-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenGJK.c
671 lines (581 loc) · 21 KB
/
openGJK.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
// _____ _ _ __ //
// / ____| | | |/ / //
// ___ _ __ ___ _ __ | | __ | | ' / //
// / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < //
// | (_) | |_) | __/ | | | |__| | |__| | . \ //
// \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ //
// | | //
// |_| //
// //
// Copyright 2022 Mattia Montanari, University of Oxford //
// //
// This program is free software: you can redistribute it and/or modify it under //
// the terms of the GNU General Public License as published by the Free Software //
// Foundation, either version 3 of the License. You should have received a copy //
// of the GNU General Public License along with this program. If not, visit //
// //
// https://www.gnu.org/licenses/ //
// //
// This program is distributed in the hope that it will be useful, but WITHOUT //
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS //
// FOR A PARTICULAR PURPOSE. See GNU General Public License for details. //
#include "openGJK/openGJK.h"
#include <stdio.h>
#include <stdlib.h>
#include "math.h"
#define eps_rel22 1e-10
#define eps_tot22 1e-12
#define norm2(a) (a[0] * a[0] + a[1] * a[1] + a[2] * a[2])
#define dotProduct(a, b) (a[0] * b[0] + a[1] * b[1] + a[2] * b[2])
#define S3Dregion1234() \
v[0] = 0; \
v[1] = 0; \
v[2] = 0; \
s->nvrtx = 4;
#define select_1ik() \
s->nvrtx = 3; \
for (t = 0; t < 3; t++) s->vrtx[2][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = si[t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sk[t];
#define select_1ij() \
s->nvrtx = 3; \
for (t = 0; t < 3; t++) s->vrtx[2][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = si[t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sj[t];
#define select_1jk() \
s->nvrtx = 3; \
for (t = 0; t < 3; t++) s->vrtx[2][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = sj[t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sk[t];
#define select_1i() \
s->nvrtx = 2; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = si[t];
#define select_1j() \
s->nvrtx = 2; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sj[t];
#define select_1k() \
s->nvrtx = 2; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sk[t];
#define getvrtx(point, location) \
point[0] = s->vrtx[location][0]; \
point[1] = s->vrtx[location][1]; \
point[2] = s->vrtx[location][2];
#define calculateEdgeVector(p1p2, p2) \
p1p2[0] = p2[0] - s->vrtx[3][0]; \
p1p2[1] = p2[1] - s->vrtx[3][1]; \
p1p2[2] = p2[2] - s->vrtx[3][2];
#define S1Dregion1() \
v[0] = s->vrtx[1][0]; \
v[1] = s->vrtx[1][1]; \
v[2] = s->vrtx[1][2]; \
s->nvrtx = 1; \
s->vrtx[0][0] = s->vrtx[1][0]; \
s->vrtx[0][1] = s->vrtx[1][1]; \
s->vrtx[0][2] = s->vrtx[1][2];
#define S2Dregion1() \
v[0] = s->vrtx[2][0]; \
v[1] = s->vrtx[2][1]; \
v[2] = s->vrtx[2][2]; \
