diff --git a/classic-machine-learning/linear-regression.ipynb b/classic-machine-learning/linear-regression.ipynb
index 6df8bdb..dbca5f7 100644
--- a/classic-machine-learning/linear-regression.ipynb
+++ b/classic-machine-learning/linear-regression.ipynb
@@ -18,9 +18,7 @@
{
"cell_type": "code",
"execution_count": 1,
- "metadata": {
- "collapsed": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
@@ -32,14 +30,12 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 7,
+ "metadata": {},
"outputs": [],
"source": [
"# read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的CCPP目录里\n",
- "data = pd.read_csv('.\\CCPP\\ccpp.csv')"
+ "data = pd.read_csv('../data/CCPP/ccpp.csv')"
]
},
{
@@ -211,7 +207,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 10,
"metadata": {},
"outputs": [
{
@@ -220,7 +216,7 @@
"(9568, 5)"
]
},
- "execution_count": 5,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -231,13 +227,26 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
+ "\n",
"
\n",
" \n",
" \n",
@@ -297,7 +306,7 @@
"4 11.80 40.66 1017.13 97.20"
]
},
- "execution_count": 6,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -309,13 +318,26 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
+ "\n",
"
\n",
" \n",
" \n",
@@ -357,7 +379,7 @@
"4 464.43"
]
},
- "execution_count": 7,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -369,26 +391,17 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 14,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Python27\\lib\\site-packages\\sklearn\\cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n",
- " \"This module will be removed in 0.20.\", DeprecationWarning)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "from sklearn.cross_validation import train_test_split\n",
+ "from sklearn.model_selection import train_test_split\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 16,
"metadata": {},
"outputs": [
{
@@ -411,16 +424,16 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)"
+ "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)"
]
},
- "execution_count": 10,
+ "execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -435,14 +448,14 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "[ 447.06297099]\n",
+ "[447.06297099]\n",
"[[-1.97376045 -0.23229086 0.0693515 -0.15806957]]\n"
]
}
@@ -454,15 +467,15 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "MSE: 20.0804012021\n",
- "RMSE: 4.48111606657\n"
+ "MSE: 20.08040120207389\n",
+ "RMSE: 4.481116066570235\n"
]
}
],
@@ -508,15 +521,15 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "MSE: 20.7927937888\n",
- "RMSE: 4.55991159879\n"
+ "MSE: 20.79279378875543\n",
+ "RMSE: 4.559911598787353\n"
]
}
],
@@ -533,25 +546,19 @@
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 22,
"metadata": {},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Python27\\lib\\site-packages\\matplotlib\\collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
- " if self._edgecolors == str('face'):\n"
- ]
- },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXt4XVWZ/z8rDWnTJm2SpvRCaGGCJVMbIOhINc40DpZ6\ngap0ZtQRicjID0F7S7FUKHRsar20gDpI5dZGUdQZBqfoTEKrllG8jNSKhVoQBBRKC6Uit9CQ5v39\n8a6VvfY++yRpkpNb1/d59pN91l577XVOzlnvem/f14gIAQEBAQEB2ZA32BMICAgICBjaCIIiICAg\nIKBLBEEREBAQENAlgqAICAgICOgSQVAEBAQEBHSJICgCAgICArpEzgWFMeZxY8xvjTE7jTH/Z9vK\njDFbjTEPG2PuNsaUeP1XGmN+b4zZY4w5K9fzCwgICAjoGgOhUQhQJyI1IvIm23Y5sFVEZgI/tK8x\nxswC3g/MAt4BfNUYE7SegICAgEHEQC3CJvF6AdBkz5uA99rz9wC3i8hrIvI48AjwJgICAgICBg0D\npVFsM8bcZ4z5mG2bLCL77fl+YLI9nwY86d37JHDcAMwxICAgICAL8gfgGbUi8rQxZhKw1Rizx78o\nImKM6YpHJHCMBAQEBAwici4oRORp+/dZY8ydqClpvzFmiojsM8ZMBZ6x3Z8Cjvdur7BtnehGqAQE\nBAQEZIGIJN0APUJOTU/GmLHGmGJ7Pg44C9gFbAHqbbd64Hv2fAvwAWNMgTHmROB1wP8lxxWRIXVc\nffXVgz6H4TKvMKcwp6NhXkNxTn1BrjWKycCdxhj3rG+KyN3GmPuA7xpjLgQeB/4JQER2G2O+C+wG\n2oFLpK/vMCAgICCgT8ipoBCRx4DTUtoPAm/Pcs9ngc/mcl4BAQEBAT1HyFHoB9TV1Q32FFIxFOcV\n5tQzhDn1HENxXkNxTn2BGW6WHWNMsEYFBAQEHCGMMchQdGYHBAQEBAx/BEEREBAQENAlgqAICAgI\nGMLYsWMHf/jDHwZ1DsFHERAQEDBE8fzzzzN9+nROP/10fvSjH5GX1/u9ffBRBAQEBIxAlJSUsHr1\nau655x5uuOGGQZtH0CgCAgIChjAOHz7M3/3d33H//ffz2GOPMWnSpF6NEzSKgICAgCGClpYWzjpr\nIWedtZCWlpYe3/fII4+kUm2MGjWKTZs2cfvtt/daSPQVQVAEBAQE9BNaWlp43/vq2br1RLZu3cu7\n3vUh1q5d2+U9hw4dYtWqVVRVVfHtb387tc/MmTM555xzcjHlHiGYngICAgJ6gZaWFjZsuBGAhoaL\nmD9/PmedtZCtW08EbgM+D0Be3lL++79vZ/78+Rlj7Nixg4985CM88MADAJSVlbF7924mT56c0bev\nCKangICAgAFEpDksYOvWBbzvffWemeleVEjUA/V0dFzbKVAc2traWLVqFWeccUankAA4ePAgH//4\nxwfqbfQYA1G4KCAgIGBEYcOGG2ltdcIAWlu1raHhIn74ww/R0dH1/R0dHdxxxx0cPnw41j516lQu\nuOCCHM269wgaRUBAQEA/Yf78+XzmM0vJy1sKNAFNFBauoKHholi/MWPGsGnTplhexPnnn8+DDz44\nqL6IbAg+ioCAgIAjhDM9qVYBhYUruPPOpk4/RJr/Ig0rVqzgG9/4Bl/72tdyLiD64qMIgiIgICCg\nF3DC4MCB/UA+5eUTM4TCoUOHuO6667jkkksoLi7OGOPVV1+ltbWV0tLSnM+3L4Ii5z4KY8wo4D7g\nSRE5xxhzKrARGIdWt/uQiLxo+64EPgocBhaJyN25nl9AQEBAb+AEgq9Z/PSn9Z2ahR/R9Pjjj6dm\nVo8ZM4YxY8YM6Lx7g5xrFMaYZcAbgGIRWWCM+RWwTER+Yoy5ADhRRK4yxswCvgX8DXAcsA2YKSId\nifGCRhEQEDAkoOGwC3BObWjizDPv5M1vrmbdunUxZ/W2bds488wzB2WeMITDY40xFcC7gJsBN8HX\nichP7Pk2YKE9fw9wu4i8JiKPA48Ab8rl/AICAgL6F6/yy1/+mMbGxoyIplWrVqVmXg8H5Drq6Vrg\nMsDXCh40xrzHnv8jcLw9nwY86fV7EtUsAgICArpFGnVGT+k0eku70dBwEYWFK4ginK7mzW8+I6Pf\n+eefzw9+8AOM6dWGftCRMx+FMeZs4BkR2WmMqfMufRT4sjFmFbAFaOtimFTxu3r16s7zurq6EVef\nNiAg4MiQjEL66U/rueKKT7J27VdS/Qfd3XskEUxVVSfxxBNrmDGjgnXrmjjjjDN4/etfz969e5k6\ndWrWiKaeRkb1Ftu3b2f79u39M5iI5OQAPgv8CXgMeBp4Gfh6os9M4Jf2/HLgcu9aM3BGyrgSEBAQ\n4GPevHMFNguIPTZLWVllRtu8eef26F7Xr7m5WQoLJ9vrm6WwcLI0NzdLc3OznHbaW8SYCZ3X8vMn\nSnNzs4iI/OAHP5AzzzxT6urOlpqaWqmpmSvz5p3beT3buLmEXTt7tZ7nTKMQkU8DnwYwxswFlovI\n+caYSSLyrDEmD7gScKEAW4BvGWOuQU1OrwP+L1fzCwgYisj1LjPgyLBy5bqMDOyVK9exe/cuDh36\nC2o5XwNU0N5exzve8c8UFxdx7rlv42c/e4DW1vNQs9R6INJ0rrlmE62tJwJTgPmdmd1HmocxYOit\nhDmSA5gLbLHni4GH7PHZRL9Po07sPcD8LGP1r5gNCBgiGIxd5khB2mfX2NjYo8+zsbFRjCkWqBCo\nFGOKpaZmrtTX1wuUCcwRaLbaxk0ChYKaxQVGCdxsnzFeoME7rxXI1Fby8iZ2zgkm27EjLaaxsVGg\nVGCKQLlAkVRWzurzd4E+aBQDIij68wiCImCkoisTSED3aG5ulnnzzs0w8STb/PaamlrJz59gF2S3\neJcLLLSLvd92nkCeJyTccXXn/0sFgzsvFZib8T9VwRN/7QRbTc1ce1+D99wigSIxplQaGxt7/fn0\nRVAEUsCAgIARgfnz52eYaNLaWlpaWLDgA7S1VaHBlccDy4lyIUCDNWehFvGLgLXAxaTH1zyZpf1k\n4GHgEjTHGOC3QJwdNj//D9TWnsJVV22go+Na2+oiqdZ33ityMVddtZQ3vvGNA26KCqSAAQFDBJmh\nlplkckMZvQ0x7a9n9OT5LS0t/MM/XEBbWz668DcCexO9dgGH7HWXTPcwMDbRb5w9/hb4OrAIOBH9\n/60AaoEXgTF2rIuB0ejC32SPJbS3v45t2+6zQqIe9VucCFxq5wKaPZBOWT4g6K0qMlgHwfQUMIKR\nzVQy1DEQ/pWuntHd85ubm6WycpY14zi/Q6M1FVUJRNFLej1pLioTGC2Qb81NtQITBU6w12ZbM5Eb\nu8F77cZqttcm2nnMts8ute2bbZ/ofaj5a6xEPpLemyMJPoqAgIDBxED4V7p6RnchrgUFJXahL0ks\nwgvt+ViB4wUqBYoFbk0IivH22sl2HHfvHIkLgvG2bY4VPqdlEQBl3lycYJmcGM89u7RfBHBfBEXw\nUQQEBAx5tLS0sGPH/agpKMKOHfdnMTPt4uc//zkTJ55Ea+tfrKlpHHAB6ncA+Biw2f79KnAnGoz5\nImr2cZb5y+zfVfbvcvv3h7bPLiImonnAL+25AU5FTVKziKreOWwkMjWdZ8+/k/JeTgE2Ulb2LN/6\nVmbC4EAgCIqAgIA+o6HhIu6558O0WZ6FgoLLaGj4Rr+MHWVOn0e0SAMs4+DBY3nXuz7Ehz98NoWF\nK2htBV24b+Cll8YC7yVyCn8OP6dBx5oE3IguxncDrfbaq2gOsAFGoQu95jxE92LbbgK+bF8vQoWF\n2HvvAgqBR7t4h/NRIfENoIxIMAEsAS6ksPC2QRMSEARFQEBAv+E1ouie1/pt1HjZ0XnAarRCwSGg\nhI6OEr7+9TtYs+Zy7rlnCzt23M/Bg6egzuMtqGCoBzahi7+/q/8CqgH8Z+KpAhwDvAJssG31qKCB\niHnoaVQjcVrKPODHqHB4kbgA+aQ3/iK0moIb7yZgOiqApqDCay95ecKZZz5GQ8PgCQkIUU8BAQH9\ngA0bbqSt7Trg58DPaWu7rt+icw4ceM57NR8VAIfQCCKA4xAp4POf/xoiL3Dw4EE0SulqYL9378SU\n0fcCz6W0HwNMQIVEvT0+jwqpRfb5XwYmo4v9AjRSaStwDVBqr7t7v4xqGEtQYVWNCqONwEby8w8z\ndeordux9drzdnHji9CGRmR0ERUBAwBBHO7CMKKR0GbpQX4OGoOri/OKLa9i27f9Q3tFrUHq5+1Ay\niGqUEWiRN85idAf/pcTzaoHrUG0hiQdQc9U4NH9iMioItgDfQ7WLeiITlo/xqLD6HEpA8U7Kyp5l\n3rxpfP/7d7B376M0Nn6K4uJVwFLgYzz6aAPve199zsKNe4pQCjUgIKDP6K6GtOujpUOfA9opL5/c\nmSfSFa+RFgfaDZSg+QT7iRbkOtRB7cxJTeiifQcqBG5A/Q+gvot2oMa+/i2a41AAnAT8DBUk70BN\nPw+jnKbX2/5L0L31Nfb1UmAq8Axxv8dtKP/TQ4n2cuCgnX8TsJF586Zx9913xN7v6ae/lZ07D9v3\nehGwj3nztmT0O1IM6VKoAQEBIx/z58/nzjubvAU/U0j4gkQX5L+wbds/M2rUIdrbdTF2FN9AZz3q\nF154GV2M341qCL9DF96VpO/cHX6AJsldjPpMFqNZ2D+315vsOH9GhcjpKOH1h1BO0vmo7+CTwLHo\ncnkSUbb2tUADkXnKYTWqlewk8tm02bHHd/Yy5iEaGlbHZtzS0sL99++2Y2PHPa+L9zgwCIIiICCg\nX5BGl+EQd0i3oLv45YhAe/sSfBbVlSvXsWfPHhvl9L/orvwm4tFFy1DT0mHikVCLUG2jCTUNnYCS\nVD+Lmqv+aJ8PuoiPQR3W/4L6Fb7gPWOFHetWNHrqFlToQLSAF6a824dRZ/s7gQN2HtNQQfEWnIAa\