From 6b4e22eeedd7bfdbd65d57d197ca812db62380e0 Mon Sep 17 00:00:00 2001 From: Luca Fiorito Date: Fri, 23 Dec 2022 13:40:18 +0100 Subject: [PATCH 01/17] update --- sandy/__init__.py | 3 +- sandy/core/cov.py | 11 +- sandy/core/endf6.py | 1536 ++++++++++----------------------- sandy/core/xs.py | 57 ++ sandy/errorr.py | 73 +- sandy/{groupr.py => gendf.py} | 105 ++- sandy/njoy.py | 886 +++++++++---------- sandy/sampling.py | 70 ++ sandy/spectra.py | 35 + 9 files changed, 1164 insertions(+), 1612 deletions(-) rename sandy/{groupr.py => gendf.py} (81%) create mode 100644 sandy/spectra.py diff --git a/sandy/__init__.py b/sandy/__init__.py index 9421da0e..80c7d4fd 100755 --- a/sandy/__init__.py +++ b/sandy/__init__.py @@ -7,7 +7,7 @@ from .decay import * from .energy_grids import * from .errorr import * -from .groupr import * +from .gendf import * from .fy import * from .tsl import * from .gls import * @@ -23,6 +23,7 @@ from .utils import * from .core import * from .sampling import * +from .spectra import * import sandy.mcnp import sandy.aleph2 import sandy.tools diff --git a/sandy/core/cov.py b/sandy/core/cov.py index 2d80d14d..2c5582b4 100644 --- a/sandy/core/cov.py +++ b/sandy/core/cov.py @@ -4,7 +4,6 @@ import scipy import scipy.linalg import scipy.sparse as sps -import scipy.sparse.linalg as spsl import pandas as pd import matplotlib.pyplot as plt import seaborn as sns @@ -423,7 +422,7 @@ def get_eig(self, tolerance=None): Real test on H1 file >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> ek = sandy.energy_grids.CASMO12 - >>> err = endf6.get_errorr(ek_errorr=ek, err=1) + >>> err = endf6.get_errorr(errorr_kws=dict(ek=ek), err=1)["errorr33"] >>> cov = err.get_cov() >>> cov.get_eig()[0].sort_values(ascending=False).head(7) 0 3.66411e-01 @@ -511,7 +510,7 @@ def invert(self): >>> np.testing.assert_array_equal(sandy.CategoryCov(c.invert()).invert(), c.data) Test on real ND covariance. With previous implementation this test failed. - >>> c = sandy.get_endf6_file("jeff_33", "xs", 10010).get_errorr(err=1, mt=[102]).get_cov(multigroup=False) + >>> c = sandy.get_endf6_file("jeff_33", "xs", 10010).get_errorr(err=1, errorr_kws=dict(mt=102))["errorr33"].get_cov(multigroup=False) >>> cinv = c.invert() >>> np.testing.assert_array_almost_equal(c.data, np.linalg.pinv(cinv, hermitian=True)) >>> assert (cinv.index == c.data.index).all() @@ -526,7 +525,7 @@ def invert(self): def _double_invert(self): """ Test method get a covariance matrix without negative eigs. - BEcause of the properties of pinv, this should be equivalent to + Because of the properties of pinv, this should be equivalent to reconstructing the matrix as `V @ E @ V^T`, where `V` are the eigenvectors and `E` are truncated eigenvalues. @@ -536,7 +535,7 @@ def _double_invert(self): inverse of the inverted matrix Test on real ND covariance. - >>> c = sandy.get_endf6_file("jeff_33", "xs", 10010).get_errorr(err=1, mt=[102]).get_cov(multigroup=False) + >>> c = sandy.get_endf6_file("jeff_33", "xs", 10010).get_errorr(err=1, errorr_kws=dict(mt=102))["errorr33"].get_cov(multigroup=False) >>> c2 = c._double_invert() >>> np.testing.assert_array_almost_equal(c.data, c2.data) >>> assert (c2.data.index == c.data.index).all() @@ -656,7 +655,7 @@ def log2norm_mean(self, mu): return np.log(mu_**2 / np.sqrt(np.diag(self.data) + mu_**2)) def sampling(self, nsmp, seed=None, rows=None, pdf='normal', - tolerance=None, relative=True): + tolerance=0, relative=True): """ Extract perturbation coefficients according to