-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusl.py
326 lines (262 loc) · 12.9 KB
/
usl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# -*- coding: utf-8 -*-
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import random
import numpy as np
import sys
import collections
import time
from datetime import timedelta
from sklearn.cluster import DBSCAN
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
import torch.nn.functional as F
from clustercontrast import datasets
from clustercontrast import models
from clustercontrast.models.cm import ClusterMemory
from clustercontrast.trainers import ClusterContrastTrainer
from clustercontrast.evaluators import Evaluator, extract_features
from clustercontrast.utils.data import IterLoader
from clustercontrast.utils.data import transforms as T
from clustercontrast.utils.data.sampler import RandomMultipleGallerySampler
from clustercontrast.utils.data.preprocessor import Preprocessor
from clustercontrast.utils.logging import Logger
from clustercontrast.utils.serialization import load_checkpoint, save_checkpoint
from clustercontrast.utils.faiss_rerank import compute_jaccard_distance
from clustercontrast.utils.meters import AverageMeter
import cluster as clustering
start_epoch = best_mAP = 0
def get_data(name, data_dir):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root)
return dataset
def get_train_loader(args, dataset, height, width, batch_size, workers,
num_instances, iters, trainset=None):
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.RandomHorizontalFlip(p=0.5),
T.Pad(10),
T.RandomCrop((height, width)),
T.ToTensor(),
normalizer,
T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406])
])
train_set = sorted(dataset.train) if trainset is None else sorted(trainset)
rmgs_flag = num_instances > 0
if rmgs_flag:
sampler = RandomMultipleGallerySampler(train_set, num_instances)
else:
sampler = None
train_loader = IterLoader(
DataLoader(Preprocessor(train_set, root=dataset.images_dir, transform=train_transformer),
batch_size=batch_size, num_workers=workers, sampler=sampler,
shuffle=not rmgs_flag, pin_memory=True, drop_last=True), length=iters)
return train_loader
def get_test_loader(dataset, height, width, batch_size, workers, testset=None):
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.ToTensor(),
normalizer
])
if testset is None:
testset = list(set(dataset.query) | set(dataset.gallery))
test_loader = DataLoader(
Preprocessor(testset, root=dataset.images_dir, transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
return test_loader
def create_model(args):
model = models.create(args.arch, num_features=args.features, norm=True, dropout=args.dropout,
num_classes=0, pooling_type=args.pooling_type)
# use CUDA
model.cuda()
model = nn.DataParallel(model)
return model
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
main_worker(args)
def main_worker(args):
global start_epoch, best_mAP
start_time = time.monotonic()
cudnn.benchmark = True
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
print("==========\nArgs:{}\n==========".format(args))
# Create datasets
iters = args.iters if (args.iters > 0) else None
print("==> Load unlabeled dataset")
dataset = get_data(args.dataset, args.data_dir)
test_loader = get_test_loader(dataset, args.height, args.width, args.batch_size, args.workers)
# Create model
model = create_model(args)
# Evaluator
evaluator = Evaluator(model)
# Optimizer
params = [{"params": [value]} for _, value in model.named_parameters() if value.requires_grad]
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.1)
# Trainer
trainer = ClusterContrastTrainer(model)
# clustering algorithm to use
deepcluster = clustering.__dict__[args.clustering](args.nmb_cluster)
for epoch in range(args.epochs):
with torch.no_grad():
print('==> Create pseudo labels for unlabeled data')
cluster_loader = get_test_loader(dataset, args.height, args.width,
args.batch_size, args.workers, testset=sorted(dataset.train))
features = compute_features(args, cluster_loader, model, len(dataset.train))
clustering_loss = deepcluster.cluster(features, verbose=args.verbose)
pseudo_labels = []
for cluster, images in enumerate(deepcluster.images_lists):
pseudo_labels.extend([cluster] * len(images))
num_cluster = len(set(pseudo_labels)) - (1 if -1 in pseudo_labels else 0)
print("num_cluster ",num_cluster)
# print("epoch: {} \n pseudo_labels: {}".format(epoch, pseudo_labels.tolist()[:100]))
# generate new dataset and calculate cluster centers
@torch.no_grad()
def generate_cluster_features(labels, features):
centers = collections.defaultdict(list)
for i, label in enumerate(labels):
if label == -1:
continue
centers[labels[i]].append(torch.from_numpy(features[i]))
centers = [
torch.stack(centers[idx], dim=0).mean(0) for idx in sorted(centers.keys())
]
centers = torch.stack(centers, dim=0)
print("init---")
return centers
cluster_features = generate_cluster_features(pseudo_labels, features)
del cluster_loader, features