s->nvrtx = 1; \
s->vrtx[0][0] = s->vrtx[2][0]; \
s->vrtx[0][1] = s->vrtx[2][1]; \
s->vrtx[0][2] = s->vrtx[2][2];
#define S2Dregion12() \
s->nvrtx = 2; \
s->vrtx[0][0] = s->vrtx[2][0]; \
s->vrtx[0][1] = s->vrtx[2][1]; \
s->vrtx[0][2] = s->vrtx[2][2];
#define S2Dregion13() \
s->nvrtx = 2; \
s->vrtx[1][0] = s->vrtx[2][0]; \
s->vrtx[1][1] = s->vrtx[2][1]; \
s->vrtx[1][2] = s->vrtx[2][2];
#define S3Dregion1() \
v[0] = s1[0]; \
v[1] = s1[1]; \
v[2] = s1[2]; \
s->nvrtx = 1; \
s->vrtx[0][0] = s1[0]; \
s->vrtx[0][1] = s1[1]; \
s->vrtx[0][2] = s1[2];
inline static gkFloat determinant(const gkFloat *p, const gkFloat *q, const gkFloat *r) {
return p[0] * ((q[1] * r[2]) - (r[1] * q[2])) - p[1] * (q[0] * r[2] - r[0] * q[2]) +
p[2] * (q[0] * r[1] - r[0] * q[1]);
}
inline static void crossProduct(const gkFloat *a, const gkFloat *b, gkFloat *c) {
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
inline static void projectOnLine(const gkFloat *p, const gkFloat *q, gkFloat *v) {
gkFloat pq[3];
gkFloat tmp;
pq[0] = p[0] - q[0];
pq[1] = p[1] - q[1];
pq[2] = p[2] - q[2];
tmp = dotProduct(p, pq) / dotProduct(pq, pq);
for (int i = 0; i < 3; i++) v[i] = p[i] - pq[i] * tmp;
}
inline static void projectOnPlane(const gkFloat *p, const gkFloat *q, const gkFloat *r, gkFloat *v) {
gkFloat n[3], pq[3], pr[3];
gkFloat tmp;
for (int i = 0; i < 3; i++) pq[i] = p[i] - q[i];
for (int i = 0; i < 3; i++) pr[i] = p[i] - r[i];
crossProduct(pq, pr, n);
tmp = dotProduct(n, p) / dotProduct(n, n);
for (int i = 0; i < 3; i++) v[i] = n[i] * tmp;
}
inline static int hff1(const gkFloat *p, const gkFloat *q) {
gkFloat tmp = 0;
for (int i = 0; i < 3; i++) tmp += (p[i] * p[i] - p[i] * q[i]);
if (tmp > 0) return 1; // keep q
return 0;
}
inline static int hff2(const gkFloat *p, const gkFloat *q, const gkFloat *r) {
gkFloat ntmp[3];
gkFloat n[3], pq[3], pr[3];
gkFloat tmp = 0;
for (int i = 0; i < 3; i++) pq[i] = q[i] - p[i];
for (int i = 0; i < 3; i++) pr[i] = r[i] - p[i];
crossProduct(pq, pr, ntmp);
crossProduct(pq, ntmp, n);
for (int i = 0; i < 3; i++) tmp = tmp + (p[i] * n[i]);
if (tmp < 0) return 1; // Discard r
return 0;
}
inline static int hff3(const gkFloat *p, const gkFloat *q, const gkFloat *r) {
gkFloat n[3], pq[3], pr[3];
gkFloat tmp = 0;
for (int i = 0; i < 3; i++) pq[i] = q[i] - p[i];
for (int i = 0; i < 3; i++) pr[i] = r[i] - p[i];
crossProduct(pq, pr, n);
for (int i = 0; i < 3; i++) tmp = tmp + (p[i] * n[i]);
if (tmp > 0) return 0; // discard s
return 1;
}
inline static void S1D(gkSimplex *s, gkFloat *v) {
gkFloat *s1p = s->vrtx[1];
gkFloat *s2p = s->vrtx[0];
if (hff1(s1p, s2p)) {
projectOnLine(s1p, s2p, v); // Update v, no need to update s
return; // Return V{1,2}
} else {
S1Dregion1(); // Update v and s
return; // Return V{1}
}
}
inline static void S2D(gkSimplex *s, gkFloat *v) {
gkFloat *s1p = s->vrtx[2];
gkFloat *s2p = s->vrtx[1];
gkFloat *s3p = s->vrtx[0];