chosen distribution with covariance from given covariance matrix. See note for non-normal diff --git a/sandy/core/endf6.py b/sandy/core/endf6.py index 620ee1cf..8a2f6f3f 100644 --- a/sandy/core/endf6.py +++ b/sandy/core/endf6.py @@ -5,7 +5,6 @@ @author: lfiorito """ import io -import shutil import os from functools import reduce from tempfile import TemporaryDirectory @@ -166,6 +165,14 @@ def get_tsl_index(library): return +nsubs = { + 4: "decay", + 10: "neutron", + 11: "nfpy", + 10010: "proton", + } + + def get_endf6_file(library, kind, zam, to_file=False): """ Given a library and a nuclide import the corresponding ENDF-6 nuclear @@ -363,7 +370,7 @@ def get_endf6_file(library, kind, zam, to_file=False): Available libraries are: {available_libs} """ ) - if kind == 'dxs': + elif kind == 'dxs': available_libs = ( "jeff_33".upper(), "proton".upper(), @@ -467,6 +474,8 @@ def get_endf6_file(library, kind, zam, to_file=False): Available libraries are: {available_libs} """ ) + else: + raise ValueError(f"option 'kind={kind}' is not supported") if str(zam).lower() == 'all': if kind.lower() == 'xs' or kind.lower() == 'dxs': @@ -522,6 +531,9 @@ class _FormattedFile(): Create dataframe from endf6 text in string. to_series Covert content into `pandas.Series`. + to_file + Given a filename write the content of the instance to disk in + ASCII format. Notes ----- @@ -600,13 +612,16 @@ def kind(self): Examples -------- - >>> file = os.path.join(sandy.data.__path__[0], "h1.endf") - >>> _FormattedFile.from_file(file).kind - 'endf6' - - >>> file = os.path.join(sandy.data.__path__[0], "h1.pendf") - >>> _FormattedFile.from_file(file).kind - 'pendf' + >>> assert sandy.get_endf6_file("jeff_33", "decay", 10010).kind == "endf6" + >>> assert sandy.get_endf6_file("jeff_33", "nfpy", 922350).kind == "endf6" + >>> assert sandy.get_endf6_file("jeff_33", "xs", 10010).kind == "endf6" + >>> assert sandy.get_endf6_file("jeff_33", "xs", 10010).get_pendf(err=1).kind == "pendf" + >>> assert sandy.get_endf6_file("jeff_33", "xs", 10010).get_gendf(err=1).kind == "gendf" + >>> outs = sandy.get_endf6_file("jeff_33", "xs", 942410).get_errorr(err=1, errorr_kws=dict(mt=18)) + >>> assert outs["errorr31"].kind == "errorr" + >>> assert outs["errorr33"].kind == "errorr" + >>> assert outs["errorr34"].kind == "errorr" + >>> assert outs["errorr35"].kind == "errorr" """ if len(self.mat) > 1: msg = "Attribute 'kind' does not work if more than 1 MAT number is" @@ -623,10 +638,12 @@ def kind(self): else: if lrp == 2: kind = "pendf" - elif lrp == 1 or lrp == 0: + elif lrp in [-1, 0, 1]: + # -1 for decay and nfpy + # 0 for endf6 kind = "endf6" else: - kind == "unkwown" + kind = "unkwown" return kind @classmethod @@ -691,11 +708,11 @@ def read_url(filename, rooturl): Examples -------- - - >>> filename = "n-1-H-001.jeff32" - >>> rooturl = "https://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/" - >>> file = sandy.Endf6.read_url(filename, rooturl) - >>> print(file[0:890]) + Removed because website stopped working + #>>> filename = "n-1-H-001.jeff32" + #>>> rooturl = "https://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/" + #>>> file = sandy.Endf6.read_url(filename, rooturl) + #>>> print(file[0:890]) JEFF-3.2 Release - Neutron File March 2014 0 0 0 1.001000+3 9.991673-1 0 0 2 5 125 1451 1 0.000000+0 0.000000+0 0 0 0 6 125 1451 2 @@ -1050,7 +1067,7 @@ def merge(self, *iterable): Returns ------- - merged : TYPE + merged : :func:`_FormattedFile` a ENDF6 file containing the MAT/MF/MT sections