-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnet.h
145 lines (109 loc) · 3.68 KB
/
net.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#pragma once
#include <algorithm>
#include <cstdio>
#include <iostream>
#include <vector>
#include "data.h"
#include "input_layer.h"
#include "layer.h"
#include "util.h"
#include "softmax_loss_layer.h"
namespace con {
namespace {
vector<Vec> input;
vector<int> output;
}
// Return the number of correct prediction.
int validateSingleBatch(const vector<Layer*> &layers, const vector<Vec> &input, const vector<int> &output) {
InputLayer *inputLayer = (InputLayer*)layers[0];
SoftmaxLossLayer *outputLayer = (SoftmaxLossLayer*)layers.back();
inputLayer->setOutput(input);
outputLayer->setLabels(output);
for (int l = 0; l < layers.size(); l++) {
layers[l]->forward();
}
vector<int> results;
outputLayer->getResults(&results);
int correct = 0;
for (int i = 0; i < results.size(); i++) {
if (results[i] == output[i]) {
correct++;
}
}
return correct;
}
void validate(const int &batchSize, const vector<Layer*> &layers, const vector<Sample> &validateData) {
int correct = 0;
for (int i = 0; i < validateData.size(); i += batchSize) {
if (i % 1000 == 0) {
cout << "Validating: " << i << endl;
}
int j = std::min((int)validateData.size(), i + batchSize);
input.clear();
output.clear();
for (int k = i; k < j; k++) {
input.push_back(validateData[k].input);
output.push_back(validateData[k].label);
}
correct += validateSingleBatch(layers, input, output);
}
cout << "Accuracy: " << 1.0 * correct / validateData.size() << endl;
}
void trainSingleBatch(
const vector<Layer*> &layers,
const vector<Vec> &input, const vector<int> &output,
const Real &lr, const Real &momentum, const Real &decay) {
InputLayer *inputLayer = (InputLayer*)layers[0];
SoftmaxLossLayer *outputLayer = (SoftmaxLossLayer*)layers.back();
inputLayer->setOutput(input);
outputLayer->setLabels(output);
// Forward.
for (int l = 0; l < layers.size(); l++) {
layers[l]->forward();
}
cout << "loss: " << outputLayer->l << endl;
// Back propagation.
for (int l = (int)layers.size() - 1; l >= 0; l--) {
if (l + 1 < layers.size()) {
layers[l]->backProp(layers[l + 1]->errors);
} else {
layers[l]->backProp(vector<Vec>());
}
}
// Apply changes.
for (int l = 0; l < layers.size(); l++) {
layers[l]->applyUpdate(lr, momentum, decay);
}
}
void train(
const int &batchSize,
const vector<Layer*> &layers,
const vector<Sample> &trainData, const vector<Sample> &validateData,
const Real &lr, const Real &momentum, const Real &decay) {
validate(batchSize, layers, validateData);
for (int epoch = 0; epoch < 10; epoch++) {
cout << "Start epoch #" << epoch << endl;
for (int i = 0; i < trainData.size(); i += batchSize) {
int j = std::min((int)trainData.size(), i + batchSize);
input.clear();
output.clear();
for (int k = i; k < j; k++) {
input.push_back(trainData[k].input);
output.push_back(trainData[k].label);
}
trainSingleBatch(layers, input, output, lr, momentum, decay);
}
cout << "End epoch #" << epoch << endl;
validate(batchSize, layers, validateData);
}
}
void test(const vector<Layer*> &layers, const vector<Vec> &inputs, vector<int> *results) {
InputLayer *inputLayer = (InputLayer*)layers[0];
SoftmaxLossLayer *outputLayer = (SoftmaxLossLayer*)layers.back();
inputLayer->setOutput(inputs);
for (int l = 0; l < layers.size(); l++) {
layers[l]->forward();
}
outputLayer->getResults(results);
}
}