int hff1f_s12 = hff1(s1p, s2p);
int hff1f_s13 = hff1(s1p, s3p);
int hff2f_23 = !hff2(s1p, s2p, s3p);
int hff2f_32 = !hff2(s1p, s3p, s2p);
if (hff1f_s12) {
if (hff2f_23) {
if (hff1f_s13) {
if (hff2f_32) {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update c
return; // Return V{1,2,3}
} else {
projectOnLine(s1p, s3p, v); // Update v
S2Dregion13(); // Update s
return; // Return V{1,3}
}
} else {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update c
return; // Return V{1,2,3}
}
} else {
projectOnLine(s1p, s2p, v); // Update v
S2Dregion12(); // Update s
return; // Return V{1,2}
}
} else if (hff1f_s13) {
if (hff2f_32) {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update v
return; // Return V{1,2,3}
} else {
projectOnLine(s1p, s3p, v); // Update v
S2Dregion13(); // Update s
return; // Return V{1,3}
}
} else {
S2Dregion1(); // Update s and v
return; // Return V{1}
}
}
inline static void S3D(gkSimplex *s, gkFloat *v) {
gkFloat s1[3], s2[3], s3[3], s4[3], s1s2[3], s1s3[3], s1s4[3];
gkFloat si[3], sj[3], sk[3];
int testLineThree, testLineFour, testPlaneTwo, testPlaneThree, testPlaneFour, dotTotal;
int i, j, k, t;
getvrtx(s1, 3);
getvrtx(s2, 2);
getvrtx(s3, 1);
getvrtx(s4, 0);
calculateEdgeVector(s1s2, s2);
calculateEdgeVector(s1s3, s3);
calculateEdgeVector(s1s4, s4);
int hff1_tests[3];
hff1_tests[2] = hff1(s1, s2);
hff1_tests[1] = hff1(s1, s3);
hff1_tests[0] = hff1(s1, s4);
testLineThree = hff1(s1, s3);
testLineFour = hff1(s1, s4);
dotTotal = hff1(s1, s2) + testLineThree + testLineFour;
if (dotTotal == 0) { /* case 0.0 -------------------------------------- */
S3Dregion1();
return;
}
gkFloat det134 = determinant(s1s3, s1s4, s1s2);
int sss;
if (det134 > 0) {
sss = 0;
} else {
sss = 1;
}
testPlaneTwo = hff3(s1, s3, s4) - sss;
testPlaneTwo = testPlaneTwo * testPlaneTwo;
testPlaneThree = hff3(s1, s4, s2) - sss;
testPlaneThree = testPlaneThree * testPlaneThree;
testPlaneFour = hff3(s1, s2, s3) - sss;
testPlaneFour = testPlaneFour * testPlaneFour;
switch (testPlaneTwo + testPlaneThree + testPlaneFour) {
case 3:
S3Dregion1234();
break;
case 2:
// Only one facing the oring
// 1,i,j, are the indices of the points on the triangle and remove k from
// simplex
s->nvrtx = 3;
if (!testPlaneTwo) { // k = 2; removes s2
for (i = 0; i < 3; i++) s->vrtx[2][i] = s->vrtx[3][i];
} else if (!testPlaneThree) { // k = 1; // removes s3
for (i = 0; i < 3; i++) s->vrtx[1][i] = s2[i];
for (i = 0; i < 3; i++) s->vrtx[2][i] = s->vrtx[3][i];
} else if (!testPlaneFour) { // k = 0; // removes s4 and no need to reorder
for (i = 0; i < 3; i++) s->vrtx[0][i] = s3[i];
for (i = 0; i < 3; i++) s->vrtx[1][i] = s2[i];
for (i = 0; i < 3; i++) s->vrtx[2][i] = s->vrtx[3][i];
}
// Call S2D
S2D(s, v);
break;
case 1:
// Two triangles face the origins:
// The only positive hff3 is for triangle 1,i,j, therefore k must be in
// the solution as it supports the the point of minimum norm.
