forked from jpuigcerver/Laia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaia-create-model
executable file
·271 lines (243 loc) · 8.76 KB
/
laia-create-model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env th
require 'laia'
assert(cudnn ~= nil, 'cuDNN is required by create_model')
local parser = laia.argparse(){
name = 'create_model',
description = 'Create a model for HTR composed by a set of convolution ' ..
'blocks, followed by a set of bidirectional LSTM or GRU layers, and a ' ..
'final linear layer. Each convolution block is composed by a ' ..
'2D convolution layer, an optional batch normalization layer, ' ..
'a non-linear activation function and an optional 2D max-pooling layer.' ..
'Also, each block, rnn layer and the final linear layer may be preceded ' ..
'by a dropout layer.'
}
parser:option(
'--cnn_batch_norm',
'Batch normalization before the activation in each conv layer.',
{false}, laia.toboolean)
:argname('<bool>') -- Placeholder
:args('+') -- Option with >= 1 arguments
parser:option(
'--cnn_dropout',
'Dropout probability at the input of each conv layer, 0 <= p < 1.',
{0}, tonumber)
:argname('<p>')
:args('+')
:ge(0.0):lt(1.0) -- Dropout must be in the range [0, 1)
parser:option(
'--cnn_spatial_dropout',
'Use spatial dropout at the input of each conv layer, instead of the ' ..
'regular dropout.',
{false}, laia.toboolean)
:argname('<bool>')
:args('+')
parser:option(
'--cnn_num_features', 'Number of feature maps in each conv layer, n > 0',
{16, 16, 32, 32}, laia.toint)
:argname('<n>')
:args('+')
:gt(0) -- Number of features must be > 0
parser:option(
'--cnn_maxpool_size', 'MaxPooling size after each conv layer. Separate ' ..
'each dimension with commas (order: width,height).',
{{2,2}, {2,2}, {0}, {2,2}}, laia.tolistint)
:argname('<size>')
:args('+')
:assert(function(t) return table.all(t, function(x) return x >= 0 end) end)
:tostring(function(x) return table.concat(table.map(x, tostring), ',') end)
parser:option(
'--cnn_kernel_size', 'Kernel size of each conv layer. Separate each ' ..
'dimension with commas (order: width,height).',
{{3,3}, {3,3}, {3,3}, {3,3}}, laia.tolistint)
:argname('<size>')
:args('+')
:assert(function(t) return table.all(t, function(x) return x > 0 end) end)
:tostring(function(x) return table.concat(table.map(x, tostring), ',') end)
parser:option(
'--cnn_type',
'Type of the activation function in each conv layer, valid types are ' ..
'relu, tanh, prelu, rrelu, leakyrelu, softplus.',
{'relu'}, {relu = 'relu',
tanh = 'tanh',
prelu = 'prelu',
rrelu = 'rrelu',
leakyrelu = 'leakyrelu',
softplus = 'softplus'})
:argname('<type>')
:args('+')
parser:option(
'--rnn_dropout',
'Dropout probability at the input of each recurrent layer, 0 <= p < 1.',
0.5, tonumber)
:argname('<p>')
:ge(0.0):lt(1.0)
parser:option(
'--rnn_num_layers',
'Number of recurrent layers, n > 0.', 3, laia.toint)
:argname('<n>')
:gt(0)
parser:option(
'--rnn_num_units',
'Number of units the recurrent layers, n > 0.', 256, laia.toint)
:argname('<n>')
:gt(0)
parser:option(
'--rnn_type',
'Type of the recurrent layers, valid types are blstm, bgru.',
'blstm', {blstm = 'blstm', bgru = 'bgru'})
:argname('<type>')
parser:option(
'--linear_dropout',
'Dropout probability at the input of the final linear layer, 0 <= p < 1.',
0.5, tonumber)
:argname('<p>')
:ge(0.0):lt(1.0)
parser:option(
'--seed -s', 'Seed for random numbers generation.',
0x012345, laia.toint)
-- Arguments
parser:argument(
'input_channels', 'Number of channels of the input images.')
:convert(laia.toint)
:gt(0)
parser:argument(
'input_height', 'Height of the input images.')
:convert(laia.toint)
:gt(0)
parser:argument(
'output_size',
'Number of output symbols. If you are going to use the CTC ' ..
'loss include one additional element!')