nNaqD++67L6ZNbdhwo5ehrcjLa6Ch4Zupn+uAobcJGIN1EBLuhjz6M7t4uGYqjyT0x/8gnhCXmRzn\nk+kVF0/32lyy2sSUeyq863NFM6FniGZN19rkt3Mkk8ivSDIJ/6qyzGuOwLH2SMvWrrZ/HYnfZHs+\nQaKs7M329Sg73rl2zg1iTJQAWFg42ZICxp9TUzO3X/6PhIS7gKGC7qqFDdZYAb1DX/4Hfk2FuXNP\n5557LrN5Fg+n9H4YaMKYJbz00uHEtRtRU1ASo73zPcT9AceiUUt3pdxXhvoWfHPRUtINLHuAC4F7\nU64JanoCNWsdRiOaKlAT1x/tnJ6318ahGol77mpErsOvdQE3efkg6utZt86F0A4ieithBusgaBRD\nGv1J5RBotwcfvf0fJLmXlMq7xGoBRRKn9S6xO+4qKSqaKhGdxUKJ6jK4c18LaLT9qrydeqM9LxU4\nK6FJIHC+wPWSRvUN4yTO+eRoOsRqAOWJaw22/Vx7v5vHeIFZAtPteA3enI6RiOKjOPWzzZUWTdAo\nAgIChhKSPon2dgH+2l59HqXgvgp4CTgTOAdYxCuvHEJpNQC+D3wC+C5Kl3Em6lf4HZo5/X2gCN25\nX27vcT6KWlQTmYxGGRngPcDf2z5ClOzmGHv3oX6Q9cBTqM/C1bp22dOX22ePQp3lXwfOR/Mx9gFP\noE7xF+x7m2r7fNGbXy0arrvUvlYoW3BTl76eQUNvJUxPD/QT3QncZV+fBvzCtv0K+Buv70rg96i+\nd1aW8fpNwgb0P/qTRTRUfBt89PZ/ENdEZkmcjK/I7rR9MrxGq234voOxCS1ikqjvocpe83fmEbtq\npFkU2XtKBApESf+m2PZjJWJt9e+tFPVzVIn6GHz/Q7l9rtM6/Pn72tFYUeJA1ye7PwZKMupp5woM\nZfZYNDzhm0SlUO/GljlFwwJ+bM9nAb9BUyJPQDNS8lLGy8FHGNCfGKrO7OAY7x2yfW6NjY1SXHy8\n5OcfK5WV1dLc3JyoHDfRLqSl3mKZNOE45+9EiZzTblGtEqXirrQCosG+LvHGWC3qJJ7tLb61CcHk\nnpE0XY2VuMPZVbZLtpd6z/ffizM5pTnAK7w+XTvuBwpDVlCgXp1twNs8jaIZ+Cd7/kHgNom0iRXe\nvc3AnJQxc/ARBox0BO2kf6F1neORQ3l5xZbOe7NdVMfaBXO2t1jWSjzyxy2sc6xA8AWKrzWMt0eh\nXcRvErjCCgns369JRAeetng7v4bvUyiSuGbh6lOkzXGCvebPMa12hS8osvk29DOrqakdsP9ZXwRF\nrn0U16JUiOO9tqVAszFmPZrm+GbbPg01STk8CRyX4/kFHCWI28w1wmTDhhuHni04h/CjkFwGdFpb\nT3DNNZuIuIwUHR0baWt7Hk1I+xVKcvcamg29HE1qe5AoiuhDaGb1QyjtRimRzf5zRMlyEGU2O3/D\nIuLJdofRCKRTgd0pM3bRS19AfRgL0Ezriag/wWE/6mtwPo96NF/iSdTY8W50CXN4FY14cliO5mVA\n5ANpRwkJD6GJdy3AvRQUtLNu3SqGA3ImKIwxZwPPiMhOY0ydd+njwBIRudMY849oNsu8LMNIWuPq\n1as7z+vq6qirq0vrFhAwrNHbRTzbWMkw1yuu+CRr136lH8OPnydaZBegVudilHRvAkqjfSFKceFn\naLcTUW2MsW2j0H1mJIh0EXahs2kZ2YV2Dh9FHdQOS9ClZB7qRN6EUnNUodxN/2b7/ZN9fhSyqliG\nLv75dp7TUaf6aDRx8EKUsuMgKgjKUCf7YlSoXQhUk5e3lA9/+P3s3fsiAA0Nq3O6Udm+fTvbt2/v\nn8F6q4p0dwCfRVMRH0PZtV5GvynPe30M8Bd7fjlwuXetGTgjZdz+18kCusRIsO0PN9NTf883Lcw1\nSmyL2roLfXXfhbKyKZ7pqcGaYJz9Phky6ie1ZavgVirqH6gQ9S84J3Ky32aBO625yR2FAv9qTVXO\n9OXPoVbiCXwuec85n5s9E1E2n0OJROa0yXYuDRL5LSYLFEpjY6PU1MyVsrJKqamplcbGRuuzmSuV\nlbNs+9xB+e4xVH0UnQ+BuUQ+it3AXHt+JvAre+6c2QUoX++jWNLCxFj9/wkGZMVwW2C7wnASeP2d\nQ5I2Xpp9vatnRN8FVw+6QTRCyAmMtCigUons/HNTnxnd5y/0fh6Dy0GY6t37QSskxnhCZULK8ydL\n3M/gfATu+Q2i+Q7Or5EsWerfP1sy8yxUABpTJI2NjVk/N/XdRL6KgoJJA/4dHC6CwkU91aLMXr9B\n2blqvH6fRqOd9mAjo1LG6v9PMCArQtLb4KC/P/ekwM/Lczv4eJtbvNKEakQvMdebm3+ezbnr3ktt\nQrA4QTJLNFx1SuLe8yVKSnPhse7efxPVJBol2tVPkSgJzgkl5zgeL+q4LpJ4cp5bvJNJexWSGTqb\nTch1vfDr/zJTUykrqxzQTcuQFxT9eQRBMbAIgmJwkAtNzl/8a2qcOSYy0VRWVqc+u6BgklRW+pxG\nE717kxxMszO+L9FO3i20zlRVKZpvUC7+oguvikY0IVFmtBtrsn3mZCtgmr3Ff46oVuILhxIrYMZ6\nz/XNTk6wTPLaXeis3zZejClKeW9RqGu230U2QeHaBkpLD4IiIGcYSaan4YZcmsrUHBJfHAsKSjqf\nmbmozbaLqltcJ0jkd/DzE4okkwxvhmiyW3LMysQC2iwRzYfzP4wS2JWYh2+WmiHx8NNyO4cSO7dG\nbz7ZSP+yvV/fz1Ek9fX1EteGxtvxuxYUaaYnPW/u9t7+RF8ERaDwCOgS3dUZCMgdck3lkJd3GKXg\nHg0soa2twitfugtYaM9PRONR5qFV3EAjldrteQEaMjoeDU+dg0YajbJ9DqDRRkm0obEubryfAH9B\nI5ccDqM0GlcBn0KpP+rtNRcFlYyOchTkv0eLDM3s4lNIIyiEiJJjAbCIsrJCG63k18f+GEojUtFJ\nv5GG+fPns2XLt1m5cg2///1KWlvbOXx4ShdzGoLorYQZrIOgUQQEdIuutJFoh5uZvVxWVpll57xQ\nIuruMrtbH+/tkp224cxJSRNPRULzKBN1RLsxNgm83tMk3DFO4M12Z98gcfqLSu89JLWECXb8yRJl\ncy9MeV+jRc1Mae1lor6T2s7Psi9+hqR27gICgukpCIqAgAFHd+bC7DZz9UEYU5pyzWUbO2d2hTdG\nMlIoGVm0WdSv4FhU3SLuxnDZ0jUSrx3hsrGT47pFtljghEQfP0rJF1ZlEkVqnesJntmi5qvRdj4V\nVnAUSfLz66sZNpugGQ7O7GB6CggYYegqC72lpYUdO+5Hs4R3Je4cB/wP6WWV9xDVf1iJsu843Igm\n0NV7bRuJowTNrX0N6EAT2xrtNZ+99To0e7sQzfzehZqSOlDT12Mokyx2jLnAt1Ez1El2nPn270wy\nTVLVRHUrmtCqdRfa15tQgoiD1NcvZO9eNTH55tb+NsO+4Q2nDg9Tbm8lzGAdBI0iIKBLZItUyzR9\njJcoLHSsNc24XISyRL+Fduc/0e7Cx9t7yiU90snd7+pIOGK9UoHjBDakaCxlAv9jryfHmyxRjYo0\nM1Fae1KrOT6lzxiBUikomCR5eROkuHh61nyIrpBm6mtsbJSyskopK6uUxsbGQQ8MIZieAgICHLIt\nSNmjmdwifYJEpqRxnilmtF3k3Zgu6qlUIhu/H9EzSaBeIh+Eax8nkC+AfW6HN49SyQxh9edZLlHZ\n0eS1UomisZxZyQm9ZJRRvT0vEy0iVNVnYr60HJWpU6dnCCUnLAYr6TMIioCAgBjSFqR0QTFRMnfh\ntZIZyjnOEyJ+WG0abUetPXc+DZcXkaxdfYFETnC3cDtqDF/zmeAtukkqcje/NAHiwmTdmMl7Gvol\nQzr9cy3PaCsrq+yPf22v0RdBEXwUAQHDGNmIA11orbu+cuU6XnjhWYz5EbrfArgUDX3dAlyE+gSW\noayt9URhoPWof2EXSn5XCUxBfQHOFzGfyDewBq301grcb8f9dcrsv4n6Ir5kXy9CfSfVdpwb0TDV\nUWiYaz3K4rrIG2MRETl1sn0+8CM75i1EIbqXoP6N2zj++El99hEcOPBcSmten8YccuithBmsg6BR\nBPQRw4nzqSt0Z/OOwmBdxFKpaKRQpd1tJ6OFGgROk0xTUnmW/s2eRuBHF41NaClvSWgSiGZVn52y\nEy+19/h1KJLawkI7Jxeh5PwltbatTNTE5MxgmyWqgxFPCDSmpJO4r7ffB81yTxZjqpc009NggmB6\nCgjoGQbbodhfaG5ulrKySlFn9FxxIaujRk2UwsJJUlg4RYwptov4FG/xdrxIx6Ys0hPsIpqWm5CN\n52i8RKamc0VDTZP9JknkmzhG4GR739wu5pAUPP5C7IoNlUqUIZ40Lbm5NXa+NmaCpDne8/Ii81tv\nvg9qemqw78eFAW+W/PxxUlw8vdOZPdjoi6AIpqeAowpDuYBRT+tPRLUl3gr8GA09rQV2cvjwPFpb\nfwycj4Z7XmPvWgxsAP6AmmCeTBk5D7gA+E7KtXwys7WfQmsz7EazsTtQUw9ocR5nOpqIht4+becz\nDg1nfRQ1dTm4TOsvEQ9rXUxkCtuPZoL772sMmZnfD6EmqT8DXwSm2vkVZbyzjo7X0ZfvQ0PDRfz0\np67Wxy7y8jZz6qmzWbfujiHxveoPBEEREDAEkFZYKFsRIRV256F+g2tt6xJ00f4JutjfR2TXd1iP\nWn5eQu3+vk1/OVrw5zZ00U3a+yuBm1B/g2trteONs+2HUcqLxWg1uPVeXwG+RmZewyHUzzHNPnt1\nyqcj3rM3pryvJajfwZ/vx+z7WIJShVyHyFaM+Roiyzt7GrMEkQvpCzJpbr45YgSEQxAUAUcVot2f\nvu6Ko2cgkU3TcdcOHNiP+7n+/vcPozt1x3HUYq+5BXA56pBO4gXb7votQuuFnYAu0vPRxbUBXWg3\nool21ahzOl76VBfhq9Gd/l227fuo4Fif0jeJmXb8i72+WxN9l6OaQAmqIaVxM1UBv7P35dm5r/eu\nX4lqNws47bRTAXjiiTXMmFHBwoXLbZU/1Uh6+33INS/XYCMIioCjCsOJ5PDAgf1WyzgP+F+ixW8x\nWsLT4UYyF+blRALBvX6NTLPOGnSh9j+DqWgG9CigAl3MD3nXW1AhUgCsBR73rrWj2kQSQrzW9FJU\nINUSFwy3oPXM/Iire+18JgLHEdd2VqA1rR9FlzMXNeWjBNhLXt5S1q27PeP//cY3vnFYfB8GFb11\nbgzWQXBmB4xApDnZo0JB2arTOadzGm/TBInzF42WqCyp369aMqvKFUlUxc5vH+u13yoa3ZOMZkLg\n7RLPz3ARVbOsA9qvhOfyNlwVu3gxpSgHwk+eG2tfu3GiueXnT5BRo5Lkg0XSH4l1wx0M5agndFuy\nk6gU6nfs653oNmGn13clyg28Bzgry3g5+AgDAgYeyTBd97qmptbWpHY1DPwSoOItoAutEJklmdQU\nxyTaykQjgCYn2lyS3Wz7erRoRNREySwa5LKx3Vx+nBAQJQJ32WsNotFW50pE0lcp6e/DXXeJc448\nsEyiUNiqxH1TxNWyzssbLZWV1bHPsbLyNIlYbgeOoXUoY6gLimVoZs2WlGvrgSvtuauZfQxqNH0E\nyEu5p/8/wYCAAURzc7PU1NTaimlz7CJdJJWVp0ljY6Pk5SVpr5Ov3U68SFRbmGQX1EpRPqMZkpYZ\nHC3ac6wwcAypjv01jS+p0bt/jkR5CW7cM62QGJe411WJ86vNpXFCOcEzwT7fUZLPlijs1gkO/z7N\no8jPH5dVAIyUfJn+wpAVFKiBcxvwNqdReNcM8EegUiJtYoV3vRmYkzJm/3+CAQE5hL9gNTY2WhNT\nlWQmtTkTi9v1i12oS7zFcqJoMtdsu9DPtv2dZpAsK+ovrs5UU2afM86+dpXm0qrQVQj8qxUsTjj5\n854oUeJbsUQV45yWUGqfNz1FmDhCP0fO5wgJq1L6+Ul8A18dbiSgL4Ii187sa4HLiHLsffwtsF9E\nHrWvpwG/8K4/iXquAgKGDZK5EPfddx9XXXWtjdU/jq1br0HDO9eQ6YDegjqbnRO6Bf0JXef1a0Id\nwX+P/kTARjmmAAAgAElEQVT8SKdfeGNOQZ28Dstsmx9Suxh1Sl+MOoB9ZzOo8/sAGtn0BjQy6gTU\n8e2czR9BQ3FfQaOY/AimJtQqNdXO9Xo0AslV1fsUupe8EqUcX2Tf8z7UUX4lGsrbjobeLqG4eDwv\nvlhP3PkekGvkTFAYY84GnhGRncaYupQuHwS+1c0wkta4evXqzvO6ujrq6tKGDwiI0NNktr4+w8+F\n2LbtH4BRiHwJTVa7xfZcj+YgJOtBYNva0UigKcAkdDF3fEyg+64fERcgu4Bv2L6Oh6meaPF/CV3I\nPwUZdSO+bu/9KFFE0ePAZ9DQVIAdqIC7lyinYRewGV3UL0DrRfh1KlagtR5uIQqt3YLmWvjCpNJ7\nvQUVepfhyq0WFo6lqupk1q1bBWA/476Fsx4N2L59O9u3b++fwXqrinR3AJ8F/oQ6rJ9Gi9h+3V7L\nR7cN07z+lwOXe6+bgTNSxu1/nSxgRKM3tB09sW87X0NZWaXU1MyVysrqhOkmWQEuLZLIr9iW9BGM\nlXj5UGf3L5G4aalZMs1Yzt4/W6LIoAmSaVpyEVVzJfIVFAup0UyOKyrNPOTMQS6CyTc/OdNZs32O\nc1g7h3pkRormo5Xw0qgvgu+hd2Co+ig6H6JlqO7yXr8D+HGij3NmF6D8AI8CJmWs/v78AoYxerJo\nZCvk09WYEZneHCkoKOkcO4pMmiv5+eMkvcBPUlCcm/jrL9TTrRBxlNhpgsbvXybqU/CpuNP6+SGv\nztmdjdjP+SLKRX0io1OEhJEo5FWyvJc5EgmoZAisz8k0x/YZY+fk+rrrpQJVUllZnZPvzNGKvgiK\ngUy4E+/8/cDtsYsiu40x30WJY9qBS+ybCwhIxZHQXhwJVq5cQ1tbPmpvh7a25axcuQYg9jzd11xA\nZgay8xs8QGRC2gs8i+6BfLyMcjDdRSZPUhof00zU5LPJPnsj2bOV/XktQv0Bf0JNQq/Z+/cRJeP9\nC3AFWlL0PPRnCEoNcg6q5Du+p/tS3ssjaGT7dfa1S6qrQI0I9aifw31+PtXGYnSJeAxdGvbxV3+1\nhYAhgt5KmME6CBpFgEVPNYUjNT0pK2t83LKyyiwFapJhm2637Mw82Up0Jk0yLrFsvLezTpp3fA2g\nSuLV3Px+LnrIn1epaO6BM4VFGpOez5K4+cqZn06WKKqqq/dS7j3XzctpDy4PIk3zOTcxx56bBwOO\nDAwTjSIgYFBwpLQdM2ZUcPBgZls6HkIdshDRSTwOfI7IeZvkSLoMmExentDRUY1qD4636T7gjUQ7\n712oVlJhnzMf1QD2E7HG3mTPl6KBggLcTERl4XbuPyAi4Fti73vRXrsXeCcRQ2sZGsG+0o6xHI2A\nSr6XNagWUI/GpjQRUY04zeo2+/efs3yGipqaUygvVy0iUGkMMfRWwgzWQdAoAixyVVtCfRRRuU9X\nLjP5PN2JF4j6DdTObkyJ5OX5TmOnhfilQpXGorj4eMnPd1QUfv+0nfc4257UMlyGdpmoI9nRdrj8\nBufP8EuYrhYYZTUGI3CcaPZ3sUQZ2ml0H2mZ1W6uZRKVS/Wvz/ZeZ9dIggaRe9AHjcLo/cMHxhgZ\nbnMOyB1yFfaaHBciFtff/GY3Iga18VejJUULqKk5hXXrVrJy5Rp27nwI3VnvAm5AWVt92m1nm/cJ\n7lzI6S3EQ1+XE6fZTuYqXInWWXgCJTbwqcDHozkKW4DjUT/Dw8Rdhv9kr/k04kvRcFk35yZUSzrg\ntV2G+kwOo0w9h1PmtoyodsQi4E2oH+MV6uvPYe/eFwGYO/d07rnn152fd9Am+h/GGES/uEeO3kqY\nwToIGkXAAMHnXvI1jLQKcKNGTYzdFy9BmrYTT9rmHVneXLvz9yOHfH6lND+J0wJc2Kl/rcQeEyWq\nMpc8/krgb1PG9Yn9nJbhQnbnSGZYa5K8z9FxlEik+ag/w49oGilVB4c66INGMcIqgAf0FS0tLZx1\n1kLOOmshLS0tQ2asgYaLqNq6dQE7dx6mre2L6E65Ho0oimPs2Kj+w/z589my5duUlT1rWw5m9I/j\nZHT3vhv1TxxGNYpaNJPa3wRehGoYTfa4DI1kchnfTWjUlIOxY00FPpDy7NFoktyDKdemor6M9aj/\n4Tq0mtxHUb/EPvu8JWgE1E3AbDTSaT3weqCRwsIxaPGgp4CN5Oe/xvXXf7HzKfFaHBpV5rS5gKGB\n4MwO6ER/hpvmKnR1oBBfvDYlrtYSp7tYxIoVn8oY45VX/owu+m8nXnPBmZ6a0EXfFQ0CzXS+Bg2p\nXYE6uXcRN1G1oeGk+aggSNaYWI0u4ovQbOl61PT096jp6QAqBG4EnkNzXS+wz3NYjNZ2KCQqH3oj\namqqtnN3pU4PA/+Omrn2oRyg+4CNGLOEO+/8NoBnyls9bL4HARa9VUUG6yCYnnKGI01MG6ixBgPR\n/F0oaTLzuVGc49k3ozQ2Nkpx8XR7j6vr4JLOnCN7ljdm0lR0rGfK8T8/F17qMp4dud/ELOamMyRK\nYmuWKHv7NIG/EzgocdNX0uFelDAjRZTdkVPcfRYlEoXtOud2iRhTnJpZnUQwPQ0MCOGxAQH9i6hk\n6omoyWUKuoN+GHgVDVetIC9vKddffzstLS1ceullPProo8ApaAjqLjQk9TyiinHHoSaYM4lMN34Y\n6xj7d1ZiRiVEjuIWe5/vJMaO8wk7xiXA+bZttb23Dd397yIi9Vtk25ej5qIF9jyfuEMdVMu4FZhM\nvM71PvuM3RQU5NPR8SlmzJjG9ddf0yPNYThVHTxq0VsJM1gHQaPIGfpzZzcSdonNzc0pyXcNonTc\n0wXKpahoqtTX10teXqmkU4eP8zSHJM9TvUSV2uZIVGzI0W34NBxFEtGFZKPs8Kk3SgSestemSFSI\n6FzRMNrZVpNwmo+j0phj5zA95RnT7DPKJdOZXSp+1bnh+P8e6WCocz315xEERW7Rn4Rrw5m8zed0\n0gimzRJlTvuCwHEbZcszcIt7WrSSi0iqsELGjePI85xZZ7Jd3Bu9Bd4fa7WkRzQVCxTaxd0nE3Tv\nY7T3XsbasSskKk+aFHpjJM5tVe6N5deLUFPbcDI1Hg3oi6DIanoyxpR1o4l0F8oRMAwxf/78flP7\n+3OsgcTatWu56qoNdHRo3Yb8/Abg48A41CTkaLxBM5NdFFRa9nZHShuo+aeDKG/hMtTc8znUweyi\nghahpqtq1Nk8CTX9uKxnIU4H7uMU+5xDRKYk7DguG7ve638lMAOlHT/f3rvRXnsF5YBanrhnGWrO\n+iqZ9OXTsrz3gOGGrnwUv0a/hQZlBfuzbS9FM3uSjGABAcMeLS0tttCQo9SA9vZdKCWGSzSrJ6Lt\nAI2CcvQdfjTUMtQX4aKclnvX/BoNDm5Rvtxr3wV8D/VxnIdGYM0E3m3Pd6HUGLejCzaoP+MbwNnE\nk97SnuWj1c5zF+qLOIyG7BYCeUTRT0kUprQ9REPD6iz9A4YbsgoKETkBwBhzE3CniPy3ff1O4H0D\nMruAgAHGhg032mp0Pu4lPQT1EZRB/yY0DLUJZWG9EtUuvkXEzfQddCFegeYupCG5A3dOa587aTzK\nWrsb1W5mouG3J6AZ2OXAv6JCwqEg5Vl7UHbYNxPxRc1DBcge1ME9FnWMv4wKn13EhZ0y4xYU7KWt\nzQ/fXUR9/fuGpTYZkI6eRD29WUQ+5l6IyP8YY77Y1Q0BAcMbxxHXDNJovB9Fq8b9EpiARhGNRRfs\nIjTKyC2U1aiweR5deFvRn56/uLp8CohKmG4kXi71cVTgjEErx30PeC8qfNYC/wD8N1q6dJy9pwGo\nSzzLRTptJNIepqDRS6AC5Kte32pU07iYvLzX6OhoQE1dFwLVtLcvpb5+AXfdpVTsy5Z9iiuuuCLl\nMwsYruiJoNhrjLkS/RYbVM99KqezCggYJMydezpbt34BXRjd7vr1ZCaj/Q3wf+guHnRBLQYmorWr\nk0KgFTXlvIhqDvtQc47TEl4hvlCvR5PZQH0Ma4B19p4JqOB5K5qgN9X2fwbVaF5BzU3T0JrWN6Pa\nwnXemJcST+rD3nPItvt+mC32dREdHetJ8k11dMDevVt47rlH0j/UgGGPngiKD6JblDvt6/8lXhi3\nSxhjRqHcyU+KyDm27ZNooPdh4AcissK2r0T5AQ4Di0Tk7p4+JyCgt1i7di3XXLMJgNLS0cR9B8tR\nX8Cx6GL8FEpTsYNMH8MylILjftQ3sQp1850MvEBEtXEX8Efi5H3HoKacKnSnfhNKoPdJ1JHeavt2\n2Gca4iR+i1Ht4m12nuvRvI97UeFxH+pmdP2XowLNZZ87+ELgk8D30YJLa4i0m1BQ6GhDt4JCRJ4D\nFhljxonIy714xmLUoFoMYIx5G5rVc4qIvGaMmWTbZ6GV72ahuv82Y8xMEckWNhIwyOhv5tZcMcF2\nhbVr13LllV/ALaAHDy5CF/Ip6A5+F7r4PgU8xNvf/ga2bduBLv5JzESdztehC+5NKL/SYTT+Yxa6\nyP6KdCFzgb3/MdTv8AN0kU/+BL6DCqTkGA2oj8JpDXegAmE3qnX8K1Hi4EloLY0kptkxd6GCwUVK\nLbFtoHxT53XeUVi4goYG37kfMOLQXfws8Bb0m/Yn+/pU4Ks9ib1FPXrb0F/aXbbtu8Dfp/RdCazw\nXjcDc1L69V9gcUCv0d8JdYORoNfc3Cz5+cfa3IKIkkOT5Fy+QGYNhbw8V0ehVJK5A1G+hKte5xhd\nk8lzPh2Hn2/hciMck2wyN6JE4C7JXrPaUXpEVBpxdle/nsZ4iWpIuLyIZu/58fGNiXIoCgpKpKZm\n7rDMkTlaQS4T7lBD7HRgp9f2YI8GV6awGjQ0xAmKnWjIyC+A7cAbbftXgA95994MLEwZM1efY8AR\noL+5nAaaGyqzCJFf1tOV9GwWTVpLLurjJZ5BXSGarObGKBdNQHOlR/331iyZSWvjRBPjfGFSInCD\naIa0ExKTJOJZSib/OUE1176eJJoA6JIAmyWiDfeFy2w7z9kST5pLJvVt7hQMQTgMT/RFUPSI60lE\n/mhMrN5Fe7a+DsaYs4FnRGSnMabOu5QPlIrIHGPM36Aaxl9le3RP5hcQ0B18s9a0acV885v/Q3v7\nF4ibbrYQhaJuRPcyo1CbPbbveagpqAj4H/Tr7BzaS+w99aiT+dWUmdxIZk7DetSRPdU+90H0q7+K\nyBl9CE2CAzVTVaNR6stQk9d5aChtPerz+BSaCrWbiMdpasp89hLxT73TPv9h4CXy8xtot7/0wsIV\nrFsXOJiOVvREUPzRGFMLYIwpQL+Fv+vBfW8BFhhj3oXG8403xnwDeBL4TwAR+ZUxpsMYU45+U4/3\n7q8gS3TV6tWrO8/r6uqoq6vrwXQC+hMRaZ6+7qudur/H85GkPNev8PRu7tqDCoMkMd5SNC/hc0SO\nX2f3r0K/3reg0U9Pkplst5c4XrPHJWiY6tNodvRyb9yZqIP8XjQH4zXUnwEaY/I7NHT2VZTiux39\n+fwZ+BHqHN+CRkst854dhb4a8wlKS+/j4MEXUcf9BeTl3UJNzSbKyycGor5hiO3bt7N9+/b+Gaw7\nlQPlDPgWGnv3LPpNnHgkagtx09P/A/7Vns8E/mjPZ6GZRAVo1vejoKVaE2PlRC0LOHL0N5dTrrih\n1Kzl+IsqrZlllmTa653pqdyalKammGp8srxsdv9aiai6nflnln3uBInou32OpmnWNOSovtNMRM7U\nlKQcdz6O0bZPke0/W5Ro0DdpTbDtrpZ2hZSVVXZ+9sOZGj6ga5BjH0VtT9q6GWMusMWeH4PyC+xC\nYwzrvH6fRtNd9wDzs4yVi88wYASjsrLaLp4+yV2JRCR7ZaL+hrl2Aa0StfE3StyfUCIww1tMfX+D\nv6g7R3aSLbZc4AR7PskKCP+Y6I3r3zvJzm+sROVVk890vom0sql+nYlaiftNZncKgyAoRjZyLSh2\n9qRtoI4gKAKOBM3NrvBQGjW374B2C7lbnMts2yiJakQ3iDqefSdyptM32u0n28eJ7uiLU4QEAkbg\naxJnc3W03+MkLqD8uU6WuKPdPb9W0ufmWF/LxJjiTu1tJFDDB2RHXwRFV+yxb0b9DJOMMcuICvcW\nQ6i1HdB3DETehI6fjcxuL1Euwn2o3b/eu/451Ml8rddebdudE7mBeNb2UqKa0j52ocr0dcDPUN+D\nj2NQ2o0voNxKHydyrDehRIEO8+18LkP9FRfaeV6CWm6d832ZbXNYjP6MCzvf72mn3df5uYcCQgHZ\n0JUzuwAVCqPsX4cXUFKZgIBeY6Bqah84sB/lZPotPqGdMYuBDlRJBXU+Z9xNRCHeQlQjGpQr6QF7\nXoouwuXoYn8T6sD262RvJnKMn48m3e1EF+7jgINoNvc5RFFNDrtsv2WokHo3KjxORhPnmtBIrHEo\nPbkv7Bajwus4NIlvK5pICAUFl7Fu3Tdi73i4UsMH5BZGol9KegdjZojIEwM0n25hjJHu5hww9HHW\nWQvZunUB0aLWxLx5W7j77jv67RktLS28+90f5PDha9HF9mvozl2YOnU8Tz/9N8CPUc3gOHQR9Wk1\npqO795vR/dIFaOTRHnTXX5jofwh4HSpgXkL3YQL8tX3t13L4EqolnIpmTO9DqUImouGpf0CJ+XYR\np+pYhgqp+faeR1AaDlDB5EdpNQEbqakZTXn5RA4ceI4XXniWP//5EDNmVLBu3cogFI4iGGMQEdN9\nz0z0JDz2ZmPMP4rI8/ZhZcDtIhK+YQGDjq7MVytXrrNCwjcbaUjrvn2fAH5IRFHh6lVfie7up6KL\n9i2opvBelBfTLcqLgX8hXjfiZiKtZQnwF5RN9iHUROQTBV6FEvNVozQfFai2cgEa9HerHUPIpOpY\nb+deQZyraRdx1ls1g5WXP9avAjjgKER3TgzgNz1pG6iD4MyOYbiWG+2L4zQqU1orBQWTso5RWOgy\no31n7rn2fHYW53Yy43mSdWynOcPneK/d9VcFrhDI85zUE0QjqRzFhwtNTXNMT5J4OGuas7xCNJva\nOdn92tW1EkU4VUleXumw+l4E5A7kOOppBzDDe30C8OvePrCvRxAUEYZ7lEpvhFz8PWcu3i6cs7Gx\nUTRyKEmX4RbVNCFyvKTXvS7KsmAnQ2dXW2GTjGaaKREtiEg8IiobZ5N7XSWZtauLJE634deu9mlI\niqSxsTGX/8KAYYRcC4p3oJzIt9njj8A7evvAvh5BUEQ4muLenVApK/MX8iSH0pzO5LGoX7NojkGJ\nRMlmVQJjEjv3MonyFNIW7tESJcq5xXm0aGjqFIECiZLnksf5omGvTtj4Wkt3mkqDNy+XxDcr5Z5S\n0VyLOfa8MAiJgBj6Iih6QjPebIx5AzDHfvGXiMiBPli7AgKOCPEIKZ8Cw9Fd78KVDD14EN7xjvdz\nzDGufrTzWZxHFG66DHXPXUjEbfQq6jyeQtwfcBnqj3gJrSdxNUob/hJKp9GOOrFPR53WLgIJ+4w7\niWpXH2efXWrvWWaf6/suFqP+DEdfchvKwfRj1On+H2SG1kJNzSnAAZ544llmzJjFunWrgqM6oN/Q\nVR7FX4vI76yQEKJf6HRjzHQR+fWAzDAgK3LJjzSUsGHDjVZI1KMLeVQLoaCgndGj/50XX/RLhsJr\nry1GF+CNKPPMeuLcSc+jVd8eQxf9x23faWjBno0oV9MraISSq/57KRotXghMJqolPQr4L5Su7Ak0\nuiofeA5d9FfYv/tQJ3ONHe9BorKkz6IO8ru9ubh7tqERTvtQZ3ckXPLylrJu3e1BMATkDF0lzjn2\nsA32cGWz3OuAQYZLkJo3bwvz5m3JSR7C0IMmm5WVrWHevC1s2fJt5sx5Y0q/UWi00MXoYr0LFSQL\nbNvTaLTRAjtmnm1fgH7NH7Svq4lyE6agAuJiVLM4ANTaZ+1CWWGvRhP8FqCpSJeii34TkXZj7BgX\no1pJHhoZVYiGws5EWV8XoILBVcBrt2Pdi2ok64ElfPjDC46C/3vAoKK3NqvBOgg+ih5huEZDpSHp\ntE8WzVHHdZJWo0Hidv5sVBsiEU+Sf63C+jD86Kj3CJwjSuvxXoFNEkUYbU48r1IiugznZHb+g4WJ\nvv7cHcXHbIkimBrsa8fZVCXKC1UpsDDndTtGyvfoaAc5ovBYSBf1IETkP/tfbAX0BwYq63mg4FNL\nHDiwn127RrFzp9Jsb9v2HkTGAWPRHIhXgPHEM5ur6eKrjJqYkqhATT2/R5Xrx1GTkKtd/T1Uw0ii\nBecvUSxCk/P8pLnlth9oWdO0PInlqLlqFapVbCYyO22LjXXgQFpZ1r5jpH2PAvqAbBIE/WZuQgv3\n/hktwHsHmo30/d5Kpr4eBI2iW4yUaKi03awywTrSu3pJlinVXfh4icJR3S6+VuKlSyfYCCIXfupf\nKxVljnXRUG8WJexLI/H7hGhUkrs/LYopTZuZbZ+b1t/RjfskfgsFSiUvL7NKXU3N3Jx8/iPlexSg\nIBcahYh8BMAYsxWYJSJP29dTiUIyAgJyguRu9oc//CCTJxfz9NPPo7vpXeg+JrkbX4ZqFO1oVvWF\nqC/AZTm7zOViVGt4AM3Adk7mk1FSv6+gTvN2NJUoqZEUoAV+voUS+M1DOZQeSnk3aawJT6OuvinA\nB732FWhVuxtRH8XDjBkDY8f+hmXLGrjnnl+zdWt8pPLyNJ6q7BgIMsaAEYbuJAlKbGO813nAnt5K\npr4eBI2iWwz3RDyR9N2sagBzJMqLSNZlcPb+ZC3p5hRfgEtSK5eoEFBaQt1Y+1w/07pW4FI7hzKJ\n+0NmSGaCnK9xOG1mgvc8V+jIL0Tk+zfUx1FYOFkaGxv79L89ku/GSPgeBUQgl3kUqEG0xRjzLXRr\n9H6UPS1giGIk0EUfOOAilRbaFkO8fvVylG3VhYk68rxZtk+9134pGiWU1D5cjew1pNe3Lka5l76D\n7o9eQHMgHkCZX0+x/W6wf6vRUNuP2LGxz7sXjY5ahuZgHEJZX5fZ+c2xc78Y1WyWoBFQt9nXG4HH\naG39PPfcsyXjfwtKsqivu9YQ4qHG0NqqbWn3jITvUUA/oTtJgv5Cz0VJ+a8F3nckkgj9de8kKoW6\nGvUe7rTHO72+K1Hv4R7grCzj5UrgBgwCkn4I97qgYIJk+h98fqQ5oqVKZ9hdvduxn2vt+ZWilBxF\n3g49qTE4rWWuaHb1GIHLPE3gGIl4nhpEo5EaJJ1Wo9yO15hyzediKpHMSntFds7nShTldK53T1QI\nKekjONJdf/A7HL0glxQeOj4nAPPs+ViguMcP0G3TN4lKoV4NLEvp52pmH2Of9wiQl9IvN59iwICg\nsbFRysoqpaysUurr62OLnFZxc3QVkzIWNF2g54o6e2sTi7ij46iXTBNTs0Tke87B7cqfjhc4TyL6\njQLRENhGiVN8TJY4qV82s9hsK3BKJSqJ6vdLc2yXSLpQdPOPTE9JIXCkC38wJx296Iug6Nb0ZIy5\nCK3CUgZUoh7AG1C9v7t7K4B3AWuJEvgM6d6996