// 1,i,j, are the indices of the points on the triangle and remove k from
// simplex
s->nvrtx = 3;
if (testPlaneTwo) {
k = 2; // s2
i = 1;
j = 0;
} else if (testPlaneThree) {
k = 1; // s3
i = 0;
j = 2;
} else {
k = 0; // s4
i = 2;
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (dotTotal == 1) {
if (hff1_tests[k]) {
if (!hff2(s1, sk, si)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
} else if (!hff2(s1, sk, sj)) {
select_1jk();
projectOnPlane(s1, sj, sk, v);
} else {
select_1k(); // select region 1i
projectOnLine(s1, sk, v);
}
} else if (hff1_tests[i]) {
if (!hff2(s1, si, sk)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
} else {
select_1i(); // select region 1i
projectOnLine(s1, si, v);
}
} else {
if (!hff2(s1, sj, sk)) {
select_1jk();
projectOnPlane(s1, sj, sk, v);
} else {
select_1j(); // select region 1i
projectOnLine(s1, sj, v);
}
}
} else if (dotTotal == 2) {
// Two edges have positive hff1, meaning that for two edges the origin's
// project fall on the segement.
// Certainly the edge 1,k supports the the point of minimum norm, and so
// hff1_1k is positive
if (hff1_tests[i]) {
if (!hff2(s1, sk, si))
if (!hff2(s1, si, sk)) {
select_1ik(); // select region 1ik
projectOnPlane(s1, si, sk, v);
} else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
else {
if (!hff2(s1, sk, sj)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
} else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
}
} else if (hff1_tests[j]) { // there is no other choice
if (!hff2(s1, sk, sj))
if (!hff2(s1, sj, sk)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
} else {
select_1j(); // select region 1j
projectOnLine(s1, sj, v);
}
else {
if (!hff2(s1, sk, si)) {
select_1ik(); // select region 1ik
projectOnPlane(s1, si, sk, v);
} else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
}
} else {
// ERROR;
}
} else if (dotTotal == 3) {
// MM : ALL THIS HYPHOTESIS IS FALSE
// sk is s.t. hff3 for sk < 0. So, sk must support the origin because
// there are 2 triangles facing the origin.
int hff2_ik = hff2(s1, si, sk);
int hff2_jk = hff2(s1, sj, sk);
int hff2_ki = hff2(s1, sk, si);
int hff2_kj = hff2(s1, sk, sj);
if (hff2_ki == 0 && hff2_kj == 0) {
mexPrintf("\n\n UNEXPECTED VALUES!!! \n\n");
}
if (hff2_ki == 1 && hff2_kj == 1) {
select_1k();
projectOnLine(s1, sk, v);
} else if (hff2_ki) {
// discard i
if (hff2_jk) {
// discard k
select_1j();
projectOnLine(s1, sj, v);
} else {
select_1jk();
projectOnPlane(s1, sk, sj, v);
}
} else {
// discard j
if (hff2_ik) {
// discard k
select_1i();
projectOnLine(s1, si, v);
} else {
select_1ik();
projectOnPlane(s1, sk, si, v);
}
}
}
break;
case 0:
// The origin is outside all 3 triangles
if (dotTotal == 1) {
// Here si is set such that hff(s1,si) > 0
if (testLineThree) {
k = 2;
i = 1; // s3
j = 0;
} else if (testLineFour) {
k = 1; // s3
i = 0;
j = 2;
} else {
k = 0;
i = 2; // s2
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (!hff2(s1, si, sj)) {
select_1ij();
projectOnPlane(s1, si, sj, v);
} else if (!hff2(s1, si, sk)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
} else {
select_1i();
projectOnLine(s1, si, v);
}
} else if (dotTotal == 2) {
// Here si is set such that hff(s1,si) < 0
s->nvrtx = 3;
if (!testLineThree) {
k = 2;
i = 1; // s3
j = 0;
} else if (!testLineFour) {
k = 1;
i = 0; // s4
j = 2;