:convert(laia.toint)
:gt(0)
parser:argument(
'output_file', 'Output file to store the model')
-- Register laia.Version options
laia.Version():registerOptions(parser)
-- Register logging options
laia.log.registerOptions(parser)
local opt = parser:parse()
-- The number of conv layers is determined by the number of elements in the
-- --cnn_num_features option.
local cnn_layers = #opt.cnn_num_features
-- Ensure that all options for the convolutional layers have the same length
-- (equal to the number of specified layers). The last option in a list is
-- copied to extend the list until a size of cnn_layers is achieved.
table.append_last(opt.cnn_kernel_size, cnn_layers - #opt.cnn_kernel_size)
table.append_last(opt.cnn_maxpool_size, cnn_layers - #opt.cnn_maxpool_size)
table.append_last(opt.cnn_batch_norm, cnn_layers - #opt.cnn_batch_norm)
table.append_last(opt.cnn_type, cnn_layers - #opt.cnn_type)
table.append_last(opt.cnn_dropout, cnn_layers - #opt.cnn_dropout)
table.append_last(opt.cnn_spatial_dropout,
cnn_layers - #opt.cnn_spatial_dropout)
-- Kernel sizes must be pairs of integers
opt.cnn_kernel_size = table.map(
opt.cnn_kernel_size, function(x) return table.append_last(x, 2 - #x) end)
-- Maxpool sizes must be pairs of integers
opt.cnn_maxpool_size = table.map(
opt.cnn_maxpool_size, function(x) return table.append_last(x, 2 - #x) end)
-- Initialize random seeds
laia.manualSeed(opt.seed)
-- Auxiliar function that creates convolutional block
local function convBlock(
depth_in, depth_out, -- Input & output channels/filters
kernel_w, kernel_h, -- Size of the convolution kernels
pool_w, pool_h, -- Size of the pooling windows
activation, batch_norm, dropout, spatial_dropout)
activation = activation or 'relu'
batch_norm = batch_norm or false
dropout = dropout or 0
spatial_dropout = spatial_dropout or false
local block = nn.Sequential()
-- Spatial dropout to the input of the convolutional block
if dropout > 0 then
if spatial_dropout then
block:add(nn.SpatialDropout(dropout))
else
block:add(nn.Dropout(dropout))
end
end
-- Spatial 2D convolution. Image is padded with zeroes so that the output
-- has the same size as the input / stride.
block:add(nn.SpatialConvolution(
depth_in, depth_out,
kernel_w, kernel_h,
1, 1,
math.ceil((kernel_w - 1) / 2), math.ceil((kernel_h - 1) / 2)))
-- Batch normalization
if batch_norm then
block:add(nn.SpatialBatchNormalization(depth_out))
end
-- Activation function
if activation == 'relu' then
block:add(nn.ReLU(true))
elseif activation == 'tanh' then
block:add(nn.Tanh())
elseif activation == 'leakyrelu' then
block:add(nn.LeakyReLU(true))
elseif activation == 'softplus' then
block:add(nn.SoftPlus())
elseif activation == 'prelu' then
block:add(nn.PReLU())
elseif activation == 'rrelu' then
block:add(nn.RReLU(1.0 / 8.0, 1.0 / 3.0, true))
else
assert(false, string.format('Unknown activation function %s', activation))
end
-- Max pooling
if pool_w > 0 and pool_h > 0 then
block:add(nn.SpatialMaxPooling(pool_w, pool_h, pool_w, pool_h))
end
return block
end
local function computeSizeAfterPooling(input_size, pool_size)
if pool_size < 2 then
return input_size
else
return math.floor((input_size - pool_size) / pool_size + 1)
end
end
local model = nn.Sequential()
-- Used to compute the height and depth of the images after all the convolutions
local curr_h = opt.input_height
local curr_c = opt.input_channels
-- Append convolutional layer blocks
for i=1,cnn_layers do
model:add(convBlock(curr_c, opt.cnn_num_features[i],
opt.cnn_kernel_size[i][1], opt.cnn_kernel_size[i][2],
opt.cnn_maxpool_size[i][1], opt.cnn_maxpool_size[i][2],
opt.cnn_type[i], opt.cnn_batch_norm[i],
opt.cnn_dropout[i], opt.cnn_spatial_dropout[i]))
curr_h = computeSizeAfterPooling(curr_h, opt.cnn_maxpool_size[i][2])
curr_c = opt.cnn_num_features[i]
end
-- Append recurrent layers
local rnn_input_dim = curr_c * curr_h
-- Convert images to 1D sequences by processing columns of the image as the
-- sequence elements.
model:add(laia.nn.ImageColumnSequence())
-- Append recurrent layers
if opt.rnn_type == 'blstm' then
model:add(cudnn.BLSTM(rnn_input_dim, opt.rnn_num_units, opt.rnn_num_layers,
false, opt.rnn_dropout))
else
model:add(cudnn.BGRU(rnn_input_dim, opt.rnn_num_units, opt.rnn_num_layers,
false, opt.rnn_dropout))
end
-- Linear projection of each timestep and batch sample (LxNxD -> (LN)xD)
model:add(nn.Reshape(-1, opt.rnn_num_units * 2, false))
if opt.linear_dropout > 0 then
model:add(nn.Dropout(opt.linear_dropout))
end
model:add(nn.Linear(opt.rnn_num_units * 2, opt.output_size))
model:float()
-- Save model to disk
local checkpoint = laia.Checkpoint()
checkpoint:setModelConfig(opt)
checkpoint:Best():setModel(model)
checkpoint:Last():setModel(model)
checkpoint:save(opt.output_file)
local p, _ = model:getParameters()
laia.log.info('\n' .. model:__tostring__())
laia.log.info('Saved model with %d parameters to %q',
p:nElement(), opt.output_file)