-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathval.py
59 lines (45 loc) · 1.93 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
from model import SignalRecognitionNet_v3
from others.data_generator import random_choice_data
import time
from data_loader import Signaldata
from torch.utils.data import DataLoader
from config.read_config import parse_cfg
cfg = parse_cfg()
# 读取训练参数
TRAINING_DATA_PATH = cfg["train_dataset"]
VAL_DATA_PATH = cfg["val_dataset"]
DATA_LENGTH = cfg["data_length"]
INPUT_CHANNEL = cfg["input_channel"]
OUTPUT_CLASS = cfg["nc"]
PICK_INDEX = cfg["data_pick_index"]
WEIGHT_SAVE_NAME = cfg["weight_save_name"]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = SignalRecognitionNet_v3(input_channel=INPUT_CHANNEL, output_class=OUTPUT_CLASS).to(device) # 初始化网络
PATH = './weights/my_net-best.pth' # 权重保存路径
net.load_state_dict(torch.load(PATH)) # 加载权重
VAL_DATA = Signaldata(VAL_DATA_PATH, pick_index=PICK_INDEX, data_length=DATA_LENGTH, val=True)
conf_thresh = 0.5
point = 0 # 计分器
net.eval()
with torch.no_grad():
for epoch in range(1): #
test_dataloder = DataLoader(VAL_DATA, batch_size=1,
num_workers=0, drop_last=True, shuffle=True)
for step, data in enumerate(test_dataloder):
input_data = data[0].type(torch.FloatTensor).to(device)
lable = data[1].to(device)
start_time = time.time()
outputs = net(input_data.to(device))
end_time = time.time()
spend_time = end_time - start_time
FPS = 1 / spend_time
outputs = outputs.cpu().detach().numpy()[0, :]
outputs = outputs.tolist()
if max(outputs) < conf_thresh:
continue
target_class = outputs.index(max(outputs)) # 返回最大值的索引
lable = lable.cpu().numpy().tolist()[0]
if target_class == lable:
point = point + 1
print('准确率', round(point / VAL_DATA.__len__(), 4) * 100, "%")