-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.c
422 lines (361 loc) · 10.3 KB
/
stats.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <string.h>
#include "dbg.h"
#include "stats.h"
#define MAX_LINELENGTH 100
#define BASE_DATA_SIZE 32
#define MICROSECS_PER_SEC 1000000
#define SWAP(a, b) tmp=(a); a=(b); (b)=tmp;
size_t _grow_data(double **data, size_t n);
double _select(double *list, size_t n, size_t k);
void clear(dataset *ds)
{
ds->n = 0;
ds->data_size = 0;
ds->has_q1 = false;
ds->has_q3 = false;
ds->streaming = false;
ds->M1 = 0;
ds->M2 = 0;
}
int push(dataset *ds, double datum)
{
// Add a single data point to the dataset.
double delta, delta_n;
// Check if space is sufficient. If not, grow.
if (ds->streaming) {
TDigest_add(&(ds->digest), datum, 1);
} else {
if (ds->n >= ds->data_size) {
ds->data_size = _grow_data(&(ds->data), ds->data_size);
check(ds->data_size != (size_t)-1, "Could not grow data.");
}
ds->data[ds->n] = datum;
}
// Check for minimum and maximum.
if (ds->n > 0) {
if (datum < ds->min)
ds->min = datum;
else if (datum > ds->max)
ds->max = datum;
} else {
ds->min = datum;
ds->max = datum;
}
ds->n += 1;
// Update running stats using the method in
// http://www.johndcook.com/blog/skewness_kurtosis/
delta = datum - ds->M1;
delta_n = delta / ds->n;
ds->M1 += delta_n;
ds->M2 += delta * delta_n * (ds->n - 1);
return 1;
error:
return 0;
}
dataset* init_empty_dataset(size_t n)
{
dataset *ds;
ds = (dataset*)calloc(1, sizeof(dataset));
check_mem(ds);
ds->data = (double*)calloc(n, sizeof(double));
check_mem(ds->data);
ds->data_size = n;
return ds;
error:
if (ds) {
if (ds->data) free(ds->data);
free(ds);
}
return NULL;
}
dataset* create_dataset(double *array, size_t n)
{
size_t i;
dataset *ds;
ds = init_empty_dataset(n);
check(ds, "Failed to create dataset.");
for (i = 0; i < n; i++) {
check(push(ds, array[i]) == 1, "Failed to add a data point.");
}
return ds;
error:
if (ds) {
delete_dataset(ds);
}
return NULL;
}
void delete_dataset(dataset *ds)
{
check(ds, "Can't delete non existent dataset.");
if (ds->streaming) {
TDigest_destroy(ds->digest);
}
free(ds->data);
free(ds);
error:
return;
}
size_t _grow_data(double **data, size_t n)
{
// Try to allocate more memory for a data array.
// First, try to double the size of the array. If that fails, increment the
// size of the array by the greatest possible multiple of BASE_DATA_SIZE.
//
// NOTE: It is necessary to pass a pointer to the data pointer because C is
// pass by value. If only the data pointer is passed, the assignment
// data = newdata is only local to this function and the data pointer in
// the calling function is not changed. This will blow up because realloc
// frees the memory pointed to by data.
unsigned int ntry, max_tries;
size_t next_size = n * 2;
ntry = max_tries = n / BASE_DATA_SIZE - 1;
double *newdata = (double*)realloc(*data, next_size * sizeof(double));
while (!newdata && ntry > 0) {
if (ntry == max_tries) {
log_warn("The dataset is large and you are "
"running low on memory.");
}
next_size = n + ntry * BASE_DATA_SIZE;
ntry--;
newdata = (double*)realloc(*data, next_size * sizeof(double));
}
check_debug(newdata, "Memory error");
*data = newdata;
return next_size;
error:
if (newdata) free(newdata);
return (size_t)-1;
}
dataset* read_data_file(char *filename, bool streaming)
{
dataset *ds = NULL;
char buffer[MAX_LINELENGTH];
double datum;
FILE *fp;
char *endptr;
if (filename == NULL) {
fp = stdin;
} else {
fp = fopen(filename, "r");
// Make sure file was opened.
check(fp, "Failed to open %s.", filename);
}
// Start by creating an empty dataset of small size.
if (streaming) {
ds = init_empty_dataset(1);
ds->digest = TDigest_create(DEFAULT_DELTA, DEFAULT_K);
ds->streaming = true;
} else {
ds = init_empty_dataset(BASE_DATA_SIZE);
}
check_mem(ds);
while(fgets(buffer, MAX_LINELENGTH, fp) != NULL) {
datum = strtod(buffer, &endptr);
if (errno == ERANGE) {
// Overflow or underflow occured, warn the user but keep going.
log_warn("Results might not be correct.");
}
if (endptr == buffer) {
// No conversion was performed. Go to to next line.
continue;
}
push(ds, datum);
}
if (filename)
fclose(fp);
// Free the unused memory at the end of the data array.