# Create hybrid memory
memory = ClusterMemory(model.module.num_features, num_cluster, temp=args.temp,
momentum=args.momentum, use_hard=args.use_hard).cuda()
# memory.features = F.normalize(cluster_features, dim=1).cuda()
memory.features = F.normalize(cluster_features.repeat(2, 1), dim=1).cuda()
trainer.memory = memory
pseudo_labeled_dataset = []
for i, ((fname, _, cid), label) in enumerate(zip(sorted(dataset.train), pseudo_labels)):
if label != -1:
pseudo_labeled_dataset.append((fname, label, cid))
# pseudo_labeled_dataset.append((fname, label.item(), cid))
print('==> Statistics for epoch {}: {} clusters'.format(epoch, num_cluster))
train_loader = get_train_loader(args, dataset, args.height, args.width,
args.batch_size, args.workers, args.num_instances, iters,
trainset=pseudo_labeled_dataset)
train_loader.new_epoch()
trainer.train(epoch, train_loader, optimizer,
print_freq=args.print_freq, train_iters=len(train_loader))
if (epoch + 1) % args.eval_step == 0 or (epoch == args.epochs - 1):
mAP = evaluator.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=False)
is_best = (mAP > best_mAP)
best_mAP = max(mAP, best_mAP)
save_checkpoint({
'state_dict': model.state_dict(),
'epoch': epoch + 1,
'best_mAP': best_mAP,
}, is_best, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
print('\n * Finished epoch {:3d} model mAP: {:5.1%} best: {:5.1%}{}\n'.
format(epoch, mAP, best_mAP, ' *' if is_best else ''))
lr_scheduler.step()
print('==> Test with the best model:')
checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))
model.load_state_dict(checkpoint['state_dict'])
evaluator.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=True)
end_time = time.monotonic()
print('Total running time: ', timedelta(seconds=end_time - start_time))
def compute_features(args, dataloader, model, N):
if args.verbose:
print('Compute features')
batch_time = AverageMeter()
end = time.time()
model.eval()
# discard the label information in the dataloader
with torch.no_grad():
for i, (input_tensor, _, _, _, _) in enumerate(dataloader):
input_var = torch.autograd.Variable(input_tensor.cuda())
aux = model(input_var).data.cpu().numpy()
if i == 0:
features = np.zeros((N, aux.shape[1]), dtype='float32')
aux = aux.astype('float32')
if i < len(dataloader) - 1:
features[i * args.batch_size: (i + 1) * args.batch_size] = aux
else:
# special treatment for final batch
features[i * args.batch_size:] = aux
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.verbose and (i % 200) == 0:
print('{0} / {1}\t'
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f})'
.format(i, len(dataloader), batch_time=batch_time))
return features
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Self-paced contrastive learning on unsupervised re-ID")
# data
parser.add_argument('-d', '--dataset', type=str, default='dukemtmcreid',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=2)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--height', type=int, default=256, help="input height")
parser.add_argument('--width', type=int, default=128, help="input width")
parser.add_argument('--num-instances', type=int, default=4,
help="each minibatch consist of "
"(batch_size // num_instances) identities, and "
"each identity has num_instances instances, "
"default: 0 (NOT USE)")
# cluster
parser.add_argument('--eps', type=float, default=0.6,
help="max neighbor distance for DBSCAN")
parser.add_argument('--eps-gap', type=float, default=0.02,
help="multi-scale criterion for measuring cluster reliability")
parser.add_argument('--k1', type=int, default=30,
help="hyperparameter for jaccard distance")
parser.add_argument('--k2', type=int, default=6,
help="hyperparameter for jaccard distance")
# model
parser.add_argument('-a', '--arch', type=str, default='resnet50',
choices=models.names())
parser.add_argument('--features', type=int, default=0)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--momentum', type=float, default=0.2,
help="update momentum for the hybrid memory")
# optimizer
parser.add_argument('--lr', type=float, default=0.00035,
help="learning rate")
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--iters', type=int, default=400)
parser.add_argument('--step-size', type=int, default=20)
# training configs
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print-freq', type=int, default=10)
parser.add_argument('--eval-step', type=int, default=10)
parser.add_argument('--temp', type=float, default=0.05,
help="temperature for scaling contrastive loss")
# path
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
parser.add_argument('--pooling-type', type=str, default='gem')
parser.add_argument('--use-hard', action="store_true")
# cluster
parser.add_argument('--clustering', type=str, choices=['Kmeans', 'PIC','Dbscan'],
default='Kmeans', help='clustering algorithm (default: Kmeans)')
parser.add_argument('--nmb_cluster', '--k', type=int, default=800,
help='number of cluster for k-means (default: 10000)') # veri776 - 800 , MSMT17 - 2000
parser.add_argument('--verbose', action='store_true', help='chatty')
main()