} else {
k = 0;
i = 2; // s2
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (!hff2(s1, sj, sk)) {
if (!hff2(s1, sk, sj)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
} else if (!hff2(s1, sk, si)) {
select_1ik();
projectOnPlane(s1, sk, si, v);
} else {
select_1k();
projectOnLine(s1, sk, v);
}
} else if (!hff2(s1, sj, si)) {
select_1ij();
projectOnPlane(s1, si, sj, v);
} else {
select_1j();
projectOnLine(s1, sj, v);
}
}
break;
default:
mexPrintf("\nERROR:\tunhandled");
}
}
inline static void support(gkPolytope *body, const gkFloat *v) {
gkFloat s, maxs;
gkFloat *vrt;
int better = -1;
maxs = dotProduct(body->s, v);
for (int i = 0; i < body->numpoints; ++i) {
vrt = body->coord[i];
s = dotProduct(vrt, v);
if (s > maxs) {
maxs = s;
better = i;
}
}
if (better != -1) {
body->s[0] = body->coord[better][0];
body->s[1] = body->coord[better][1];
body->s[2] = body->coord[better][2];
}
}
inline static void subalgorithm(gkSimplex *s, gkFloat *v) {
switch (s->nvrtx) {
case 4:
S3D(s, v);
break;
case 3:
S2D(s, v);
break;
case 2:
S1D(s, v);
break;
default:
mexPrintf("\nERROR:\t invalid simplex\n");
}
}
gkFloat compute_minimum_distance(gkPolytope bd1, gkPolytope bd2, gkSimplex *s) {
int k = 0; /**< Iteration counter */
int i; /**< General purpose counter */
int mk = 25; /**< Maximum number of iterations of the GJK algorithm */
int absTestin;
gkFloat norm2Wmax = 0;
gkFloat tesnorm;
gkFloat v[3]; /**< Search direction */
gkFloat vminus[3]; /**< Search direction * -1 */
gkFloat w[3]; /**< Vertex on CSO boundary given by the difference of support
functions on both bodies */
gkFloat eps_rel = eps_rel22; /**< Tolerance on relative */
gkFloat eps_rel2 = eps_rel * eps_rel;
gkFloat eps_tot = eps_tot22;
gkFloat exeedtol_rel; /**< Test for 1st exit condition */
int nullV = 0;
/* Initialise search direction */
v[0] = bd1.coord[0][0] - bd2.coord[0][0];
v[1] = bd1.coord[0][1] - bd2.coord[0][1];
v[2] = bd1.coord[0][2] - bd2.coord[0][2];
/* Inialise simplex */
s->nvrtx = 1;
for (int t = 0; t < 3; ++t) s->vrtx[0][t] = v[t];
for (int t = 0; t < 3; ++t) bd1.s[t] = bd1.coord[0][t];
for (int t = 0; t < 3; ++t) bd2.s[t] = bd2.coord[0][t];
/* Begin GJK iteration */
do {
k++;
/* Update negative search direction */
for (int t = 0; t < 3; ++t) vminus[t] = -v[t];
/* Support function */
support(&bd1, vminus);
support(&bd2, v);
for (int t = 0; t < 3; ++t) w[t] = bd1.s[t] - bd2.s[t];
/* Test first exit condition (new point already in simplex/can't move
* further) */
exeedtol_rel = (norm2(v) - dotProduct(v, w));
if (exeedtol_rel <= (eps_rel * norm2(v)) || exeedtol_rel < eps_tot22) {
break;
}
nullV = norm2(v) < eps_rel2;
if (nullV) {
break;
}
/* Add new vertex to simplex */
i = s->nvrtx;
for (int t = 0; t < 3; ++t) s->vrtx[i][t] = w[t];
s->nvrtx++;
/* Invoke distance sub-algorithm */
subalgorithm(s, v);
/* Test */
for (int jj = 0; jj < s->nvrtx; jj++) {
tesnorm = norm2(s->vrtx[jj]);
if (tesnorm > norm2Wmax) {
norm2Wmax = tesnorm;
}
}
absTestin = (norm2(v) <= (eps_tot * eps_tot * norm2Wmax));
if (absTestin) {
break;
}
} while ((s->nvrtx != 4) && (k != mk));
if (k == mk) {
mexPrintf(
"\n * * * * * * * * * * * * MAXIMUM ITERATION NUMBER REACHED!!! "
" * * * * * * * * * * * * * * \n");
}
printf("v[0] %f \n", v[0]);
printf("v[1] %f \n", v[1]);
printf("v[2] %f \n", v[2]);
return sqrt(norm2(v));
}