of `self` and of the passed ENDF6 files. @@ -1065,100 +1082,26 @@ def merge(self, *iterable): Merge two files. >>> h1 = sandy.get_endf6_file("jeff_33", 'xs', 10010) >>> h2 = sandy.get_endf6_file("endfb_71", 'xs', 10020) - >>> h1.merge(h2) - MAT MF MT - 125 1 451 1.001000+3 9.991673-1 0 0 ... - 2 151 1.001000+3 9.991673-1 0 0 ... - 3 1 1.001000+3 9.991673-1 0 0 ... - 2 1.001000+3 9.991673-1 0 0 ... - 102 1.001000+3 9.991673-1 0 0 ... - 4 2 1.001000+3 9.991673-1 0 1 ... - 6 102 1.001000+3 9.991673-1 0 2 ... - 33 1 1.001000+3 9.991673-1 0 0 ... - 2 1.001000+3 9.991673-1 0 0 ... - 102 1.001000+3 9.991673-1 0 0 ... - 128 1 451 1.002000+3 1.996800+0 0 0 ... - 2 151 1.002000+3 1.996800+0 0 0 ... - 3 1 1.002000+3 1.996800+0 0 0 ... - 2 1.002000+3 1.996800+0 0 0 ... - 3 1.002000+3 1.996800+0 0 0 ... - 16 1.002000+3 1.996800+0 0 0 ... - 102 1.002000+3 1.996800+0 0 0 ... - 4 2 1.002000+3 1.996800+0 0 2 ... - 6 16 1.002000+3 1.996800+0 0 1 ... - 8 102 1.002000+3 1.996800+0 0 0 ... - 9 102 1.002000+3 1.996800+0 0 0 ... - 12 102 1.002000+3 1.996800+0 1 0 ... - 14 102 1.002000+3 1.996800+0 1 0 ... - 33 1 1.002000+3 1.996800+0 0 0 ... - 2 1.002000+3 1.996800+0 0 0 ... - 16 1.002000+3 1.996800+0 0 0 ... - 102 1.002000+3 1.996800+0 0 0 ... - dtype: object + >>> h = h1.merge(h2) + >>> assert h.to_series()[h1.to_series().index].equals(h1.to_series()) + >>> assert h.to_series()[h2.to_series().index].equals(h2.to_series()) Merge three files from different libraries. >>> h3 = sandy.get_endf6_file("endfb_71", 'xs', 10030) - >>> h1.merge(h2, h3) - MAT MF MT - 125 1 451 1.001000+3 9.991673-1 0 0 ... - 2 151 1.001000+3 9.991673-1 0 0 ... - 3 1 1.001000+3 9.991673-1 0 0 ... - 2 1.001000+3 9.991673-1 0 0 ... - 102 1.001000+3 9.991673-1 0 0 ... - 4 2 1.001000+3 9.991673-1 0 1 ... - 6 102 1.001000+3 9.991673-1 0 2 ... - 33 1 1.001000+3 9.991673-1 0 0 ... - 2 1.001000+3 9.991673-1 0 0 ... - 102 1.001000+3 9.991673-1 0 0 ... - 128 1 451 1.002000+3 1.996800+0 0 0 ... - 2 151 1.002000+3 1.996800+0 0 0 ... - 3 1 1.002000+3 1.996800+0 0 0 ... - 2 1.002000+3 1.996800+0 0 0 ... - 3 1.002000+3 1.996800+0 0 0 ... - 16 1.002000+3 1.996800+0 0 0 ... - 102 1.002000+3 1.996800+0 0 0 ... - 4 2 1.002000+3 1.996800+0 0 2 ... - 6 16 1.002000+3 1.996800+0 0 1 ... - 8 102 1.002000+3 1.996800+0 0 0 ... - 9 102 1.002000+3 1.996800+0 0 0 ... - 12 102 1.002000+3 1.996800+0 1 0 ... - 14 102 1.002000+3 1.996800+0 1 0 ... - 33 1 1.002000+3 1.996800+0 0 0 ... - 2 1.002000+3 1.996800+0 0 0 ... - 16 1.002000+3 1.996800+0 0 0 ... - 102 1.002000+3 1.996800+0 0 0 ... - 131 1 451 1.003000+3 2.989596+0 0 0 ... - 2 151 1.003000+3 2.989596+0 0 0 ... - 3 1 1.003000+3 2.989596+0 0 0 ... - 2 1.003000+3 2.989596+0 0 0 ... - 16 1.003000+3 2.989596+0 0 0 ... - 4 2 1.003000+3 2.989596+0 0 1 ... - 16 1.003000+3 2.989596+0 0 2 ... - 5 16 1.003000+3 2.989596+0 0 0 ... - dtype: object + >>> h_ = h1.merge(h2, h3).to_series() + >>> h__ = h.merge(h3).to_series() + >>> h___ = h1.merge(h2).merge(h3).to_series() + >>> assert h_.equals(h__) and h_.equals(h___) Merge two evaluations for the same nuclide. - >>> h2_2 = sandy.get_endf6_file("jeff_32", 'xs', 10020) - >>> h2.merge(h2_2) - MAT MF MT - 128 1 451 1.002000+3 1.995712+0 0 0 ... - 2 151 1.002000+3 1.995712+0 0 0 ... - 3 1 1.002000+3 1.995712+0 0 0 ... - 2 1.002000+3 1.995712+0 0 0 ... - 3 1.002000+3 1.995712+0 0 0 ... - 16 1.002000+3 1.995712+0 0 0 ... - 102 1.002000+3 1.995712+0 0 0 ... - 4 2 1.002000+3 1.995712+0 0 1 ... - 6 16 1.002000+3 1.995712+0 0 1 ... - 8 