-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimg2svg.py
147 lines (124 loc) · 5.53 KB
/
img2svg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# image to svg converter
# loic landrieu 2020
import numpy as np
import sys, os
import matplotlib.image as mpimg
import argparse
import ast
file_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(file_path, "grid-graph/python/bin"))
sys.path.append(os.path.join(file_path, "parallel-cut-pursuit/python/wrappers"))
sys.path.append(os.path.join(file_path, "multilabel-potrace/python/bin"))
from grid_graph import grid_to_graph, edge_list_to_forward_star
from cp_kmpp_d0_dist import cp_kmpp_d0_dist
from multilabel_potrace_svg import multilabel_potrace_svg
def tostr(f):
return "%5.1f" % f
def tochar(f):
return int(255 * f)
def char2col(c):
switcher = {
"r": [255,0,0],
"g": [0,255,0],
"b": [0,0,255],
"k": [0, 0, 0],
"w": [255, 255, 255]
}
return np.array(switcher.get(c)).astype('uint8')
def main():
parser = argparse.ArgumentParser(description='IMG TO VECTOR')
# path and filenames
parser.add_argument('-f', '--file', default='lola.jpeg', required=False, help='Input file name')
parser.add_argument('-p', '--out_path', default='', help='Path of svg outputfile default = empty : inputfile.svg ')
parser.add_argument('-o', '--out_size', type=float, default=500, help='Size of svg outputfile')
#cosmetic
parser.add_argument('-lc', '--line_color', default='', help='Color of contour, default = none. supported (r,g,b,k,w), or a char triplet')
parser.add_argument('-lw', '--line_width', default=1, type=int,
help='Width of contour in pixels. Default: 1')
# optimization parameters
parser.add_argument('-a', '--apply', default='',
help='Function to apply before partition: sqrt, log,none (default)')
parser.add_argument('-r', '--reg', default=1.0, type=float,
help='Regularization strength: the higher the fewer components. Default = 1.0.')
parser.add_argument('-s', '--smooth', default=1.0, type=float,
help='Smoothing term. 0 = polygonal, >0 cubic Bezier curves. Default = 1.0')
parser.add_argument('-lt', '--line_tolerance', default=1.0, type=float,
help='how far are lines allowed to deviate from the borders')
parser.add_argument('-ct', '--curve_tolerance', default=0.2, type=float,
help='max difference area ratio diff between original and simplified polygons. Default=0.2')
args = parser.parse_args()
if len(args.out_path) > 3 and args.out_path[-4:] != '.svg':
args.out_path = args.out_path + '.svg'
try:
args.out_size = [float(args.out_size), float(args.out_size)]
except ValueError:
args.out_size = ast.literal_eval(args.out_size)
# input raster
filename, file_extension = os.path.splitext(args.file)
if file_extension in '.png.jpg.jpeg':
img = mpimg.imread(args.file).astype('f4')
if file_extension == '.png':
img = img[:, :, :3]
if img.max() > 1:
img = img / 255.0
elif file_extension == '.npy':
img = np.load(args.file).astype('f4')[:, :, 0]
elif file_extension in '.tif.tiff':
from PIL import Image
img = np.array(Image.open(args.file)).astype('f4')
img[img != img] = 0.0
nodata = True
img = img / img.max()
else:
raise NotImplementedError('unknown file extension %s' % file_extension)
if 'log' in args.apply:
print("Log mapping")
img = np.log(np.maximum(img, 0) + 1e-4)
elif 'sqrt' in args.apply:
print("Square root mapping")
img = np.sqrt(np.maximum(img, 0))
args.lin = img.shape[0]
args.col = img.shape[1]
args.n_chan = img.shape[-1] if len(img.shape) > 2 else 1
args.n_ver = args.lin * args.col
print('Reading image of size %d by %d with %d channels' % (args.lin, args.col, args.n_chan))
# compute grid graph
shape = np.array([args.lin, args.col], dtype='uint32')
first_edge, adj_vertices, connectivities = grid_to_graph(shape, 2,
compute_connectivities=True)
# edge weights
edg_weights = np.ones(connectivities.shape, dtype=img.dtype)
edg_weights[connectivities == 2] = 1 / np.sqrt(2)
# cut pursuit
reg_strength = args.reg * np.std(img) ** 2
comp, rX, dump = cp_kmpp_d0_dist(1,
np.asfortranarray(img.reshape((args.n_ver, args.n_chan)).T), first_edge, adj_vertices,
edge_weights=reg_strength * edg_weights, cp_it_max=10,
cp_dif_tol=1e-2, max_num_threads=0, balance_parallel_split=args.n_ver>20000)
print('Partition done.')
if 'log' in args.apply:
rX = np.exp(rX)
if 'sqrt' in args.apply:
rX = rX ** 2
# format output
output_path = args.out_path if len(args.out_path) > 0 \
else filename + '.svg'
if len(args.line_color) == 0:
line_color = None
elif len(args.line_color) == 1:
line_color = char2col(args.line_color)
else:
try:
line_color = np.array(ast.literal_eval(args.line_color)) \
.astype('uint8')
except SyntaxError:
print("line_color should be either empty, r,g,b,k,w or a char" \
" triplet.")
multilabel_potrace_svg(np.resize(comp, (args.lin, args.col)), output_path,
straight_line_tol=args.line_tolerance, smoothing=args.smooth,
curve_fusion_tol=args.curve_tolerance,
comp_colors=(255 * rX).astype('uint8'), line_color=line_color,
line_width=args.line_width)
print('Vectorization done.')
if __name__ == "__main__":
main()