found in the image.")
else:
# Create an empty image to store the mask overlays
mask_overlay = np.zeros_like(
image_np[..., 0], dtype=np.int64
) # Adjusted for single channel
for i in range(len(boxes)):
box = boxes[i].cpu().numpy() # Convert the tensor to a numpy array
mask = masks[i].cpu().numpy() # Convert the tensor to a numpy array
# Add the mask to the mask_overlay image
mask_overlay += (mask > 0) * (i + 1) # Assign a unique value for each mask
# Normalize mask_overlay to be in [0, 255]
mask_overlay = ((mask_overlay > 0) * 255).astype(
rasterio.uint8
) # Binary mask in [0, 255]
with rasterio.open(
"mask.tif",
"w",
driver="GTiff",
height=mask_overlay.shape[0],
width=mask_overlay.shape[1],
count=1,
dtype=mask_overlay.dtype,
crs=crs,
transform=transform,
) as dst:
dst.write(mask_overlay, 1)
if __name__ == "__main__":
main()