-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy patheval.py
373 lines (305 loc) · 12.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from __future__ import print_function, unicode_literals
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pip
import argparse
import json
def install(package):
if hasattr(pip, 'main'):
pip.main(['install', package])
else:
pip._internal.main(['install', package])
try:
import open3d as o3d
except:
install('open3d-python')
import open3d as o3d
try:
from scipy.linalg import orthogonal_procrustes
except:
install('scipy')
from scipy.linalg import orthogonal_procrustes
try:
from utils.fh_utils import *
from utils.eval_util import EvalUtil
except:
from fh_utils import *
from eval_util import EvalUtil
def verts2pcd(verts, color=None):
pcd = o3d.PointCloud()
pcd.points = o3d.Vector3dVector(verts)
if color is not None:
if color == 'r':
pcd.paint_uniform_color([1, 0.0, 0])
if color == 'g':
pcd.paint_uniform_color([0, 1.0, 0])
if color == 'b':
pcd.paint_uniform_color([0, 0, 1.0])
return pcd
def calculate_fscore(gt, pr, th=0.01):
gt = verts2pcd(gt)
pr = verts2pcd(pr)
d1 = o3d.compute_point_cloud_to_point_cloud_distance(gt, pr) # closest dist for each gt point
d2 = o3d.compute_point_cloud_to_point_cloud_distance(pr, gt) # closest dist for each pred point
if len(d1) and len(d2):
recall = float(sum(d < th for d in d2)) / float(len(d2)) # how many of our predicted points lie close to a gt point?
precision = float(sum(d < th for d in d1)) / float(len(d1)) # how many of gt points are matched?
if recall+precision > 0:
fscore = 2 * recall * precision / (recall + precision)
else:
fscore = 0
else:
fscore = 0
precision = 0
recall = 0
return fscore, precision, recall
def align_w_scale(mtx1, mtx2, return_trafo=False):
""" Align the predicted entity in some optimality sense with the ground truth. """
# center
t1 = mtx1.mean(0)
t2 = mtx2.mean(0)
mtx1_t = mtx1 - t1
mtx2_t = mtx2 - t2
# scale
s1 = np.linalg.norm(mtx1_t) + 1e-8
mtx1_t /= s1
s2 = np.linalg.norm(mtx2_t) + 1e-8
mtx2_t /= s2
# orth alignment
R, s = orthogonal_procrustes(mtx1_t, mtx2_t)
# apply trafos to the second matrix
mtx2_t = np.dot(mtx2_t, R.T) * s
mtx2_t = mtx2_t * s1 + t1
if return_trafo:
return R, s, s1, t1 - t2
else:
return mtx2_t
def align_by_trafo(mtx, trafo):
t2 = mtx.mean(0)
mtx_t = mtx - t2
R, s, s1, t1 = trafo
return np.dot(mtx_t, R.T) * s * s1 + t1 + t2
class curve:
def __init__(self, x_data, y_data, x_label, y_label, text):
self.x_data = x_data
self.y_data = y_data
self.x_label = x_label
self.y_label = y_label
self.text = text
def createHTML(outputDir, curve_list):
curve_data_list = list()
for item in curve_list:
fig1 = plt.figure()
ax = fig1.add_subplot(111)
ax.plot(item.x_data, item.y_data)
ax.set_xlabel(item.x_label)
ax.set_ylabel(item.y_label)
img_path = os.path.join(outputDir, "img_path_path.png")
plt.savefig(img_path, bbox_inches=0, dpi=300)
# write image and create html embedding
data_uri1 = open(img_path, 'rb').read().encode('base64').replace('\n', '')
img_tag1 = 'src="data:image/png;base64,{0}"'.format(data_uri1)
curve_data_list.append((item.text, img_tag1))
os.remove(img_path)
htmlString = '''<!DOCTYPE html>
<html>
<body>
<h1>Detailed results:</h1>'''
for i, (text, img_embed) in enumerate(curve_data_list):
htmlString += '''
<h2>%s</h2>
<p>
<img border="0" %s alt="FROC" width="576pt" height="432pt">
</p>
<p>Raw curve data:</p>
<p>x_axis: <small>%s</small></p>
<p>y_axis: <small>%s</small></p>
''' % (text, img_embed, curve_list[i].x_data, curve_list[i].y_data)
htmlString += '''
</body>
</html>'''
htmlfile = open(os.path.join(outputDir, "scores.html"), "w")
htmlfile.write(htmlString)
htmlfile.close()
def _search_pred_file(pred_path, pred_file_name):
""" Tries to select the prediction file. Useful, in case people deviate from the canonical prediction file name. """
pred_file = os.path.join(pred_path, pred_file_name)
if os.path.exists(pred_file):
# if the given prediction file exists we are happy
return pred_file
print('Predition file "%s" was NOT found' % pred_file_name)
# search for a file to use
print('Trying to locate the prediction file automatically ...')