D05a8BjxtjHgHeBPyiu+cEDG045+kf/vB7Hn30\nCVxoZ1PTIvSrVW97Xo2Gkl6Mhrr62IWSA1xOZo2GFejXcTFqLkqamG5EA/bmJu77JGoGus3r24Zm\nRG8lXtsBomzpipS5Jc1i9ejP5CaiUN0VaDZ3HIWFY5g2rYxHH/0Emuk9Ca2dMY7CQqiqqqa8/LF+\nMf2kmZOg56argKMU3UkS4H40fXSn17arJ1II+HeUq2AukenpajQo/X40LKXEtn8F+JB3783AwpQx\ncyRvA3KBaAfbIJnOZ5fY5py4bsd/rqjZyN9lO6bW5iw7+jlWIynPcs0fw12rtlpE8ijytInkzn+h\n1RqctrA5S1+3058gcUd1g8TJBSdITU2tNDc3izG+BjNJoKFbs1BfNYSgYRw9IMfO7EMicsgYVQKM\nMa5sV5cwxpwNPCMiO40xdd6lG4DP2PM1aIzghVmG6fY5AUMb6jw9D921n5jSowINA/0AmszmktUW\noI7qq1FHcwe6c1+RZZyHUaslxEn2lqFkfTehIa0+3m7H9DEe5Wi6gHgt7EXobv9HqKsOtB71RLTg\nkT/OLnQftBcbJEjkqG5CQ243odrMa6xbt4oNG25EJK7B5OU10NDwzZT3GqGvDucjcW4HHL3oiaC4\nxxhzBTDWGDMP/XXc1YP73gIsMMa8C/0ljTfGfF1EzncdjDE3e2M9hTKqOVTYtgysXr2687yuro66\nuroeTCdg8HAvWoktyczqFvEt6F7ha2g00BaUGfbLqDnpGHt9E8qnlBzHmbCqUbNPNVGE0WtoVFGT\nvWe5d98taJ3pl+0zXGnTjXaMJqI62dPQiCZXMa8Fddet8ebg4Ju3FqPV8dbbcY4lqqq3Gv1ppOPU\nU2f3aMEOda4D0rB9+3a2b9/eP4N1p3KgW6KLUH7j/0B/keZI1BbipqepXvtS4FsSd2YXoFvGR9Oe\nQzA9DSsoD5NvmnERS2WS6cBN5j+4PAdXxe20LOMkeZ0cz9JYa9qaKPAmiZzacwSOtWakEwTm2b/O\n7OUc5XEzUNx0lZbnMTHFvKUmr4KCEiksnCTx/I3I3NPX/IjeIpiejh6QK9OTNTM9ICJVpJHg9xyG\nyIz0BWPMqfb1Y8D/s6v/bmPMd1HazHbgEvvmAoYpWlpaWLv2K6jpaAlqkrkXNcUcg5p3XL7BJJTX\nyNcUlhBZJT+Ifi38nfvDqPPZOYuTPEuXoOwzpWgN7HrUgQ3q9D4B3Zv80vZJcjStBGag5qXbUE3G\nPd+vi+HQgWZ2JzGT0aP3UlSUR2vrM2heRkSL3tpKan7EQGgJIVcioEfoTpKgJPszeiuJ+vsgaBRD\nGn5eRE3NXHEcRdFft0sv8nbVfnirvxOvtBrAJIlrHiX2mJUY18+VeFXgOIkyqvMFPizxkNfxEuUw\npGk9073df6VEzuw5ojkVcae0jtUgqg25dsdk6+Y21moe8feaK76mgAAHcplHAfwENc7+CPUn3IXN\niQObVlgAACAASURBVBiMIwiK3KA/6KTjZgwX3eMWV7dguqSy4xNmnIV2AfXzIsaLRialRTG5hLtk\nbsRmgfskvXb1WIGbE2M5IeaEVnNioR8v8frUjhLELfoT7HOrJMrLSOZqJJPuZknS7JafPy6YfAJy\nir4Iip44s11Au5/7IH3TYwKGEvpKJ+3yJHbsuJ/W1reiztzdaGU4gAaU/nsTWpTnOHTv4bAfJdNz\n9bCWoM7jTxGl36RB8E046qhegpqUHkjp3446t32cjOZMtKJlTytRx3u912cjmXkZrjCRoA520Cip\necCtqBmqBC1hegFR0SLQaKePEZndPkZ7+70h2ihgyKKrehSulNdJwG+BW0WT4QI8jAQmzu5CJNeu\nXcs112wC4Jxz3srevS8C+n4BT8i4kNbpRNFBECXIuQV1EZqgtgxVUPcRX/BBhQqoL2EZulgfhy68\nHahvojjxTqqB15NZX+IYVEA9jvpBCm37ElS4XIzGVZyP+g+6w15UKExBEwCTQmWcPa8A5pCXdysd\nHc6PstzeV03kD2lCfTcBAUMTXWkUTeiv8SdodvUsNNYvwGLkFXZpwYWDHjgwClAhceWVX8BRezc1\nRaGfP/1pPVVVJ9k8iWh3rEV9QBPyN6H1qZPZ0hvRBXoR6RV5D6HO6DGogElmY18GvJWINhwi5/cm\n+/cWNFfi16hQuZ6obvZee+7oxE9BF+tXiTvML7Nzccz6S1Bh1ISGtyaxxz672s5tDqeeOovy8i0c\nOPAcL7wwlf37D/Dyy4uJQjWWU1DQTkND2ngBAUMA2WxSeNnXqEDZ2Vv7Vn8eDCEfxUghWGtubpaC\ngjhZnTElnbxMXYWEjho1UTJJ8GaJZkk7O3w2Qj53niTZc6GyE7t8tjqP3yFRcaLR9u9UgTNEeaFc\nNnRa2Kob04XYOv+Dc247f8lY22dmwrcwNsPXEC9zulny8iam+h6am5ulpmaulJVVdmZmBwTkEuTI\nR9HuCZN2l5kdMPIwf/58Xv/6U215Ud1xi1SxatXnGTNmXJf3Hj58DPA54trCUlQTcIV5RqE7cYfl\nxPmVZgGnoyammahW0kQ69TfoDv8O1M/xMzRp7xV0P/Mammj3cdv3PHstj7imsMI+Yx9qyvoOGjo7\n37b9DE3l2WPHqrb3t6JJdn9B3XbO1/Ac6rM4JzbTbElzIUkuYFghmwRBf20veke7d/5CbyVTXw+G\nkEaR62SlgSxsr9pRMrRznN2hF4lGEc2WeASQ22m7hDiRKGKpIjFegx2rMjGGiwhK0xgcp5K7f7zA\nanuPH810qb2WrbSo0yaq7JgTJeJpSjK1uueMlnRuqhJ7/2x73deExkpBQRTKG5LXAoYSyDXN+FA6\nhpKgEElfzPs/1DT3i05zc7PEKbB9kr5k/YRxdtH1s5ddfoMTKjNtP3+hdUJkoV1kJ3hCI22Bn23H\nc8LozISAcEeewBskbk7yx5mT8p6cuWphom+ldz2NfNDPBSkRpTWfI1AhlZXVAyrcAwKOBEFQDCH0\n1wI/GP6PykqfIsM9P9vCm9ae5muokri24fIOiqyQcEWGpiYW4TLRXb2r8TBW4K0pQsLt8J2gSeZB\nTJBMio8pEgk8Xxvy3+8c0ZoUXfsgnHZiTFkQDAFDGn0RFD3Jowg4AgxFNs6ehvBef/3nWLDgw7S1\nQTpFRXd4jcww188B/4yGjB5Ebf21aGTSq8B2ovyJS9Cciw7UF1BMVONhKbCDiMQPNJz1DOAKlIpj\nERoVdR5RPkUxUcTSvSjtx8t2nOtt+z+jZH37bXsL6n+4GM2LWAYU2ban0PKsF9l7pwK3smZNQ/A5\nBIxc9FbCDNbBENco+ksT6C/N5EjHURK/Qrt7drtxX0sok6gWQ9L0NC3x3p1fwvdHOL9Fg9UUau0u\nfo7VPpwWkoxScvUs3ihqalrsPXeMRH4Hv5yob17y55HUMnzTV7nEaT0cjUizxCk7XOW5qkC/ETAs\nQDA9DR30p2+hr/bu5ubmRHhr94KrstKnl3A+hVK7SE62i/hpoqai8XYhnSSRU9gXKpmcRnHTToU9\n/KJDhaIcTcXevc2SGYJbYefllyhNPmt6QkgkBYMvhCoTAsYx0Do/y+yUMWZnDX8NCBhq6IugCKan\nfkZ/snH2JYQySgb0i/y0ABvZseNZWlpaADWLHTiwnxdeeJlnnnmOF198iXhynKvt8HZgG5qJjG37\nGJoEN52o/Oc8NBHtIbR6bjY8jIa5vgM154xGTUKH7OtRwCds341kmrSWENV1cNQdS2xfUAqRj6F0\nGjOyPL+JzES+5UA5URGkY+w4aWHCT/GZzwSTU8BRgN5KmME6GOIaxWDDaSGqSTRI5NyN7/bz8yeK\nMcWSGb2Utvsu8cwufvtciSKF0pLhRku6M7jEXqu1c7tJ4Bwhw1Gdb5/bnUbgdvz++3Bsro32M/Cv\nOeZZ/x5/rAkSZ6x1hIZxssDGxsbB/ncHBPQYBI0iAJKUIgvQ3fE8dOf8L/i78vZ27Ovn0SS3J1Gq\nizbiiWmXoLvqUSlPdJxKfyYzme0E1AFcS5ze41Y0CW8imqpzHnAV8HTK+KNRmTEqMf4i+758PEWc\nX8r1uw3VPF4l0jZAaUH2EVWo81FIPIkws+JdUdE4rrjiipR7AwJGHoKgGEFIRlwpVgMXk5fXSkdH\n8o6n0Yiju1ChUYVG+tyAFu15kTjXkr9YOxPNIlSQGNs2Ac1w/r7tlyS/ywPeDdyH1pV+BI0gWkec\nlLgW+B1qioIk26ryOLlopmWogEtiFBq9Ncu+L/e5OJ6mh9CoJZ+hdhmZDLO1RBFVSnx4+eWfSnle\nQMDIRM4FhTFmFLoqPCki53jtDcAXgXIROWjbVgIfRbeai0Tk7lzPb+RC/RH5+X+guvomFi5cytq1\nK2htddcdgd4UtNSIs/evQCkrmlCa7AriNaqvtG2voBQao9F/I6igeK8d60V0ofZrVC9CF3TnE3iO\nyLfxir2vBPgGcLadwxJUWCUFDkQaQgfq60gKso/avqNTPh+fvO8SlFW2FaUELyVONvh1lJ6jgeLi\ncaxY8amgTQQcVRgIjWIx6lns5IQ2xhyP2g6e8NpmAe9Ht3/HAduMMTNFJGMfHJCOuXNPZ+vWReju\nX8t6trfDgw9eBkBV1UnAJvbte5qnn34VzSv4HpkmmzXogu4W5no7njO/PInK8hKihd5hi73vMjTP\n4WvAp1FBcAHwc3RhrifSEECZZr+DCqKzvfYq+zrN9PQf9nUTKjSm2blPQk1O8+2cb0IFoMNy1Cz2\nmD0+DmyioEBob7+Vjo5rgb9HhcVo4O8oLPzpMGcGDgjoPXIqKIwxFShF+Vri+v01aFWa//La3gPc\nLlrz4nFjzCPAm4Bf5HKOIwn33PNr1CzzXXx/RFsb7NyptN55eZ+ko+MwMBY1x2xMGekgMB5dYFeh\nhXxWE0USVaOL7R+7mE2h7fcG1B9xCrAZ9Wc4XIT6KBxets9xEUZOILjd+5Xorv81kuR7akb6KLrw\nLyBeKMj5QpbZOc1FI7gW2OvLgWM5fPg5PvOZxdxxx03cf/9uKzAgL28pV1wRopsCjl7kWqO4Ft1a\njncNxpj3oGao3yYYaacRFwpPoppFwBHj5ZS2acAUOjomoKYjZ7OfgmYmOywiLgw+gJpo9tj2eahD\ndwrwezJZYetRJbLYjnUB8C3gTiIfhF/WxGkuf0J5Jz+GCq/f22f9GNUYKlBz1mnoV+MSb4wl9j3f\nigoL39y1GDUbOUFSbft/ibgmtJ7DhytZu/YrVFWdZIWEXu/ogHvu2UKwNgUcrciZoDDGnA08IyI7\njTF1tm0saofwQ1a64i+XtMbVq1d3ntfV1VFXV9fH2Q5vOIqOAweew5gfI/JR4qYWV8mtHjiReBlS\n0IigK+3feUQmJ9BFexO6oD9ux/i8vbYcdUwvQwVRue3rci5GoYWBktbDsSh9xn504T6MOpWfRM1h\n01DNYh+6wC9DKTYKUMGDbfsc8KydRwXqRL/XzmMx+tVy0V4tdszNtm8Se4FltLZW8MQTaZFQAQHD\nC9u3b2f79u39M1hv42q7O4DPotvEx9DwmpdRo/J+IuPwa+jqMxnN5Lrcu78ZOCNl3P4OLx42yMZU\nq0WHHHlekUTkeI4ao0giiopGm0fgivUkifwc7befr+DyJdJyDqptnsFEiRMAbhY4NiU3AoHzBb4q\n8eJFcwRmSDzvwtFkjJH0XIokceFc7z1PFWV2TdJuzE3JiSgRn1qkpmbugDL3BgQMBBjqFB6oUfiu\nlPbHgDJ7PgtlditAt72PAiblnn7/AIcDslGD1NTUSiYXk7/YThDlRiqzC/mkxLVsyWxuYR1nF1cn\ncJL8S8mF2BcU77ZzcQIiT2CJRMl3fh2IIjvWOFGBVymakOc4oUoku6CYkxjP1aZwwnCOGFMm+fnj\nJEo8dFQdZaLCU8d0lByBLjxgpKEvgmIg8yikqzYR2W2M+S7qMW0HLrFvLoDsrLRPPLGPTHqLFSj9\nRQma15CHftTPoHEEft8rU56217a/hJqJnLlnEXHfwC1k2vqX2Oc+DLyNyLI4iaj29M2oU3qTveYq\n2Y1GzUZPEoXrLkV9C7cRj3xaApxp/06xY/8QNT2NAk7Cz50QaaK6ehPl5Y9x4MDJwH088cSzHDx4\nAZGzPF6RLjivAwIUAyIoROQe4J6U9r9KvP4sarIKSODAgedS22bMqODgweSVUtSqZ4ADwDvRRfTk\nlJFnEHdIL0WpvitQa2CyzKnjVKoginj+NzSAbQ/wAhEf1CLU/1COLuRf9trFzs8ldowl8o0sRRP+\nRqERUE3o3mGendvrUAf7Dfa+P6Nf5cfteKvQLPM4yssncvfdd3S+jjLZqwEoLFzBunVNGfcFBBz1\n6K0qMlgHR6HpKfJDxE1M+fnjpLKyWowpkbi9PclT5HwUjYlrk62pqEKiKnLONDM2i7lnjr3uCgYV\nWLPS5C7MWGnV60pF2V1Lslx3bRMkqiLn90tjlHVlTKvte42uZ/MzBBNTwNEChonpKaCX2LDhRtra\nrkNNLOtQ9w20t4/m0UdnorECS1GN4VTUVORrAW6nfi1qilqD7sKPBbaiJqbriDPGNqDaQdLc4yKM\n1qMUG4fttf3A8Wiy30LbdiIawZSGk1ErYz4RZ5SPad58GoA6NIPc4UYyTW5bUK1lI2piexVjlnLa\naaewbp0my6UVcQompoCArhEExRCFv6AdOLDfu7IHTR77Dmo2+iGavfwCuvDOShnNcTqB+i4cfxPo\n4p+W/O5CVvejoagzUXPPl9BF/oGUe55CM7H/zb5ehOZVvpF4Yt0K1Jy0zz7/DOLmr2Vo7oVDHppP\n8RKR4OqqAt801D+xCZELKC/f0ikkItJE+OlP60O2dUBAT9BbVWSwDo4C01MywqmgYJIXArvQmpJc\n6GiSwtuZhZKhn86sk1aAx43nj3VMF2ahsdbc5B/jJDMqyjchjfXG8yOjXETTbGsCc/TkflTSWM8k\nNlqiiChXGMk3PU2y40dRUa5Q02DUIQ8IGCqgD6anvEGUUQFZEI9wqqet7Xza2gyafNaMOqrzUTPL\nFNTkMgvdod+GpqwsR81Rr6KmJIci71yJAzVKaYkdZyO6gy+2f9NQRJx2fLqdT1pxn4fsmB9Hk/Z2\n23k2odrB8/be5UAjqu2MRiOqLkY1n7Fo0v56oAY1m61CNQeXEHgyGvE00Y6/DDiRwsIVNDS4+tYB\nAQG9Qm8lzGAdjHCNIipf6nbeyaI7rpa1Kwfq5zFMEJiSomm4cp4NoiVGSzztI+nY9hPrGuxu3u/n\nduzr7e7/Lk9LcUWS/F1+VYo2UmrnXivpDvC0xD5XHMk5tbMVHSqVgoJjpahoqtTU1MYc1P1ZpjYg\nYLiB4MweGUja0NWuP4Uo96EFzUd0zullZOYxLCezdsMm27cdpdQA1TaSrLGriei3P4DyLf0tyvjq\naDq+gRLu7QNej1KFP2Xvn09U6+ERlDH23Yl3eQpa32Ez8BciZ7iPNJ9JIaqB5KHO9CdQUkGfqmQx\n+fnQ1vYF2tpgz54VsRH6s0xtQMDRhCAohhDSCw/5BHfJSB+fk8nhMI5iXLEENRW9SLwWtmONbcFV\nbYMHUR7GYtQB/QC6QE+zf/9ElFD3ABphtQl1U/jzfAQ1M72GMtA609diO/59aC7E86hQSKMQ98mG\nF6OmLkOUiOeIBf2qc2N56aV1JJMSfWEQopwCAo4cQVAMIaQl1amPwS2aDyeutRNfoJej/9IvEhc2\nS8nkXqwFLkUFgBMqi1EtYrXXrxXdvd9kx1iGagm/Q/0E8+1zbyASPm2oJnMzmmjn2g+jobCuOtwi\ne30Bmgn+ir3PJ/F7CCUZfIp4lTqIaMMXUFi4gte97iR27nTX1P+yY8eztLS0BOEQENAHBEExRNDS\n0sKDD95PZkW4Y1CNYCm60PrX96P0Fs7MVI+ahpI4GQ2RbfDamtBduq+hbCS9/EcRWshnun29CTV5\nrUZNUDehNbIfRsNov0tUD+I7qEZyke27kfhifzmqkbwJ+BmR9uHMW1eipq+0UqdFwJUUFR3mP/5D\nM6rVdBcVbjp4UNtCGGxAQO8Rop6GCKKkuiXAVahgGI8u8gdQmW6IKsNtQRf6TajZ6ER0wW5DBUyT\nPVag2sNLqH9jCVGZzzGJWbwrZWbT0bpT0702lyC3BxU0rSh9xlivT4t9fiOqMdSjyXhJtNnrC4gS\n/NzcF6E5Fnmo9rQsce0fgUZefllpQJwPoqzse0QCUH0+zi/RObuWFk4//a1MnHgSp59eR0tLS8rc\nAgICIGgUQwx3AdtR+30tuvA/iwqINlSjcPWmd6E1Hxx/0qWo4LjOXnN8TOehC+shOy7ATv5/e+ce\nXVV5JfDfvgQ0NiggFkGqFkQtBR+VqVqmEzo22FbFal9al/gqtsXhGRSdWBtrolixan2UQatQfEyp\nqIuOlRitaOtSKopI1I5K0Q4oPpdtrUgI2fPH/k7OuTc3V0hyH4H9W+suz/nOd8/duVy/ffa3X5aV\nvYl0C+XnmAWzhbh3de9wjyj0dRZWu2l6kOlYbMvo75hSIMwfSPvM6ZnYVlpUT2kqZkEk5/wgzNsN\n81U8GmT4byyLfHaQL9qisnin8867kGHDTBlkr38V09DQwIQJp9DcXEZkdUyYcDpLly5yq8NxsuCK\nokSwftc/JV74/wNb+A/DspIPJFYe08O1TOd0cg9/NFaqY10YuyWMj8X8EO9hi/nb4b0fYMrkQMxS\n2IpFNIEpgrnYVk9U6fWz2GI9FfsZZValTW5zRYzGnOQXYltVrYnPiDgAs1iGYn6JD7EcjGiLK2r1\nOjrtXWvXvsbatZbd3afPdPr0OZ/msFtluRRxsT+z3g5O+76am9s7vh3HMVxRlAhxv+vI3zAUcxrf\nioWxgj1NT8ISy/438e4GstdL2gvb0pmF+QHGYltVLdhT+d/DvPcxf0cUOjsdszbmYorjW5i1cyBm\nQSzHek2twX5C2eo5KektT5NlO74ALAnnM4gtjEg5firItDHcf114VYXvYxDpltB0LKQ3XvQPP/xm\nBg6079LDYB2na7iiKBGamp4FHiOOQPo9cD/tcx2iCKLNWG+Ii7FM7H1oX8Avytq+HQttnYtlNWuY\n80PsKX0j6UUBo895iXhBvhuLfnqB9HLhzVihwaRSmIn1ongYUwTN2NP7xnC/2xNzK4jblvbCnOSE\nsVGYZROVBl+IhfCux6wR+y5EtqKabmEMHDgoraR4kurqc3n00VNobo6VTZ8+51NdnS0QwHGcomda\nb++LHTQzO86w/rgM5QEh03qXkBmdrOu0V8iE7h/+G713ZciSzqzPtLfCDRrXgzo5vKI6S/2CXPuF\n46FZ5BmlcXe5qDZTVCcqmR1eEe5TkRiP6jhFJc6zZVnH90ml+rdlWyfLg9fV1W13xnXUHXDAgOF6\n+OGVnqHt7PBQypnZItILy7Bar6oniMhl2H5IK9Zy7UxVfSPMvQiL99wKTFXVB/MtXylQX19P+zwH\nsAZEmcloUS2k/cJYZm7BPCxKai1mVczD/BDvZLn/+PC5FcRO8uhztoZ7349ZIdcSWzNJNhH7SqLc\nh5doX+p8HmaNtGJ5FAMxP8Na4DvY1lI6w4fvx403zklkUt/VLnkuYsyYMduVce2Jd46zHXRWw2zr\nC9uHuANYGs77Jq5NAX4RjqOe2b0xT+crQCrL/bpb0RYdq+1Urel1knZPPNFHjYeixjyDteOGQAPU\n6jgl6z1FzYwiS6KfwkFtT+3ZK8oelrAQouqzmc2CBqnVa+qozlOySmyyv3W2ntl1ae8vK9vTn/Id\npxuhVC0KERmKBefXB4WBqv4jMaWCuLDPicBdqroFeFVEXsGysLJlgO2AjCYuR/ES5nC+KVyLopyq\nwrxpwHPEVVcjpmJO6kbaR0RVAlcCE7HchFrMZzGIuFZTkteIneizwmcfG+45G/ORnJP43JHh/kkr\nohbzSyQd2cmGREuJfTLzsLDaGcGSuAOA8eOtCVLUZMhxnMKT762na4DzscyxNkSkHjgdqwo3LgwP\nIV0prMc8tDs8M2eexcUXT8Uiml7HFu6bSF905wCnYc2EBmPltKPIp9lY2OoYbDdvA+nJbWOxEht1\nWDTVDCzT+uFwfQjtHeHnYM7w+VjI6veBS4FfYcrmbuLoqyosEiqT17Ew2TPJ7shO8hoAhx8+kmee\n+aM3GXKcEiJvikJEjgfeUtVVIjIueU1Va4AaEbkQ236q7eA2mm2wtjaePm7cOMaNG5dtWo+hpqaG\nurrL+eijKE9gPfaEvTf2FL8GC1+NnvCnYYphC2Zp9MK63P0+vOdKYktjNOZ/2ITVgIoyvH+HFfUb\nm7h+ATAMy5EAU1RRJdupxBFWt2DZ0v/EFE8D2Yv7TQrHt4XrLaT3opgUjmdhGeiT2kJaMwskZivw\n5zhOxyxfvpzly5d3y73Etq66HxG5HLMaWjAP7O7AElWdmJizL3C/qo4OSgNVnROuLQN+rKorMu6r\n+ZK5mIjsiTmAbydenKMM5X+SHia7kLg96QFY29Bkae5ZWGjpJWH8fWyrqJx0h/VozBX0r8T9qK/B\nlM1pWPvU5GdeQpx8F91jCKawfoQpuNswQ7GSWM9/GrNEFPs5pLDw2eT1xykvX9dmNYwf/w0aG6PS\nH/b5VVVLOwx5dRwnNyKCqmaLmvl4Ouvc2J4Xtmr8NhyPSIxPARZrujO7D7ZyrCUosox7dYtjp9Qw\n525Hzunk+LJwPlTh3xIO6uQrpXClpjc8ytYgqH9wfEfhsQcnnODZHNyfzDJ2lMYtSaPxam3fUCl2\nbFdUDM5wivfTiorB3mTIcfIIperMTiDEj49XiMhB2KPuq1gMJqr6gogsxmIoW4DJ4Y/b4bHw2M1Y\n6YxMDsR25s7AtqCSvSamZZnfD/MJ1GNbO0mHdiYHASswf0RkyawhLkiYuZW0e+YNMItiLObXiLgZ\n81vMC3/TKOJqsjBixDCef/55mptNpj594O67b2sX+upNhhynNMjb1lO+2BG3nvbc8wDee+8DbAvo\nYeLmPJFTOerP8D3MIZ25BRVVwPsytsv3DtYv4jPEJb4bSc+VmI1FGd2KKYxkPsbR4TzaStqMlfsY\njS38V4d552OFAzdi5TcGYPr/O8TKLCrTYf6V8vLZ3HuvleyIlYBHNDlOvunK1pOX8CgZBDgBswKu\nwBbkTdhCG5Wn+CDL+1qwKGOwhR+stEcZwVgL4x8SV309OIzdgjnFMxsijcWslesw38NkLL3lb0Gm\nZBmRSAG1YjWhbiOzYJ/9bXOoqPgbI0YczNVXz6e6+lz3NzhOD8EtihKgvr6eiy++gvRuc1FL0Ncx\n62BXrJ1pck7UlvQvmIunHxYB9SLp1Vyj7aoKzHm9N7bg741ZA4dhzuxkVFVfLKKpCXM+R5ZIFOJq\n/bFTqWp69drMli2tWD/s9Zj1kZy/CWihrKyClhazRiLLwi0JxykMblH0cGpqanj55ZdZuPA3pLcN\nHY3lKbyPKYA+WIG9ZMvRb2ARRW9h5buXhvdmUoEt+mXYYn5OuP9krMTHJOJCgF/GSpu/iuVrXEp6\nTsd8Ip9Dayu0tqawPIvHg6z9sS2xfTCl0ggspKXlAKKQXw93dZyeg3e4KxFOPfVUysp6h7NWTAnU\nYos72OI/BLiLuKz3HliNpKVYuOlUzAIZS5wNvRCzPFZh/9zXhtft2KJ9U/isX4Z7noUt7J/BkvyS\nifQRrxPnP5yJKbCqIO+uWB+Mn2EKaSWxRRP5QbybnOP0JNyiKBGuvno+LS3XYQvpucCfssx6F4uC\nino5TMfqKwJMQ6QF1eewwLHIQoh8Hf1oX2Jjfnj/rsRK5yXM0hgU5s4hvUzINExpzSXeghod7gXt\nu9pdnGWslvLydVRWTvESHY7TA3CLoiSZjT2lJ9kXcyg/TqwktmDKYB59+ggPPHAPIrtiT/f3YVtK\nFcB/ZbkfmFKYim1DXRrGziJ96+o4zOE9F9tO+h5wA+bbSPJ6eGWyqd3IgAFvU1Mzhfr662lsnEBj\n4wROOukM71vtOCWKWxQlQnX1ufzxj2ewqW1djRz2/bByWL8nthJeBo6hb9+nOOqoIeH9tfYubcX8\nC2dhT/ozE/dJWgazyOw9bURWyFhMId2MWQ0raN/utBbYiMh0hg37FAB/+ct0oliD8vLZ1NTMoL5+\ndtvflUrNYL/9RrJkyQNeosNxegqdzdQr1osdKDP7o48+0nfffbftPGrGY2XHP6vwTYX3QkZzlEEd\nlxuvq6tLe28yk9myoQerlQHfI/G+ZHOi4R1ka48N/x2ucYnz9k2L+vbdV6uqTm6XUR01FIrGrUlQ\npaZSe2pUWjyV6q9x+XK7X1XVyYX78h1nJ4MuZGYXfeHfboF3EEWxcuVKHTVqlB533HHa2tqadq2q\n6mTNXs5jdFi8h+rw4SOzvCdbeY3dFc5IKIxkv4uxGpcIqQ6KqC7t/cOHH6ZlZZ8MJTf2bHt/Nijf\npQAADW9JREFUKtV/u0pqZJPPFIeX6HCcQtAVReFbTwVm8+bNXHbZZcyZM4etW7fS1NTEokWLmDix\nrVZi1p7OtoV0J1H+wrBhS7fh04ZgkUZLscS5b5OeLLeGON9hGhYWW4NFJVmo7Guvbaal5cYwZyow\nl1TqDX7yk+oubxMdeuiotmqxXqLDcUqYzmqYYr3owRZFZEWQUcSvX79+umHDhrS5yZ7Ow4cfltY7\nOtvTd11dXdjOSXafW6Zxgb9MCyWbxRIVB0wW7Iu6z5mVk1m8b1vxIn+OU1xwi6JncN9999HU1NRu\nfMKECZSXl6eNZfZ0bmho6LBAXkNDA/X119PaejbmpG7BIpk2YlZAM6nUbrQmK5FnRejVawFbtybL\ni4M1H7KM6g8/nMHKlSu3u06TF/lznJ6Ll/AoIJs3b2bMmDFtymLw4MHMnz+f448/vkv3Te/dcADw\ndSwnAqxi++1YnajMEiFlWCQTREUCBwy4j/fe+xHp5T/mAU+0nadS1bS2xqU4amqm8OijzwCeD+E4\npYqX8Ogh7LLLLixYsIAjjzyS0047jWuvvZb+/ft386cMxcJik9VbBbgRy8Q+D9gLWByu12L5FtbT\ner/9nmTTpjicVWQ6qlFvbKO1dQRxWOsaLrnkalpbrU6Utyx1nB0PVxR54Omnn+aDDz6gsrKy3bUj\njjiCF198kREjRnTb56XnYIwhvY/ETKxEB5gj/FAsGztayDdiFsNGystnc8UV6SXAKytnUV9/PZs2\nWUXYVGpG2OKKeDwoiUhxeD6E4+xouKLoRpIRTYMHD6apqYk99tij3bzuVBLQfv+/svICliy5jeee\ne4GtWz+JlRSfHWYLltU9DxhLWdkCRo8+mIEDl6b5DZIL/ZgxYxL3rs5QHC9vg+/DcZweTWe94Nv6\nwsqeriJuhXoVVgd7NXAPsEdi7kVY2vGfgfEd3K+bYwG6h2wRTWeffXZRZUrPXVim1uo0zqUQ6ZeW\ntLetJJPq6urqPJrJcXoAlHLCHbb3cQewNJxXAalwPAeYE46jntm9gf2xxgmpLPfLx3fYJa655hrt\n1atXu7BXQFevXl00uTJDUuMEtzgktjuyobNlYzuOU1p0RVHkdetJRIYCX8MaOM8Mq3xjYsoKrKEC\nwInAXaq6BXhVRF4BPg88mU8Zu4ORI0eydWt6D4gooumQQw4pklTtt6TeeWcUq1bl53PcJ+E4Oy75\n9lFcgzVW3r2D62djDRbA0oiTSmE91vmm5Bk/fjyTJk3i5ptvBmDixIl5imjafpKLeENDAyedFBce\nLC+fTXX1wiJK5zhOTyBvikJEjgfeUtVVIjIuy/UaoFlV78xxm6wJE7W1tW3H48aNY9y4drcvOHPn\nzmXNmjXU1NR0OS8iX3jSm+PsPCxfvpzly5d3y73ylnAnIpcDp2NpwrtiVsUSVZ0oImdi9a2PUdWP\nwvwLAVR1TjhfBvxYVVdk3FfzJXNXUVVEOpXP4jiOk1e6knBXkMxsEakEZqnqCSLyFaweRKWqvpOY\nMxKrevd5bMvpIeCATK1QyorCcRynVOkJmdlCvI10PdZurTE8fT+hqpNV9QURWYz18WwBJrtGcBzH\nKT5e68lxHGcnoCsWhffMdhzHcXLiisJxHMfJiSsKx3EcJyeuKBzHcZycuKJwHMdxcuKKwnEcx8mJ\nKwrHcRwnJ64oHMdxnJy4onAcx3Fy4orCcRzHyYkrCsdxHCcnrigcx3GcnLiicBzHcXLiisJxHMfJ\niSsKx3EcJyd5VxQi0ktEVonIb8P5t0TkeRHZKiKfy5h7kYi8LCJ/FpHx+ZbNcRzH+XgKYVFMw7rW\nRd2G1gAnAY8lJ4VWqN8BRgJfAW4SkR5h8XRXA/PuphTlcpm2DZdp2ylFuUpRpq6Q14VYRIYCXwNu\nwdqhoqp/VtWXskw/EbhLVbeo6qvAK1j/7JKnVH8UpSiXy7RtuEzbTinKVYoydYV8P7FfA5wPtG7D\n3CHA+sT5emCffAjlOI7jbDt5UxQicjzwlqquIlgTncCbYzuO4xQZUc3PWiwilwOnAy3ArsDuwBJV\nnRiuPwJUq+oz4fxCAFWdE86XAT9W1RUZ93Xl4TiO0wlUtVMP7XlTFGkfIlIJzFLVExJjj4Sxp8P5\nSOBOzC+xD/AQcIAWQkDHcRynQwoZVaQAInKSiPwfcBRwv4g8AKCqLwCLsQipB4DJriQcx3GKT0Es\nCsdxHKfnUpJ5CqWYpJdFpqtE5EURWS0i94jIHoWWqQO5LgsyrRKRBhEZXGi5MmVKjFeLSKuIDCi2\nTCJSKyLrw9gqEflqsWUKY1PC76pJRK4stkwi8uvEd7RORFYVWqYO5DpMRJ4MY0+JyL8UWq4sMh0q\nIk+IyHMislRE+hZSJhF5NXz2KhH5UxgbICKNIvKSiDwoIv06JZOqltwLmAncASwN5wcDBwKPAJ9L\nzBsJPAv0BvbHci9SBZKpKvosYA4wp9AydSBX38S1KcAviv1dhbFPAcuAdcCAYssE/BiYmWVeMWX6\nEtAI9A7nexVbpoxrc4GLS+R3/iBwbDj+KvBIsb8r4Cngi+H4LOAnhZQp+f9WYuynwAXheDadXKdK\nzqKQEkzS60CmRlWN8kNWAEMLKVMOuf6RmFJBnMNStO8q8DPggozpxZRJMuQrBZl+CFyhqlsAVPXt\nEpApuibAt4G7CilTDrlagciK7wdsKKRcHcg0QlX/EI4fAr5RSJki0TLOJwALw/FC4OudkankFAWl\nmaT3cTKdDfyuwDJ1KJeI1IvIX4HvApcUWK52MonIicB6VX0uY24x//0UmBK26X6ZMMmLKdMI4N/C\nlspyERlTAjJFfBF4U1XXFlimjuSaAVwVfudXARcVWK5sMj0ffusA38Ks6ELKpMBDIrJSRCaFsUGq\n+mY4fhMY1BmZSkpRSAkm6X2cTCJSAzSr6p2Fkunj5FLVGlXdFzOLpxRKrmwyichuwH9iWz1tU4sp\nU+AXwKeBw4A3gKtLQKYyoL+qHoUtQotLQKaIU7Hw9VwU8nf+Q2B6+J3PAG4tlFw5ZDobmCwiKzFr\nvrlQMgXGqurh2FbceSLyxbQPtD2nXJ/b4bWy7pGv2/gCMEFEvkZI0hORX2lI0svCBmKtDbb9s6GD\nud0uk4iciZmfxxRYppxyJebcCdwP1BZIrnYyAb/C9kBX2+4FQ4GnReTIYsmU+T2JyC1A5FAulkyL\nsKe6ewBU9Skxx//AIsoU/c7LsEKeyUCSYv7OFwEnqOrUMOdubAuoUHLl+k0dCyAiBwLHFVAmVPWN\n8N+3ReRebCvpTRHZW1U3igW2vNUpmfLh5Okmx0wl8NuMsUeAIxLnkUOmD/Z0uJYQ8ptvmbAKt88D\nAzPmFFSmLHKNSIxPARYX+7vKGM/mzC7Gv9/gxPgM4M4SkOn7wKXh+EDgr8WWKZx/heAsTowV+3f+\nAlAZjo8Bnir2d0UcfJDCHpDOLJRMwG6EQBbgE8DjwHjMmT07jF9Ie2f2NslUahZFJm1JesDPgYFY\nkt4qVf2qqr4gIlGSXgv5T9ITYvPseuxLbgxPyk+o6uQiyJQp1xUichC2d/oq8AOwhMYiyJXt/m1j\nRf73+6mIHBrO12GLdLG/p1uBW0VkDbZtMbEEZAIr/39X2sXiyJSUaxJwXbB2NgHnFlGu6P7fFZHJ\n4XiJqi4ooEyDgHvDWlQG3KGqD4ZtsMUicg62Hny7MzJ5wp3jOI6Tk5JyZjuO4zilhysKx3EcJyeu\nKBzHcZycuKJwHMdxcuKKwnEcx8mJKwrHcRwnJ64onJ2KkO28KHFeJiJvS0ZJ9FJDRD4otgzOzosr\nCmdn45/AZ0Vk13BehZXOKHhCkYj02o7pnvDkFA1XFM7OyO+I6/CcimUdR0UMPyEit4rIChF5RkQm\nhPH9ReQxEXk6vI4O44PD+CoRWSMiY8N4mwUgIt8UkdvC8QIRmSciTwJXishwEXkgVPx8LGTVIyKf\nlrgJTl2BvhfHyYorCmdn5NfAKSKyCzAa6ycSUQM8rKpHAv+OlbLeDSvRXKWqRwCnYCVlwEq5L1Or\n2nkosDqMJy2ATGtgCHC0qs4C5gNTVHUMVjH2pjDnOuBGVT0EeL2rf7DjdIVSr/XkON2Oqq4Rkf0x\na+L+jMvjgRNEZFY43wWrsrkRuCHUh9qK9Y4A+BNWn6k3cJ+qriY3CvxGVVVEKoCjgd+EGj1g9cPA\nKpSeFI5vB67EcYqEKwpnZ2Up1tqzEtgr49rJqvpyckBEaoE3VPX04Fv4CEBV/xDq/h8PLBCRn6nq\nItKtiPKM+38Y/psC3g/WiOOULL715Oys3ArUqurzGeMNQNTnABGJFvHdMasCrKprr3B9X+BtVb0F\n+CUQzX9TRA4WkRRmGbRzRqvq34F1IvLNcC8RkUPC5cexLS6A0zr9VzpON+CKwtnZUABV3aCqNyTG\nooX8MqB3cCI3AZeG8ZuAM0TkWeAgIHJWfwl4VkSewdpfXhfGLwT+B1vwM30MSaVxGnBOuG8T1uMY\nYBrWpew5zKfhUU9O0fAy447jOE5O3KJwHMdxcuKKwnEcx8mJKwrHcRwnJ64oHMdxnJy4onAcx3Fy\n4orCcRzHyYkrCsdxHCcnrigcx3GcnPw/BVOaDlMF3+MAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABBTElEQVR4nO2deXhU5dnwf/dMJskEyEJEwSBi1UJVRJRaFG0FX0VcqeJWbd2qrXWpWrHY17fafrXyfnxWtLb6orR1a0vdeKkbWhG1KioIiNSluBtQMAtLEshk5v7+OGfCZJZksszMmcn9u65cmXmeZ87cmTk593nuVVQVwzAMwwDw5VoAwzAMwzuYUjAMwzDaMaVgGIZhtGNKwTAMw2jHlIJhGIbRTlGuBegNO+20k44cOTLXYhiGYeQVy5cv/1JVhySby2ulMHLkSJYtW5ZrMQzDMPIKEfk41ZyZjwzDMIx2TCkYhmEY7ZhSMAzDMNoxpWAYhmG0Y0rBMAzDaMeUgmEYhtGOKQXDMIw8QVUzHoZvSsEwDCMP+OCDDzjyyCOZMGECK1asyNj7mFIwDMPIA+rr63n++ecJh8Ocf/75hEKhjLyPKQXDMIw8YPz48Vx99dUArFy5kt/85jcZeR9TCoZhGHnCDTfcwN57781RRx3FaaedlpH3yOvaR4ZhGF5lwYpabli4hsYWx8xTVRbg+hP2Zdq4mk5f99prr1FeXs7o0aMT5oLBIC+88AK77LILIpIRuW2nYBiG0UMWrKhl4qzF7DHzcSbOWsyCFbXt4zMeXNWuEAAamkPMeGhV+5p4mpubufrqqznkkEM4//zzCYfDSdcNHTo0YwoBTCkYhmH0iAUrarn2kdXUNragQG1jC9c+spoFK2qZvehdQhFNeE0orMxe9G7C+HPPPceYMWO4+eabiUQivPLKK9x+++1Z+CsSMaVgGIbRA2YvepeWUMe7+ZZQmNmL3mVdY0vK18XObdq0iR/84AdMnjyZDz74oMO6n/3sZ3z55Zd9K3QamFIwDMPoAaku/OsaW9i1MpjyddG5v//97+yzzz7MnTs3Yc2IESN45JFH2GmnnfpG2G5gSsEwDKMHpLrw71oZZMaUUQR8iXb/gF+46OCdOPPMMznxxBNZt25dwppLL72Ut956iylTpvS5zOlg0UeGYRg9YMaUUVz7yOoOJqRgwM+MKaPaI4xio48qg0VMDvybn5z2Perq6hKON2rUKO6++24OO+yw7PwBKRDVRGdIvjB+/Hi1dpyGYeSKqFN5XWMLFcEAItDYHGrfLUSVw6effsrFF1/M448/nnAMv9/PNddcw89//nNKS0uzIreILFfV8cnmbKdgGIbRQ6aNq2HauJr2SKToriEaiQQwbnAbY8aMYcuWLQmvHzduHPPmzWPcuHFZlbszMu5TEBG/iKwQkcfc55NF5A0ReUtE7hGRIndcROQ2EVkrIm+KyIGZls0wDKMv6CwSaffdd+foo4/uMFdSUsJNN93Eq6++6imFANlxNP8YeBtARHzAPcAZqrof8DFwjrtuKrC3+3MRcEcWZDMMw+g1nUUiAdx+++1UVVUBcNhhh7Fq1SpmzpxJIBDImozpklHzkYgMB44DbgSuAqqBVlV9z13yDHAtMA84CbhXHSfHUhGpFJFhqro+kzIahpH/xNr2Y+35qcbTfX267FoZdJLYVDtkG0cjlIYOHcrvfvc76uvrufjii/H5vBv4mWmfwhzgGmCQ+/xLoEhExqvqMmA6sJs7VwN8GvPaz9yxDkpBRC7C2UkwYsSIjAluGEZ+kMqev+zjeh5eXpvUzh97we/MHxBd15XSOHzPCu6ccxdtmzey03FXAjsikaKceeaZKeXvjULqazKmFETkeGCDqi4XkSMAVFVF5AzgFhEpAZ4Gkhf4SIGqzgXmghN91KdCG4aRd6Sy5//l1U8Jx0VXRu38sRfdzvwBXTmRAa647W+s+/scQnWfAFA2aiJlex3MKQfVJCif+Is/0KVCyjaZ3ClMBE4UkWOBUqBcRO5X1bOBwwFE5Gjgq+76WnbsGgCGu2OGUTB47a6wEEhlz49XCKnWd+UP+MXf1yRVGj9/eDkfLfoDW5YtBHa8V/2i31G6277cv/QTHn9zPcftP4zHVq3vUByvtrGFGQ+toi2sxEsZr7iyfc5kzLClqteq6nBVHQmcASxW1bNFZGcAd6fwU+BO9yULge+5UUgTgE3mTzAKic4KqBk9J1VmsT9FJdH49RXB5M7eimCAcb98mobmxA5nLR+t5O3bL2LLsv+F+Mu6RgjVO5nKDc0h7l/6SQeFECWURCFEiSqkBStquepvKzucM1fMX8kBv3g6Y+dNVpLXXPPR1ap6vIjMBo7HUUh3qOocd40AtwPHAM3Aea7fISWWvGbkExNnLaY2yV1pTWWQl2ZOzoFEhUG8eQcce/4pB9V08ClEx286eQzgmI2SfR+dEdm2lYbn/sDWN59OOj9gzFFUTb4Af+nAHvwlO6gMBhhQUtSlfOn2aIgn58lrqroEWOI+ngHMSLJGgUuyIY9h5IKuzBRGz4heEJOZWMbvPjipHX/Gg6uSlrbujOb3XqH+mTsIb61PmPNX7EL1MZcRHHlAr/8en0BTa1vS3UU8Dc2hPvdBWEazYWSJaNhisnGjc7qyq0czi+NJNn7AL57ulkIINzVQ/8z/0PzuP5PMCoMOOoHKb34XX3HffI8RhUg4ffmSOc97gykFw8gSnRVQy0ey5QDti5DR2DXp3IEDqCpNa56j4dm7iGxLLFERqN6N6qmXU1Lztd78eX1CX+42TSkYRpbozMyRb6Rzoe4rehMyGpXlugWruX/pJ917Y42wZfnfExWCz0/FhFOpOOR0pMgbGcl9udu0KqmGYXSbbDnNF6yo5Yr5K1PO11QGaW5tSxoh5BchrIpPHJNMT2jd8CHr77kCIo7CKR66F9VTL6d456/07IAZIOo8744yzrmj2TCMwiIbTvPoDqAzOovOieYp9FQhABTvvAcVE05j82sPU3HYWZR/fRri8/f8gH1MTQZ2m6YUDMPoNqmc5pVlfWdOSWY2ygQaCbO99m1Kd9sv6XzFIacxYL9JBKp2zbgs6dKT3UG6eLcqk2EYnmXGlFEE/InJYVu3tfVZUlU2QnVbv/iAz++9ii/++p+0bvgg6RopCnhKIVSVBTKmEMCUgmEYPWDauBoGFCcaGkIRZfaid/vkPfpy1xGPtrXS8MK9rL/nClq/eB8iYeqeuBWNZH5n0lu2hSIZPb4pBcMwesSmFKGdfXWHn6kYmG2fvc26P17O5lf+BrrjAtv6xftuHaPcEwz42XvnAUnnopFXmcJ8CoZh9Ih0kvGiuQG1jS3t0UA1MZnFnYXnplI6PSXS2kLjC/eyZfljJNQrAspGH86AfSf16Xt2B78IEdUOn8XImYk9nSGzpjVTCoZh9IiukvHi8wei0UDRom4+IHqfHtsD4bl3Nna7JlFXtHz4BnVP3U5484aEOf/AwQw++keU7T2hT9+zu9x82tiEUttCMvWV2Sx4UwqGYfSIrpLxuooeireMt4TCPLD0k5SVQ3tCuGULDYvn0fTWP5LODxw7haojzsPXywJ2vcUnsOzj+g6fZXNrW9LPQiCjWfCmFIykZKKEgfUSyA+68z2lqjkEPTNx9KVCaHr3JeqfuYNIU2PCXFHlUAYfcxnB3cf24Tv2nIjSIeO6s52SktkGPKYUjAQyUcIgm2URjJ7T2+8pVqH4XB9CLqh/5k62vPFY4oT4GDT+RCoPOxtfcWn2BesDajJcQNGij4wEOqs146VjGn1Pb76n+CZCuVIIAKVfOShhLLDTCIaePZvBk7+ftwohGwUUbadgJJCJEgbWSyA/6M33lK0M5HQo2/PrDNjnCJr+tQR8RVQccioVh5yG+L1RwC5dos12smlyNaVgJJCJuv/WSyA/6M335DUFX3XkhUS2baXyiHMpHjIy1+J0m2DAzw0ndr+rWm/JuPlIRPwiskJEHnOfHykib4jIShH5p4js5Y6XiMh8EVkrIq+KyMhMy2YkZ8aUUQQDHYt+9XbbmoljgmOymDhrMXvMfJyJsxZbv+Ne0tX31NnnnW0FH6r7lA0P3kBbkk5oAP6yCnY+9Ya8UwiC4zfIZCmLTt8/06WzReQqYDxQ7vZofg84SVXfFpEfAQer6rnu4/1V9YcicgbwbVU9vbNjW+nszJEP0UepevPm6p+pUEj1PZ111yu89H7HC3DALwwoLmJTS4iKYIAt29sI96YsaRpouI3Nrz1C40t/hnAbZV89lCHf/llG3zNbZKtfd85KZ4vIcOA44EbgKndYgXL3cQWwzn18EnCD+/gh4HYREc3nhg95TGehhl45ZlfNV/orqS7q6SrlZN/TdQtWJygEgFBY2zuZpdvRrDds/3wtdU/eRiimeF3zey/T9O5LDBg1MePvn0kynX+QLpn2KcwBrgEGxYx9H3hCRFqAzUA0jbAG+BRAVdtEZBNQDXyZYRmNPMWc14mkCild9nE9Dy+v7XGo6V9e/TRzQqdBJLSdTS//hc2vPtKhXlGUlveX5bVSEOCsCSM8cTOTMaUgIscDG1R1uYgcETN1JXCsqr4qIjOA3+AoinSPexFwEcCIESP6TuACpxATx/LdeZ2J7yTV7ukvr36aECKa7q5qwYranIaXbvv0Leqe+i1t9Yn+Il+wnMH/8QPKvvbNHEjWN1SVBbj+hOw7lFORyZ3CROBEETkWKAXKReRxYLSqvuqumQ885T6uBXYDPhORIhzTUl38QVV1LjAXHJ9CBuUvGAo1cayr2jteJlPfSapdUqqLele7qh71Nu4jItubaXj+HrauSF4UrmyfbzH4yIvwl1VkWbK+Zeu2tlyL0IGMRR+p6rWqOlxVRwJnAItx/AYVIvJVd9lRwNvu44XAOe7j6cBi8yf0DYWaODZtXA03nTyGmspgziM2ukumvpPu7pJ2rQymjChasKKWB3KkEFreX8a6eZckVQj+gdUMOeXnDDlhhmcVQjDg5+wJIzqcm3NOP4DKYGKeRCii3LBwTfaFTEFW8xRcX8GFwMMiEgEagPPd6XnAfSKyFqjHUSRGH1DItvdMOMSzQaa+k2S7p1SVNgWYNHpIwo7lyvkruWL+yl7J0VPCLZtpePYumtY8l3R+4AHHOAXsSpL3GvACfpGUNyepPtfGlhB7zHzcE6bdrCgFVV0CLHEfPwo8mmTNNuDUbMjT38h323shkqnvJFnl0lTF1RR47p2NCTuWXG7Pm9/5Z1KFUFQ1jOpjLqN0xP45kKp7RFR7dFFXvGHatdpH/YBMJY4ZPSeT38m0cTW8NHMyH846jpdmTk5ZQE3ovBpnLhh4wDGU1OyzY0B8lB98MsPO+21eKAToXLFXpdFiNNemXVMK/YB8tr0XKtn6ThasqKVpe3JHpuKYOryEiI/qqZeBP0BgyEiGfvdmqiadjy+QHwXsulLs15+wLwF/1595Lk27Gc9oziSW0Wz0dzoLa02W8e0VQo2f4x9QmfJiv+2zNZQM+2peFbCrSdMfcN2C1V02E8p0ZnPOMpoNw8gcXYW1eqlqaRSNhNmy/DEaX7yXQeOOo2rS+UnXlQ7fN8uSpUdlMMD2tkivSqs8987GThVCrk27Zj4yjDylq7BWr/kLWr/8hM8fuIaGxXehoe1sfn0B29e/l2ux0iZatbS3Zr/OTENeMO3aTsEw8pTOwlo7a/qebTQcYtPSh9j0ynwIx/g3NELdE7cy7Nw5njQTTdxzMB/VtSQ1zaW6aCcz5y37uL49o9wvQlmxn6bWxB1ctorhdYUpBcPIUzoLa5296F1PKITt6/9N3ZO3Etr4UcKclAxg0PiTwOety5BP4DvfGMGvpo3p1uuSmfOumr+S2EpNYVWaWsP4fdKhmmyuTUaxeOvbMAwjbTor83FljpLPokRC29j0zz+z+fUFSQvYBfeewOCjLqZoUHX2hUtCX9ylJzPnJf7l7nhEqakMerIWmSkFw/A4qSKMYhPVahtb8Iu0+xRSmSiywbZPVlP31G20NaxPmPOVVTL4qB9SNmoi4pFw2IBP+uQuvTs+HAVPmIqSYUrBKAgKsQosdB1hFP0bZzy4ipBrjsiVgzmyvZmGJX9k68onk84P2HcSVUdeiD9YnnQ+V0SAGxau4cr5K3t17vhF0q4m67X8kFhMKRh5T6FWgQXnYpUswuiK+Su5YeEaQuFIznYEsbRu+JAND/2C8JbE9if+QUOonnIJwT2ThsXnnHBkR6Og3pw73SkvfuY3duvWsbOJhaQaeU++VIHtbj/pBStqO+1m1tgS8oRCACiqHAo+f8L4oAOPY9cLfudZhZCMnp47qcqJxOIX4ewJ3XdiZxPbKRh5Tz5Uge3JbsZrSq0zfMVBqo+5jA3zrwOgqGpXqqdeTulu++VYsp7Rk3MnmeM/Sj71DjelYOQ9+VAFtqvdTKw/ZNLoITz3zkbPJZ91RXDkAQwcewy+4EAqDj0TX6Ak1yL1mJ6cO8kc/2HVtMtfeAWrfWTkPclq/HjtzmyPmY+nzBsIBvyeK0eRDFVl66pFiL+IgWP+I+Uar0QVdUb0gl1VFmDrtrZ2Jz1479zJBFb7yChokvUQ8NqdWardTDSM1OuEGtZT99Rv2f7Jm0hxkNLdx1JUPiRhXT4ohPichEKNXOsptlMwjCzg5YqlnaGRMFuW/S+NLz6Atm1vHw9+ZTxDpl+fF0ogFgFuOf2Afn3RB9spGEZOiL8DPeWgmrzyFbRu/Ii6J2+ldf2/E+a2fbqatoZ1BAZ75+IqwF47D+DfG5pSzp81YUS/VwhdkXGlICJ+YBlQq6rHi8iLwCB3emfgNVWdJs4tx63AsUAzcK6qvpFp+Qyjr3F2BW/SEtpR5KC2sYX7l37CgGI/ZQEfzaFUBRByj4ZDbHrlb2x65UGIJDboKR05jupjLqWoYpccSJecWGfudQtWtxegSzZvdE42dgo/Bt4GygFU9fDohIg8DPyv+3QqsLf78w3gDve3YXiC+Dv/2CihqOOyMhhg87YQkRRWWa/kFaRi+7p3nQJ2X36SMOcrGUDVkRcyYL8jPWU2ivcR/GraGE/nAXidjCoFERkOHAfcCFwVN1cOTAbOc4dOAu5Vx8mxVEQqRWSYqiYWUDGMLJMsz+D+pTsunNG70s6SzbxMJLSNxhfvZ8uyhUkL2JV99VCqjvohRQMH50C6zvFSPkohkOmdwhzgGnaYi2KZBjyrqpvd5zXApzHzn7ljHZSCiFwEXAQwYsSIvpXWyCuyGTXixS5mfcW2j990Ctg1fp4w5xtQyeCjLmbAqIk5kGwHVWUBVJMrXS/loxQCGVMKInI8sEFVl4vIEUmWnAnc3d3jqupcYC440Ue9kdHIX3pa7ygdRRJdE2sWKlQi25vZ8OiN6PZE5+yA/Y6kavL38QeT3dNlnvh8gVT5KF7pQ1AoZHKnMBE4UUSOBUqBchG5X1XPFpGdgIOBb8esrwViq0QNd8eMfkS6d/+dZQh31hUrvprojAdXAY4iWbCill/8fQ0NzTvuRgtZIQD4SsqoOuI86hfd3j7mLx9C9ZRLCX7loBxKRkICWT7koxQCGVMKqnotcC2Au1O4WlXPdqenA4+p6raYlywELhWRv+I4mDeZP6F/0Z27/57UO7ph4ZoOmasAoYhyw8I1AHmZR9AXDBw7haa3X2D7J6sZdOBxVH7ze/hKynItVtKLfWy5cCMz5CpP4QxgVtzYEzjhqGtxQlLPi3+RUdh05+6/J/WOUjmBG1tCBe0zAKf8RLipIamjWESoPuYywk31lA7fNwfSJZJOxVEjM2SldLaqLlHV42OeH6GqT8WtUVW9RFX3VNUxqmqpyv2M7tz9z5gyimCgY6nm3tiXCzmCpW3zRjY+/Es+v+8nRLY3J10TqBrmGYVgfoLcYv0UDM+Q6i4/2fi0cTXcdPIYaiqDCM6dZVdFzKrKAinHCzGCRTXClhVPsG7ej2h5/3XCmzfS+MK9uRYrgaqyQLe+RyOzWJkLwzN01og+Gd21L19/wr7MeGgVofAOv4LfJ6g6/guBlJVM841Qfa1TwO7TtzqMb3njccq+drhndgUBv/P5m+PYO5hSMDxDpqNL4o9f6ZZNjvoaulIIncXKewWNhNn8+gI2/fMBtK01Yb5k+Nfwl1VmX7AYygI+WkKRhM+/kNqo5jOmFAqMTCR0ZTNJLNPRJfGNULrDip8f7elqp60bPqDuydto/XxtwpwUB6n61jkMHHcsIrmzGpcFfPzr/0wFYOKsxR3Cf6HrsGIj83SqFESk05x2Va3vW3GM3pCJBvaZOGYu6e1FvTdKJVNoW4hNL/+VTa8+BJHEv6t0jwOpnnIpRRU750C6HfgEfn3y/u3P86GNan+kq53CcpxdtQAjgAb3cSXwCbBHJoUzukdPErpyccxc0tPQ06qyQIdMZ6+wvfZt6p68jVDdpwlzvtJBVB35fQbsOzknBeyCAR+lAT+NzaGkO8x8aKPaH+lUKajqHgAichfwqKo+4T6filO7yPAQmbjzKrS7uZ7K3doW4Yr5K/tWmF6gqjQ+9wc2v76AZN6QslGHMfioH+AfUJV12fwi3Hza2C5vGrobWGBkh3SNixOiCgFAVZ8EDs2MSEZP6U5IZy6PmUt6KrfXSl6LCPj8xCsE/4Aqhnz7ZwyZNjMnCiHgS08hQM/Cio3Mk66jeZ2IXAfc7z4/C1iXGZGMnpKJO69Cu5tL9vfkKxUTz6T5vZdpa3D+FQeMOYqqyRfgLx2YM5kGlhZ166JuZSu8R7pK4UzgeuBRnFuTF9wxw0NkIqSzEIuQlQZ8BaEUfIESqqdeTt0Tcxg85VKCIw/ItUg0Nns3XNdID9FuVIEUkQGqmrwBag4YP368Lltm1TCM9LhuwWoeWPpJXiWohZsa2Lz8MSoP+w7i8yddo+E2xO+N6PL4LmiGNxGR5ao6PtlcWj4FETlURP6F01YTERkrIr/vQxkNI6MsWFGbVwpBVdn61rOsu/tiNr8yny3LH0u51isKAchbs6Kxg3TPpluAKTjlrVHVVSLyzYxJZRh9zOxF7+aNQmjbtIG6Rbez7cM32scaX7yX4N7fIFA5NIeSdU4w4Mtrs6LhkHZqo6rGB0Lnv1HW6Dd4KbcgFaoRtrzxGOv+cEkHhQCgoe1sWfa/OZKsawI+4aaYxDQjf0l3p/CpiBwKqIgEgB/jmpIMw+ssWFHr+WJ3obrPqHvqNrZ/9q+EOSkqpuKwsyj/+rTsC9YJfhEiqgURfGDsIF2l8EPgVqAGp0Xm08CPMiWUYfSWBStquWHhGk8XrwPHSbz59Udp/OefIZwoa8lu+1F9zGUEBnvvghtR5cNZx+VaDKOPSVcpjFLVs2IHRGQi8FLfi2Rkk0wVu8tmEb1k7x3bi9mrtH7xvlPA7ov3E+akOEjVEecx8IBjclrArjPyNYHR6Jx0lcJvgQPTGEtARPzAMqBWVY8XpwjLr4BTcfwSd6jqbe74rTgtOZuBc1X1jVTHNXpPpord5bqIXrJezF5C21ppfPmvbF76EGgkYT74lfEMnnIJReVDciBdeuRzAqPROV1VST0Ep5zFEBG5KmaqHEgeNJ1I1P9Q7j4/F9gNGK2qERGJlm6cCuzt/nwDuMP9bWSITBW7y2URvQUraj1vMmp4/p6kTmNfsJyqIy9kwD5H5KSAXTJqKoOsa2yhIhhAhJTF7YzCoaudQjEw0F03KGZ8MzC9q4OLyHDgOOBGIKpULga+o+rcIqnqBnf8JOBedbLplopIpYgMU9X16f4xRvfIVLG7bBXRizVRlRX7aW4Ne9qZHKViwnSa3nqWyLat7WNlX/smg4+8CP+AytwJFoclovVPuqqS+jzwvIj8SVU/7sHx5wDX0FGh7AmcLiLfBjYCl6vqv3Gc2LFhr5+5Yx2UgohcBFwEMGLEiB6IZETJVOnibJREjjdRea1gXWf4B1RRdeSF1D1+C/6Bgxl89CWU7e2tTbGZh/ov6Xqw7haRyugTEakSkUWdvUBEjgc2qOryuKkSYJubYn0X8IduyIuqzlXV8ao6fsgQ79pc84EZU0YRDHS0AvbFxSBTx42lp30RskmkNfXOaMC+k6k68kJ2veD3nlMIVq20f5Ouo3knVW2MPlHVhhhfQComAieKyLFAKVAuIvfj7AAecdc8CvzRfVyL42uIMtwdMzJEpordZaOInteT0ZrefYn6Z+6gesqllO09IWFeRCgff1IOJHMu+qk+PwEzGfVz0lUKEREZoaqfAIjI7nSRC6Sq1wLXuuuPAK5W1bNFZBYwCfgQ+BbwnvuShcClIvJXHAfzJvMnZJ5MlS7OZEnkBSu8e6/QtrWehmfupPm9lwGof/r3lO62H74clrOOJeonmDhrsXU9M5KSrvnoP4F/ish97t3+C7gX/B4wCzhFRFYDNwHfd8efAD4A1uKYlSw5zkjK7EXv5lqEBFSVrav/wfq7L25XCADhrfU0PNctC2lGiZrwsmHiM/KTtHYKqvqUiBwIRPfBV6jql+m+iaouAZa4jxtxIpLi1yhwSbrHNLxFNpPVvNYKtG3TF9Q9dTvbPlqROOkrwj+oGlX1RJhp9DspxD4ZRt/QVZ7CaFV9x1UIsKPb2gjXnGTJZUbWk9WCAR/NocSkr2yjkTBb3nicxhfuRUPbEuaLh+1N9dQfUzxkZPaFS0JNnGnIup4Zyehqp/AT4ELg5iRzCphHyshqstp1C1Z7QiGEvvzUKWBXm1gXUopKqDz8LAaNPyllY5xMkcqJbKYhI126ylO40P09KTvi9B9yWRuor+nLZLWuPpc/v/pJj+XsCzTcxuZXH6bx5b9AuC1hvmTEGKeAXdWuWZctNtmskM4vI7t0ZT46ubN5VX2ks3kjObmuDdTX9CZZLfbiVREM0NTaRijsBLbFfy7XLVhNLksatW78iC8fu5nQhg8T5qS4jKpJ5zNw7JSc+Q5idwJmGjJ6SlfmoxPc3zvj1EBa7D6fBLzMjnwDoxvksjZQJpgxZVQHJQedmyuiiqC2saVDn4NkNYuinwvA/Utzu0sAx2wUT3Cvgxl89I8oGrRTDiRyqAwG8vLcMbxHV+aj8wBE5Glgn2jegIgMA/6UcekKlGzVBsoW3Ylkid8lpXPjX9vYwg0L1/SlyD2ieMhIKg45lU0v/QVwCtgN/o8fUPa1b+Y0skiAG07cN2fvbxQW6Sav7RaXSPYFYIWHekg2agNlm3TNFT0tT+GVyqcVE06j+d2XCOy8h1PArqwip/IIcNaEEbZLMPqMdJXCs26to7+4z08H/pEZkQqf7ppbCol82A21vP86/kHVFO/8lYQ5KQow9Oz/h6+kLAeSQVVZgLLiInMgGxkj3eS1S92qpt90h+aq6qOZE6uw6c+JQ6l2SVECPslZg5xw8yYaFt9N05rnKN5lT4Z+7zdJQ0pzpRAAjtt/GL+aNiZn728UPunuFADeALao6j9EpExEBqnqlkwJVuh0Zm4p5HDCZLukKH4RTj94Nx5/cz0NzdkzF6kqze/8k/p/3EmkeRPgtMrc/NojVEw4NWtypMNz72zM6PEL+dwz0iMtpSAiF+L0MBiM0w+hBrgTODJzovVPCi1cNZ7YXVL8jiGsmvUIo7YtddQ/cwct/16aMLfp5fkMHHsM/uCgJK/MDZk0vxX6uWekR7oF8S7BKYW9GcBtitNV6WyjB3QWrprvLFhRy8RZi7ly/koAygK5a0ivqmxZ9TTr5v0oqUIIDBnJLmfe5CmFAJkNRijkc89In3TNR9tVtTUadiciRaQXTWh0k0ILV42S7C40V4QaP6f+qdvY9vGbiZP+IioOPYOKb5yC+APZF64LuhuM0B1zUKGee0b3SFcpPC8iPwOCInIUTlnrv2dOrP5LIYarAvzi72ty3ilNI2G2LH+MxhfvRUPbE+aLdx3lFLDbKXfR1gKUFfuTthetKuteglp3zUGFeu4Z3SPd/ftPcfoprwZ+gNP74LpMCdWfKcQ69wtW1GbVcZyM1o0f8/n919Cw+K4EhSCBEqqOvJChZ/3fnCoEcLbfAb8v4RwI+AVV2GPm40yctTitRkPdNQcV4rlndJ8udwoi4gfWqOponOY3RgYppHDV2HIWuSTU+Dnr7/lx0gJ2pbuPZfAxlxGoHJoDyZKzqSXELacf0H4OVJYF2LqtrT2BL10HcHfNQYV07hk9p0uloKphEXk3th2nkVnyoZhZMls10KG43aaWkCccT4HKoQwYfThNa55rH5OSAQyefAEDxhzlieY3sexaGexwDkyctThhp5VOrayemIPy4dwzMku6PoUqYI2IvAY0RQdV9cSuXujuNJYBtap6vIj8Cac38yZ3ybmqulKc/8xbgWOBZnfcmvh4kGS26ivmr8QntFcx9UpZiihVR15Iy4dvEGneRHDvCQw+6mKKBlXnWqwEkplreuoATpYTEvAJza1t7DHzcdsJGElJVyn8Vy/e48fA20B5zNgMVX0obt1UYG/35xvAHe5vwyN0ZQ7KZVnrKBoJJ81C9gfLqT7mMrQtRNnowzy3OwCnH0Kyi3RPHcDx5qBoafLorsPyEIxkdNVPoRT4IbAXjpN5nqomGmZTv344Tj/mG4Grulh+EnCv26t5qYhUisiwuEJ8Ro6I3x14jcj2JhqW/JFw8yaGTPtZ0ot+2d4TkrwyOwR8kKphXGUwwMrrj0752t7Uyoo3Q8Xv4PK5ZLuRGbqKProHGI+jEKaSvC1nZ8wBrgHi/x1uFJE3ReQWESlxx2qA2GL1n7ljHRCRi0RkmYgs27gxsyn/xg56Wt00GzS//zrr7v4RW1c+Rct7r9D8zj9zLVICA0tT5zx0VfZ62rgabjp5DDWVQQRnR3HTyWO6fSG3PAQjHboyH+2jqmMARGQe8Fq6BxaR44ENqrpcRI6ImboW+BwoBubihLv+Mt3jqupc93WMHz/eAwaL/kGuI4iSEW7eRP2zc2n+1/Mdxuv/cSelI8fiD5aneGX26SwkN52Le184gC0PwUiHrnYK7Wdyd8xGLhOBE0XkI+CvwGQRuV9V16vDduCPwMHu+lpgt5jXD3fHjByzYEUtXrLAqypN/3qedXdfnKAQAHwlAwhvrc+BZKlJ9fnVZPGCbHkIRjp0tVMYKyKb3ceCk9G82X2sqpryVkxVr8XZFeDuFK5W1bOjfgI32mga8Jb7koXApSLyVxwH8ybzJ3iD2Yve9URoKUDb5i+pf/p3tLz/euKk+Cj/xslUHHomvkBJ4nwOSfb5ZfuCbHkIRjp01Y4zMYyj9zwgIkNwFMtKHEc2OFnSxwJrcUJSz8vAextpEpuH4AWFoBph66qnaXjuD2hrc8J8YOc9qJ76Y0qG7pUD6dKnqixAY3MoZxdky0MwuqI7/RR6jKouAZa4jyenWKM41ViNHtCXdfC9FmkUalhH3VO/ZfsnqxMn/UVUTvwO5QefjPizcjr3irLiIlb8PHWkkWHkGu//Fxld0hd18GOVCgLqge2BRsJsWfa/NL74ANqWWMCupOZrVE+9nED1bkle7U0s0sfwOv1OKRRiZ6nOCp9NG1fDghW1/OLva9ojYIIBH6UBf7sZY9LoITy8vHbHMTygEAAQofm9pQkKQQKlVH7rHAYdeBwiuevJ0BMs0sfwOvn1H9VLonfUta6dPHpHnU7FSS+T6u6ztrGFBStqmfHQqg4hkS2hCA3NofbP4IGln3jGVBSLiI/qqZdDTF+D0pHj2PWC31F+0Al5pxCE7vdDMIxsk1//Vb2kUDtLdXb3+Z+PriYU7vzW3ysbg2QEqodTOfFMfCUDqD72CnY+7ZcUVeySa7E6UBkMUFXWeUMeAc6aMCLvd6VG4dOvzEeFmtE5Y8oorpy/MunFPVmzFq8Rad3Gto9XUbZ38lJX5QefzMAxR+EfWJVlydLjhhP3TbjYF6KZ0ugf9CulkI2MzlxcDKaNq+EKt+9xvtHy0Urqn/otbZs3MvTs2ZTsmmheEX+RZxVCqm5oFvpp5Cv9ynzUWUZntKl8dzpbxZNLn0U2M2P7gsi2rdQ9eRsb5l9H26YvQCPUPXkrGvZWye3OCAb8XH9C53WLDCPf6FdKIVVhMaBPLua59FnkkwOz+d9LWTfvR2x98+kO46EvP2HzMu+2/j57woheF6UzDK/Tr8xHkHxbP3HW4k5DOtMllz6LaeNq+M9HV3vahxBuaqT+H/9D8zsvJpkVBh10PIPGTc26XOkwoNjPr6aNybUYhpFx+p1SSEZfXcwz5bNI109x47fHMOOhVV1GG2Ubp4DdEhr+MZfIti0J80WDh1M99XJKh++TA+m6JuAXbvy2KQSjf2BKgb67mPemGUo8sV3OhB1ho51lK08bV8Oyj+u5f6l3Wmm3bd5I/aLf0fLBssRJ8VE+4VQqDz0dKSrOvnBpMnv6WDMTGf0GUwr03cW8r6pQxpetiL/vbwmFuepvK7lh4Ro2tYSoCAYQ6bxmf7ZRjbB15VM0LPkj2pqocIt32ZPqqT+meJev5EC69EkVXWQYhYopBfq2pHBvQhG76oEcS0Rpb60Y32LRC9Q9cStNbz2bOOEPUHnYWZQf/O2kvZS9RMAvFl1k9DtMKbjkOq7ca5VJe8uA/SYnKIWS4ftQfczlBKqH50iq9PGLmNnI6JeYUvAIXu6B3BOCu49l4P5Hs/XNp5HiIFXfOpeB46bmTb2im08zhWD0T0wpeIR8LbWhqjhN9BKpmnQ+Gg5Refh3KarYOcuS9Rwh/ZLjhlFo5MdtWz+gs0inymCAsyeMSMjGzjXba9/m8/t+QtvmDUnnfaUD2en4n+SVQgCncJ1h9FcyrhRExC8iK0Tksbjx20Rka8zzEhGZLyJrReRVERmZadm8xKTRQ1LONbW28diq9bSEwvhSdYDPIpHWFur/MZfP77+G1vXvUbfod6gXuvL0Er8IZ08YYUlqRr8mG+ajHwNvA+XRAREZD8RXOLsAaFDVvUTkDOC/gdOzIJ8neO6djSnnQmFtjzCK5Pja2/LhCuoW3U540xftY9s+WE7Tv5YwcN9JOZSsc8oCPhSnl0Q8AZ8w+1TzIRgGZHinICLDgeOAu2PG/MBs4Jq45ScB97iPHwKOlFTG6gLE6z6F8LatfPnEHDb87b86KIQooQ0f5kCq9GkORSgpSm5+G1haZArBMFwyvVOYg3PxHxQzdimwUFXXx13za4BPAVS1TUQ2AdXAl7GLROQi4CKAESPy3/YbzU3wsvGl+b2XqX/6DsJNDQlzRRW7MPiYywiOPCD7gnWTVPkcjR5K+jOMXJMxpSAixwMbVHW5iBzhju0KnAoc0dPjqupcYC7A+PHjvXwt7UCy+kUAMx5cRSjXNqEUhLc2UP+PO2l+96Uks8Kg8SdSefh38RWXZl22vsT6JhvGDjK5U5gInCgixwKlOD6FNcB2YK27SygTkbWquhdQC+wGfCYiRUAFUJdB+bJGfGLajvpF6kmFoKo0rVlMw7N3Edm2NWE+UD2C6qmXU1IzOgfS9ZyqsgDbQpE+qU1lGIVKxpSCql4LXAvg7hSuVtXjY9eIyFZXIQAsBM4BXgGmA4u1EEJaSN1nwYu0bdpA3aLb2fbhG4mTPj8VE06l4pDTkaLOexJ7kWjJCmuTaRip8VLy2jzgPhFZC9QDZ+RYnj5hwYratGoZeYWWj1YmVQjFQ/dyCtjtvEcOpOoawTEDNbe2JS0MGFvYzpSAYaQmK0pBVZcAS5KMD4x5vA3H31AwRM1G+cTA/Y+i+e0lbPv4TQCkqJiKw86i/OvTPFvArqYyyEszJwPJa0hZ20zDSB8v7RQKjnysZyQiDD7mctbPu4TiYXtTfcxlBAZ79846GPAzafQQJs5a3G4SOuWgGp57Z6OZiAyjB5hSyCBezj1o/eIDiiqH4ispS5gLVA5l6PduJrDTCE8XsKupDDJp9BAeXl7bwYn/8PJa659sGD3Eu//xecqCFbVMnLWYPWY+js+DuXfa1krD839i/T1X0PjCPSnXFQ8Z6XmF8NLMyTz3zsaU/bUNw+g+tlPoQ+Lt2WGPBU9t+2wNdU/eRlt9LQBb3nicstGHU7rbfjmWrPtEd2F91V/bMAwH794K5iFe9SFEtjdT/8wdfPHAT9sVQpS6p36LhttyJFnPiSacpUo8s4Q0w+gZphT6gKjJyIuhpy0fLGfdHy5hyxuPJ8z5B1ZTNel8xJ9fG8aAT3ZkhE8ZlVBS3BLSDKPn5NfVwIN4tY1muGULDYvvoumtxUnnB449hqpJ5+ErGZBlyXpPbAG7vuyvbRiGKYVe40WTUdM7/6T+mTuJNDcmzBVVDqP6mMso3X3/7AvWR8QXsMt1f23DKCRMKfQSLzk027bW0/DMnTS/93LipPgoH38SFYefhS+Q3wXsFJg4a7HtCAwjA5hS6CWVZYGkZRWyzfb1/2bD/OuIbG9KmAvstLtTwG7X/LKz+8TphpasaOCOooJWtsIw+hJTCr3EK1GnxUN2xzegsqNS8BVRcchpVBxyKuLPvwJ2FcEA15+wL7MXvZvUiR/NR4gqhWh58trGFvwihFWpMR+DYXQLiz7qJakat2QbKSqmeurl7c+Lh32VYefOofKw7+SlQgBoaA5x5fyVna6Jmu+iDv+o8ojmiER3FAtW1KY8hmEYO7CdQi9YsKIWAc90TSsdvi/lB5+Mf0AVg8af6NkCdt1BcS7sqT7naD5CZw7/+B2FYRipMaXQC7LdRlPDbWx+9WGkpIzyg05IuqZq0vlZlCh7KCQohth8hK4c/l4KCDAML2NKoRdkM1lt++drqXtiDqGNHyFFJQS/Mp5A1bCsvb8XUJyaR8nyEXatDHb6fViGs2GkhymFXuATyHQ3zUhoO5te+jObX3sUNAKAtm2n7qnfsssZNyIeLLrXXdI1wcX2TYhnxpRRKZMILcPZMNLHlEIvyLRC2PbpW04Bu4Z1CXOhLz+mbdMXBCqHZlaIDBIM+NtLXEcjh9Y1tlARDNDU2kYorB3WdnZhj81stugjw+g5GVcKIuIHlgG1qnq8iMwDxuPcIL4HnKuqW0WkBLgXOAioA05X1Y8yLZ8XiWxvpuH5P7F1xRNJ5wfsO4mqyd/HX1aRZcl6R0mRj50GliQ1/8RnJccqiXRLV1hms2H0nmzsFH4MvA2Uu8+vVNXNACLyG+BSYBZwAdCgqnuJyBnAfwOnZ0E+T9Hy/uvULfo94S0bE+b8g3Zi8JRLKNvz6zmQrHcE/MJ/n7J/2hdtu8AbRm7IqFIQkeHAccCNwFUAMQpBgCA7zMknATe4jx8CbhcRUfVKelgiIn2XvBZu3kTD4rtpWvNc0vmB446l6lvnJu2U5nWqygIct/8wZi96lyvnr7SidYbhYTK9U5gDXAMMih0UkT8CxwL/An7iDtcAnwKoapuIbAKqgS/jXnsRcBHAiBEjMih61+w8sJgvtrT26hiqSvM7L1L/j/8h0rwpYb6oahjVx1xO6YgxvXqfXHL9Cft2cAJbiQrD8C4Zy2gWkeOBDaq6PH5OVc8DdsUxK3XLRKSqc1V1vKqOHzJkSN8I20N6qxAAdHsT9U/fkagQxEf5N05h2Hm357VCqKkMJk0ss5aZhuFNMlnmYiJwooh8BPwVmCwi90cnVTXsjp/iDtUCuwGISBFQgeNwLmh8pQOp+o+LOowFhoxk6HdvpuqI8/AFSnIkWe+JRgxZy0zDyB8yphRU9VpVHa6qI4EzgMXAd0VkL2j3KZwIvOO+ZCFwjvt4OrDYy/6EvmTAPkdQ+pWDwF9ExeFnM+ycWygZtneuxeoVNZXB9nBTa5lpGPlDtvMUBLhHRMrdx6uAi925ecB9IrIWqMdRJAWDRsJOXkHVrglzIkL1lEuJtLZQvFNu/SR9QXySWbLEMksoMwxvkhWloKpLgCXu04kp1mwDTs2GPNmmdePH1D15G+EtG9n1gt/jKx2YsKaoPLf+kb4i2cXeWmYaRv5gGc0ZRMMhNi19iE0vz4dIGwANz/2hQ4nrQiBapqKz7GHLOzCM/MCUQi8I+CAUST63ff171D15G6GNH3UY3/rm05R97ZsERx6QcfmyRVQhpKpLZBhG/mBNdnrB7FMPSBiLhLbR8Nwf+Py+qxMUAkDwq4cQKAC/QTwWSWQYhYHtFHrBtHE1PLjsE156vx6AbZ+8Sd1Tv6WtYX3CWl9ZJYOP+iFloyYWRGXTeCySyDAKA1MKveSjuhYi25toWPJHtq58KumaAftNdgrYBcuTzuc7Ab/QtL2NPWY+bk5kw8hzTCn0krXLnqdu0e8Ib03Ms/OXD6F6yqUEv3JQl8fxASncE95Hd/SqthIWhpHfmE+hh6gq5513Hhse/mVShTDowOPZ9fzfpaUQKoMBvjMhf/0MobjGElbCwjDyF1MKPURE2GOPPRLGiwYPZ5ez/pvBR/2wy4qmNZVBPpp1HDecuC8PL6/NlKhpUxkMcPaEEdS4/gG/6/uoqQxy9oQRBAP+tI9ljmfDyE/MfNQLZs6cyYMPPshbb70FPh/lB59C5cQzkaLiLl8b8Et7kleygnHZJN1w0vG7D+Ynf1tFOI3qI+Z4Noz8xHYKvaC4uJh58+Zx0EEHsfz119nvpB+mpRAAZk8f225zz+VdtUDa5SamjashkoZCsBIWhpG/mFLogrVr1/KjH/2IUCiUdP7ggw/m9ddf58ADD2TGlFEEfF2Hm9ZUBjs4YXN1Vy3AWRNGdMshnEpWvwhCx0J4hmHkH2Y+SkE4HGbOnDn813/9Fy0tLey2225ce+21SddG8w6iF8IbFq5pj8aJJ9ld9KTRQ3hg6SdksyRsVCH8alr3ejWkKm5nisAwCgPJ5+rU48eP12XLlvX5cVevXs0FF1zA66+/3j5WUlLCypUrGT16dLeO1VUD+gUrahMustnCL0JEtdu5BV39TYZheBsRWa6q45POmVLYwfbt2/n1r3/Nr3/9a9ra2hLmf/rTnzJr1qw+ez+AibMWU+uBSJ2ATxhYWkRjc8gu9IZR4HSmFMx85PLqq69ywQUXsGbNmoS5qqoqbrnlFr73ve/1+ft6JXQzFFEami0BzTD6O/3e0dzU1MRVV13FIYccklQhTJ8+nX/961+cc845GalZlAknc7yUAb+k5QCPxRLQDKN/0q+VwrPPPsuYMWO45ZZbiDej7bLLLjz88MM8+OCDDB06NGMyzJgyqltJYV0RDPg5y01Ai0YDzZ4+ltmnjm0f86ep3LyyizEMI3tk3HwkIn5gGVCrqseLyAPAeCAEvAb8QFVDbs/mW4FjgWbgXFV9IxMyNTY2MmPGDO6+++6k8+eddx4333wzVVVVmXj7DsR3JasIBhCh3ZSTDuJ2uenKFxAdT9e5bQlohtH/yIZP4cfA20C0ROgDwNnu4z8D3wfuAKYCe7s/33DHvpEJga6//vqkCmH33Xdn7ty5HH300Zl425Qk60rWragkhQ9nHdet94OOiqiptY1QeMduyRLQDKN/klHzkYgMB44D2q/AqvqEuuDsFIa7UycB97pTS4FKERmWCbl+/vOfs/POO8fKyeWXX85bb72VdYWQimnjarjp5DEdzEBVZYGka3tyRz9tXA0vzZzMh7OOY+X1RzN7+tgO72V5B4bRP8n0TmEOcA0wKH5CRALAd3F2EgA1wKcxSz5zxxI71vSS6upqbr/9dk477TRGjx7NvHnzOPTQQ/v6bXpN/A4i2e6hr+7orYeyYRiQQaUgIscDG1R1uYgckWTJ74EXVPXFbh73IuAigBEjel5uevr06dx3331Mnz6d0tLSHh8nm8SbfSyfwDCMviZjyWsichPOTqANKMXxKTyiqmeLyPXAOOBkVY246/8HWKKqf3GfvwscoaopdwqZymg2DMMoZDpLXsuYT0FVr1XV4ao6EjgDWOwqhO8DU4AzowrBZSHwPXGYAGzqTCEYhmEYfU8uMprvBD4GXnGTwR5R1V8CT+CEo67FCUk9LweyGYZh9GuyohRUdQmwxH2c9D3daKRLsiGPYRiGkZx+ndFsGIZhdMSUgmEYhtGOKQXDMAyjHVMKhmEYRjt53WRHRDbiRDJ1l52AL/tYnL7G6zKafL3D6/KB92U0+XrO7qo6JNlEXiuFniIiy1IlbngFr8to8vUOr8sH3pfR5MsMZj4yDMMw2jGlYBiGYbTTX5XC3FwLkAZel9Hk6x1elw+8L6PJlwH6pU/BMAzDSE5/3SkYhmEYSTClYBiGYbRTsEpBRPwiskJEHnOfPyAi74rIWyLyB7fzG26p7ttEZK2IvCkiB+ZQxnkissqV4yERGeiOl4jIfFfGV0VkZC7kixm/TUS2xjz3hHwi8icR+VBEVro/B7jjOfmOk8gnInKjiLwnIm+LyOW5lC+FjC/GfH7rRGRBLmVMIt+RIvKGK98/RWQvd9wr5+BkV763ROQeESlyx3P2HXeXglUKOG0+3455/gAwGhgDBIHvu+NTgb3dn4uAO3Io45WqOlZV9wc+AS51xy8AGlR1L+AW4L9zJB8iMh6oilvnGfmAGap6gPuz0h3L1XccL9+5wG7AaFX9GvDXHMuXIKOqHh79/IBXgEdyLGP8Z3gHcJYr35+B69zxnJ+DIuID7gHOUNX9cBJrz3HX5fI77hYFqRREZDhwHHB3dExVn1AX4DVguDt1EnCvO7UUqBSRYTmScbM7JziKKxoFcBLOyQbwEHCkuyar8omIH5iN03c7Fk/I1wlZ/45TyHcx8MtocylV3ZAr+TqRMTpXDkwGFuRKxhTyKU4XR4AKYF2MfLk+B6uBVlV9z33+DHBKjHxZ/457QkEqBWAOzoUrEj8hjtnou8BT7lAN8GnMks/csUwzhyQyisgfgc9xdjW/dYfbZVTVNmATzgmYbfkuBRYm6YjnFfkAbnS357eISEm8fC7Z+I6TybcncLqILBORJ0Vk7xzKl0rGKNOAZ6M3KnjnM/w+8ISIfIbzfzwrXr4cnoNfAkXubhpgOs7OsIN8Ltn6jrtNwSkFETke2KCqy1Ms+T3wgqq+mEWxOtCZjKp6HrArzpb09GzLBsnlE5FdgVPZoahyRief37U4yvTrwGDgp9mWDTqVrwTY5pY+uAv4Q9aFc0nj/+RM4C9ZFKkDnch3JXCsqg4H/gj8JuvCkVw+1wpxBnCLiLwGbAHCuZCvN+SiHWemmQicKCLHAqVAuYjc7/aHvh4YAvwgZn0tO7Q5OGal2lzJCKCqYRH5K85dyB9jZPzMdVxVAHXZlA9YA2wH1rq78jIRWevacHMuX+znB2x3d1xXu8+z/R0nlQ/n7jBqo38U57vNhXwpZXT/T3YCDga+HbPeC5/h4zj+mFfdNfPZseP30jl4OICIHA18NU6+KNn4jnuGqhbsD3AE8Jj7+PvAy0Awbs1xwJOAABOA13Iho/v+e7ljAvw/4P+5zy8B7nQfnwH8LRefYdz41pjHnpAPGBbz+c0BZuX6O46TbxZwfsz467mWL9l3DPwQuCduTc4/Q5yb2C+Br7rjFwAPe+wc3Nn9XQI8C0zO9efX3Z9C3Cmk4k6caIBX3DvdR1T1l8ATwLHAWqAZOC9H8glwj+vgE2AVjmMSYB5wn4isBepxTnov4RX5HhCRITif30qcixt45zuehSPjlcBWdkTAeUW+KGeww1YfJecyqmqbiFwIPCwiEaABON+d9so5OMM1LfmAO1R1sTue888vXazMhWEYhtFOwTmaDcMwjJ5jSsEwDMNox5SCYRiG0Y4pBcMwDKMdUwqGYRhGO6YUjH6LiKibVBZ9XiQiGyWuKqzXkJgKtYbR15hSMPozTcB+IhJ0nx9FjrJMoyWWDSPXmFIw+jtP4GSbQly9HxEZIE7vjdfcmvknueMjxek78Ib7c6g7PkxEXnBr/b8lItFyB7G9J6aLyJ/cx38SkTtF5FXg/4rIniLylIgsd48/2l23h4i8IiKrReRXWfhMjH6MKQWjv/NX4AwRKQX2B16NmftPYLGqHgxMAmaLyABgA3CUqh6IU7TwNnf9d4BF6tT6H4uTVd0Vw4FDVfUqnEbvl6nqQTh1m37vrrkVJzt2DBBfodYw+hTbshr9GlV9U5wuXWfi7BpiORqn6Fm0sF4pMAKnhv/t4nR2C7Oj6NnrQLSr3wLd0eSnMx5UpwDiQOBQ4MGYNgDR0t8T2VGX/z6y10DG6IeYUjAMWIhTgPAIOtbgF+AUVX03drGI3AB8gbMb8AHbAFT1BRH5Jo456k8i8htVvZcdzZLAUSyxNLm/fUCju8tIhtWjMbKCmY8Mw+lr8AtVXR03vgi4LNrBS0TGueMVwHp1Oqh9F/C787sDX6jqXTjduKJ9eL8Qka+J064xthx1O+o0s/lQRE51jyUiMtadfokdBd7O6t2fahidY0rB6Peo6meqeluSqf8DBIA3RWSN+xwcW/85IrIKp6lP9G7/CGCViKzA8TXc6o7PxCn9/DKd+wTOAi5wj7sGp4UjOH2ALxGR1Xi0W5dROFiVVMMwDKMd2ykYhmEY7ZhSMAzDMNoxpWAYhmG0Y0rBMAzDaMeUgmEYhtGOKQXDMAyjHVMKhmEYRjv/Hx8nimooT0+5AAAAAElFTkSuQmCC\n",
"text/plain": [
- ""
+ "