size_t real_data_size = ds->n > ds->data_size ? ds->data_size : ds->n;
ds->data = (double*)realloc(ds->data, real_data_size * sizeof(double));
check_mem(ds->data);
ds->data_size = real_data_size;
return ds;
error:
if (filename && fp) fclose(fp);
if (ds) delete_dataset(ds);
return NULL;
}
double mean(dataset *ds)
{
return ds->M1;
}
double var(dataset *ds)
{
return ds->M2 / (ds->n - 1.0);
}
double sd(dataset *ds)
{
return sqrt(var(ds));
}
double median(dataset *ds)
{
// Compute the median using selection. This could be done using the
// percentile function, but here we only perform one select call for arrays
// of odd length.
if (ds->streaming)
return TDigest_percentile(ds->digest, 0.5);
double high, low;
size_t data_size = ds->data_size;
high = _select(ds->data, data_size, data_size / 2);
if (data_size % 2 == 0) {
// Use slightly convoluted formula to avoid overflow.
low = _select(ds->data, data_size, data_size / 2 - 1);
return low + 0.5 * (high - low);
} else {
return high;
}
}
double first_quartile(dataset *ds)
{
// Compute the first quartile using selection.
if (ds->streaming)
return TDigest_percentile(ds->digest, 0.25);
if (ds->has_q1)
return ds->q1;
ds->q1 = percentile(ds, 25.0);
ds->has_q1 = true;
return ds->q1;
}
double third_quartile(dataset *ds)
{
// Compute the third quartile using selection.
if (ds->streaming)
return TDigest_percentile(ds->digest, 0.75);
if (ds->has_q3)
return ds->q3;
ds->q3 = percentile(ds, 75.0);
ds->has_q3 = true;
return ds->q3;
}
double percentile(dataset *ds, double q)
{
// Find the qth percentile where q is a float between 0 and 100.
// Using q = 0 gives the minimum, q = 50, the median, q = 100 the maximum.
//
// Inspired by the implementation in Numpy
// http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib/function_base.py#L2947
if (ds->streaming)
return TDigest_percentile(ds->digest, q / 100.0);
size_t data_size = ds->data_size;
check_debug(data_size > 1, "Can't compute percentile dataset with less than 2 elements.");
double index = q * (data_size - 1) / 100.0;
double weight_above, low, high;
size_t index_below = (size_t)index;
size_t index_above = index_below + 1;
if (index_above > data_size - 1) {
index_above = data_size - 1;
}
weight_above = index - index_below;
low = _select(ds->data, data_size, index_below);
high = _select(ds->data, data_size, index_above);
return low * (1 - weight_above) + high * weight_above;
error:
#ifdef NAN
return NAN;
#else
return 0;
#endif
}
double interquartile_range(dataset *ds)
{
// The interquartile range is the distance between the first and the third
// quartiles.
return third_quartile(ds) - first_quartile(ds);
}
double min(dataset *ds)
{
// Find the minimum in the array.
return ds->min;
}
double max(dataset *ds)
{
// Find the maximum in the array.
return ds->max;
}
double _select(double *list, size_t n, size_t k)
{
// Given a list of size n, find the kth smallest value in the list.
// This algorithm is based on the one found in Press et al. Numerical
// Recipes in C, 2nd edition.
size_t i, j;
size_t left, mid, right;
double a, tmp;
check_debug(n > 0, "Can't select from empty dataset.");
left = 0;
right = n - 1;
while (true) {
if (right <= left + 1) {
if (right == left + 1 && list[right] < list[left]) {
SWAP(list[left], list[right]);
}
return list[k];
} else {
mid = left + (right - left) / 2;
SWAP(list[mid], list[left + 1]);
if (list[left] > list[right]) {
SWAP(list[left], list[right]);
}
if (list[left + 1] > list[right]) {
SWAP(list[left + 1], list[right]);
}
if (list[left] > list[left + 1]) {
SWAP(list[left], list[left + 1]);
}
i = left + 1;
j = right;
a = list[left + 1];
while (true) {
do {
i++;
} while (list[i] < a);
do {
j--;
} while (list[j] > a);
if (j < i) break;
SWAP(list[i], list[j]);
}
list[left + 1] = list[j];
list[j] = a;
if (j >= k) right = j - 1;
if (j <= k) left = i;
}
}
error:
#ifdef NAN
return NAN;
#else
return 0;
#endif
}
double timeit(double (*datafunc)(dataset *), dataset *ds, int n) {
// Time the duration of a function. If the function executes in less than
// 0.1 s, run it multiple times and return the average execution time.
clock_t c0, c1;
double time_s, time_us;
int i, niter = 1;
if (n != 0) {
c0 = clock();
for (i = 0; i < n; i++) {
datafunc(ds);
}
c1 = clock();
time_s = (double)(c1 - c0) / CLOCKS_PER_SEC;
} else {
do {
c0 = clock();
for (i = 0; i < niter; i++) {
datafunc(ds);
}
c1 = clock();
time_s = (double)(c1 - c0) / CLOCKS_PER_SEC;
niter *= 10;
} while (time_s < 0.1);
niter /= 10;
}
time_us = MICROSECS_PER_SEC * time_s / niter;
return time_us;
}