files = [os.path.join(pred_path, x) for x in os.listdir(pred_path) if x.endswith('.json')]
if len(files) == 1:
pred_file_name = files[0]
print('Found file "%s"' % pred_file_name)
return pred_file_name
else:
print('Found %d candidate files for evaluation' % len(files))
raise Exception('Giving up, because its not clear which file to evaluate.')
def main(gt_path, pred_path, output_dir, pred_file_name=None, set_name=None):
if pred_file_name is None:
pred_file_name = 'pred.json'
if set_name is None:
set_name = 'evaluation'
# load eval annotations
xyz_list, verts_list = json_load(os.path.join(gt_path, '%s_xyz.json' % set_name)), json_load(os.path.join(gt_path, '%s_verts.json' % set_name))
# load predicted values
pred_file = _search_pred_file(pred_path, pred_file_name)
print('Loading predictions from %s' % pred_file)
with open(pred_file, 'r') as fi:
pred = json.load(fi)
assert len(pred) == 2, 'Expected format mismatch.'
assert len(pred[0]) == len(xyz_list), 'Expected format mismatch.'
assert len(pred[1]) == len(xyz_list), 'Expected format mismatch.'
# init eval utils
eval_xyz, eval_xyz_aligned = EvalUtil(), EvalUtil()
eval_mesh_err, eval_mesh_err_aligned = EvalUtil(num_kp=778), EvalUtil(num_kp=778)
f_score, f_score_aligned = list(), list()
f_threshs = [0.005, 0.015]
shape_is_mano = None
try:
from tqdm import tqdm
rng = tqdm(range(db_size(set_name)))
except:
rng = range(db_size(set_name))
# iterate over the dataset once
for idx in rng:
if idx >= db_size(set_name):
break
xyz, verts = xyz_list[idx], verts_list[idx]
xyz, verts = [np.array(x) for x in [xyz, verts]]
xyz_pred, verts_pred = pred[0][idx], pred[1][idx]
xyz_pred, verts_pred = [np.array(x) for x in [xyz_pred, verts_pred]]
# Not aligned errors
eval_xyz.feed(
xyz,
np.ones_like(xyz[:, 0]),
xyz_pred
)
if shape_is_mano is None:
if verts_pred.shape[0] == verts.shape[0]:
shape_is_mano = True
else:
shape_is_mano = False
if shape_is_mano:
eval_mesh_err.feed(
verts,
np.ones_like(verts[:, 0]),
verts_pred
)
# align predictions
xyz_pred_aligned = align_w_scale(xyz, xyz_pred)
if shape_is_mano:
verts_pred_aligned = align_w_scale(verts, verts_pred)
else:
# use trafo estimated from keypoints
trafo = align_w_scale(xyz, xyz_pred, return_trafo=True)
verts_pred_aligned = align_by_trafo(verts_pred, trafo)
# Aligned errors
eval_xyz_aligned.feed(
xyz,
np.ones_like(xyz[:, 0]),
xyz_pred_aligned
)
if shape_is_mano:
eval_mesh_err_aligned.feed(
verts,
np.ones_like(verts[:, 0]),
verts_pred_aligned
)
# F-scores
l, la = list(), list()
for t in f_threshs:
# for each threshold calculate the f score and the f score of the aligned vertices
f, _, _ = calculate_fscore(verts, verts_pred, t)
l.append(f)
f, _, _ = calculate_fscore(verts, verts_pred_aligned, t)
la.append(f)
f_score.append(l)
f_score_aligned.append(la)
# Calculate results
xyz_mean3d, _, xyz_auc3d, pck_xyz, thresh_xyz = eval_xyz.get_measures(0.0, 0.05, 100)
print('Evaluation 3D KP results:')
print('auc=%.3f, mean_kp3d_avg=%.2f cm' % (xyz_auc3d, xyz_mean3d * 100.0))
xyz_al_mean3d, _, xyz_al_auc3d, pck_xyz_al, thresh_xyz_al = eval_xyz_aligned.get_measures(0.0, 0.05, 100)
print('Evaluation 3D KP ALIGNED results:')
print('auc=%.3f, mean_kp3d_avg=%.2f cm\n' % (xyz_al_auc3d, xyz_al_mean3d * 100.0))
if shape_is_mano:
mesh_mean3d, _, mesh_auc3d, pck_mesh, thresh_mesh = eval_mesh_err.get_measures(0.0, 0.05, 100)
print('Evaluation 3D MESH results:')
print('auc=%.3f, mean_kp3d_avg=%.2f cm' % (mesh_auc3d, mesh_mean3d * 100.0))
mesh_al_mean3d, _, mesh_al_auc3d, pck_mesh_al, thresh_mesh_al = eval_mesh_err_aligned.get_measures(0.0, 0.05, 100)
print('Evaluation 3D MESH ALIGNED results:')
print('auc=%.3f, mean_kp3d_avg=%.2f cm\n' % (mesh_al_auc3d, mesh_al_mean3d * 100.0))
else:
mesh_mean3d, mesh_auc3d, mesh_al_mean3d, mesh_al_auc3d = -1.0, -1.0, -1.0, -1.0
pck_mesh, thresh_mesh = np.array([-1.0, -1.0]), np.array([0.0, 1.0])
pck_mesh_al, thresh_mesh_al = np.array([-1.0, -1.0]), np.array([0.0, 1.0])
print('F-scores')
f_out = list()
f_score, f_score_aligned = np.array(f_score).T, np.array(f_score_aligned).T
for f, fa, t in zip(f_score, f_score_aligned, f_threshs):
print('F@%.1fmm = %.3f' % (t*1000, f.mean()), '\tF_aligned@%.1fmm = %.3f' % (t*1000, fa.mean()))
f_out.append('f_score_%d: %f' % (round(t*1000), f.mean()))
f_out.append('f_al_score_%d: %f' % (round(t*1000), fa.mean()))
# Dump results
score_path = os.path.join(output_dir, 'scores.txt')
with open(score_path, 'w') as fo:
xyz_mean3d *= 100
xyz_al_mean3d *= 100
fo.write('xyz_mean3d: %f\n' % xyz_mean3d)
fo.write('xyz_auc3d: %f\n' % xyz_auc3d)
fo.write('xyz_al_mean3d: %f\n' % xyz_al_mean3d)
fo.write('xyz_al_auc3d: %f\n' % xyz_al_auc3d)
mesh_mean3d *= 100
mesh_al_mean3d *= 100
fo.write('mesh_mean3d: %f\n' % mesh_mean3d)
fo.write('mesh_auc3d: %f\n' % mesh_auc3d)
fo.write('mesh_al_mean3d: %f\n' % mesh_al_mean3d)
fo.write('mesh_al_auc3d: %f\n' % mesh_al_auc3d)
for t in f_out:
fo.write('%s\n' % t)
print('Scores written to: %s' % score_path)
# scale to cm
thresh_xyz *= 100.0
thresh_xyz_al *= 100.0
thresh_mesh *= 100.0
thresh_mesh_al *= 100.0
createHTML(
output_dir,
[
curve(thresh_xyz, pck_xyz, 'Distance in cm', 'Percentage of correct keypoints', 'PCK curve for keypoint error'),
curve(thresh_xyz_al, pck_xyz_al, 'Distance in cm', 'Percentage of correct keypoints', 'PCK curve for aligned keypoint error'),
curve(thresh_mesh, pck_mesh, 'Distance in cm', 'Percentage of correct vertices', 'PCV curve for mesh error'),
curve(thresh_mesh_al, pck_mesh_al, 'Distance in cm', 'Percentage of correct vertices', 'PCV curve for aligned mesh error')
]
)
pck_curve_data = {
'xyz': [thresh_xyz.tolist(), pck_xyz.tolist()],
'xyz_al': [thresh_xyz_al.tolist(), pck_xyz_al.tolist()],
'mesh': [thresh_mesh.tolist(), pck_mesh.tolist()],
'mesh_al': [thresh_mesh_al.tolist(), pck_mesh_al.tolist()],
}
with open('pck_data.json', 'w') as fo:
json.dump(pck_curve_data, fo)
print('Evaluation complete.')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Show some samples from the dataset.')
parser.add_argument('input_dir', type=str,
help='Path to where prediction the submited result and the ground truth is.')
parser.add_argument('output_dir', type=str,
help='Path to where the eval result should be.')
parser.add_argument('--pred_file_name', type=str, default='pred.json',
help='Name of the eval file.')
args = parser.parse_args()
# call eval
main(
os.path.join(args.input_dir, 'ref'),
os.path.join(args.input_dir, 'res'),
args.output_dir,
args.pred_file_name,
set_name='evaluation'
)