102 1.002000+3 1.996800+0 0 0 ... - 9 102 1.002000+3 1.996800+0 0 0 ... - 12 102 1.002000+3 1.995712+0 1 0 ... - 14 102 1.002000+3 1.995712+0 1 0 ... - 33 1 1.002000+3 1.996800+0 0 0 ... - 2 1.002000+3 1.996800+0 0 0 ... - 16 1.002000+3 1.996800+0 0 0 ... - 102 1.002000+3 1.996800+0 0 0 ... - dtype: object + >>> bi_71 = sandy.get_endf6_file("endfb_71", 'xs', 832090) + >>> bi_33 = sandy.get_endf6_file("jeff_33", 'xs', 832090) + >>> bi = bi_71.merge(bi_33) + >>> assert not bi.to_series()[bi_71.to_series().index].equals(bi_71.to_series()) + >>> assert bi.to_series()[bi_33.to_series().index].equals(bi_33.to_series()) + >>> bi = bi_33.merge(bi_71) + >>> assert bi.to_series()[bi_71.to_series().index].equals(bi_71.to_series()) + >>> assert not bi.to_series()[bi_33.to_series().index].equals(bi_33.to_series()) """ tape = reduce(lambda x, y: x.add_sections(y.data), iterable) merged = self.add_sections(tape.data) @@ -1242,8 +1185,7 @@ def write_string(self, title=""): Examples -------- - >>> file = os.path.join(sandy.data.__path__[0], "h1.endf") - >>> string = sandy.Endf6.from_file(file).write_string() + >>> string = sandy.get_endf6_file("jeff_33", "xs", 10010).write_string() >>> print(string[:81 * 4 - 1]) 1 0 0 0 1.001000+3 9.991673-1 0 0 2 5 125 1451 1 @@ -1252,11 +1194,10 @@ def write_string(self, title=""): if no modification is applied to the `_FormattedFile` content, the `write_string` returns an output identical to the file ASCII content. - >>> assert string == open(file).read() Test with `sandy.Errorr` object and title option: >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> err = endf6.get_errorr(ek=[1e-2, 1e1, 2e7], err=1) + >>> err = endf6.get_errorr(ek=[1e-2, 1e1, 2e7], err=1)["errorr33"] >>> err.to_file("out.err", title="H with ERRORR") >>> err_2 = sandy.Errorr.from_file("out.err") >>> os.remove("out.err") @@ -1327,32 +1268,163 @@ class Endf6(_FormattedFile): Process `Endf6` instance into a Errorr file using NJOY. get_id Extract ID for a given MAT for a ENDF-6 file. + get_nsub + Determine ENDF-6 sub-library type. + get_records + Extract tabulated MAT, MF and MT numbers. read_section Parse MAT/MF/MT section. - to_file - Given a filename write the content of a `Endf6` instance to disk in - ASCII format. - to_string - Write `Endf6.data` content to string according to the ENDF-6 file - rules. - write_string - Write ENDF-6 content to string. """ - def _get_nsub(self): + def get_nsub(self): """ Determine ENDF-6 sub-library type by reading flag "NSUB" of first MAT - in file: - - * `NSUB = 10` : Incident-Neutron Data - * `NSUB = 11` : Neutron-Induced Fission Product Yields + in file. Returns ------- `int` NSUB value + + Examples + -------- + assert sandy.get_endf6_file("jeff_33", "xs", 10010).get_nsub() == "neutron" + assert sandy.get_endf6_file("jeff_33", "xs", 10010).get_nsub().get_pendf(err=1).get_nsub() == "neutron" + assert sandy.get_endf6_file("jeff_33", "nfpy", 942410).get_nsub() == "nfpy" + assert sandy.get_endf6_file("jeff_33", "decay", 942410).get_nsub() == "decay" + assert sandy.get_endf6_file("jeff_33", "dxs", 26000).get_nsub() == "neutron" + assert sandy.get_endf6_file("proton", "dxs", 26000).get_nsub() == "proton" + """ + nsub = self.read_section(self.mat[0], 1, 451)["NSUB"] + return nsubs(nsub) + + + def _handle_njoy_inputs(method): + """ + Decorator to handle keyword arguments for NJOY before running + the executable. + + Examples + -------- + Test that `minimal_processing` filters unwanted modules. + >>> g = sandy.get_endf6_file("jeff_33", "xs", 10010).get_gendf(err=1, minimal_processing=True, temperature=300, dryrun=True) + >>> assert "broadr" in g and "reconr" in g + >>> assert "thermr" not in g and "purr" not in g and "heatr" not in g and "unresr" not in g and "gaspr" not in g + + Test `minimal_processing=False`. + >>> g = sandy.get_endf6_file("jeff_33", "xs", 10010).get_gendf(err=1, temperature=300, dryrun=True) + >>> assert "broadr" in g and "reconr" in g + >>> assert "thermr" in g and "purr" in g and "heatr" in g and "gaspr" in g + + Check that for `temperature=0` the calculation stops after RECONR. + >>> g = sandy.get_endf6_file("jeff_33", "xs", 10010).get_gendf(err=1, dryrun=True) + >>> assert "reconr" in g + >>> assert "broadr" not in g and "thermr" not in g and "purr" not in g and "heatr" not in g and "unresr" not in g and "gaspr" not in g """ - return self.read_section(self.mat[0], 1, 451)["NSUB"] + def inner( + self, + temperature=0, + err=0.001, + minimal_processing=False, + verbose=False, + **kwargs, + ): + """ + Parameters + ---------- + err : TYPE, optional + reconstruction tolerance for RECONR, BROADR and THERMR. + The default is 0.001. + minimal_processing: `bool`, optional + deactivate modules THERMR, GASPR, HEATR, PURR and UNRESR. + The default is False. + temperature : `float`, optional + temperature of the cross sections in K. If not given, stop + the processing after RECONR (before BROADR). The default is 0. + verbose : `bool`, optional + flag to print NJOY input file to screen before running the + executable. The default is False. + """ + kwds_njoy = kwargs.copy() + + # Handle 'minimal' processing options + if minimal_processing or float(temperature) == 0: + kwds_njoy["thermr"] = False + kwds_njoy["gaspr"] = False + kwds_njoy["heatr"] = False + kwds_njoy["purr"] = False + kwds_njoy["unresr"] = False + # deactivate modules if temperature is 0 + if temperature == 0: + kwds_njoy["broadr"] = False + msg = """Zero or no temperature was requested, NJOY processing will stop after RECONR. + If you want to process 0K cross sections use `temperature=0.1`. + """ + logging.info(msg) + + # handle err + reconr_kws = kwds_njoy.get("reconr_kws", {}) + broadr_kws = kwds_njoy.get("broadr_kws", {}) + thermr_kws = kwds_njoy.get("thermr_kws", {}) + reconr_kws["err"] = broadr_kws["err"] = thermr_kws["err"] = float(err) + kwds_njoy["reconr_kws"] = reconr_kws + kwds_njoy["broadr_kws"] = broadr_kws + kwds_njoy["thermr_kws"] = thermr_kws + + kwds_njoy.update(dict(temperatures=[temperature], verbose=verbose)) + + return method(self, **kwds_njoy) + return inner + + def _handle_groupr_inputs(method): + """ + Decorator to handle keyword arguments for NJOY before running + the executable. + + Examples + -------- + Test that `minimal_processing` filters unwanted modules. + >>> g = sandy.get_endf6_file("jeff_33", "xs", 10010).get_gendf(err=1, minimal_processing=True, temperature=300, dryrun=True) + >>> assert "broadr" in g and "reconr" in g + >>> assert "thermr" not in g and "purr" not in g and "heatr" not in g and "unresr" not in g and "gaspr" not in g + + Test `minimal_processing=False`. + >>> g = sandy.get_endf6_file("jeff_33", "xs", 10010).get_gendf(err=1, temperature=300, dryrun=True) + >>> assert "broadr" in g and "reconr" in g + >>> assert "thermr" in g and "purr" in g and "heatr" in g and "gaspr" in g + + Check that for `temperature=0` the calculation stops after RECONR. + >>> g = sandy.get_endf6_file("jeff_33", "xs", 10010).get_gendf(err=1, dryrun=True) + >>> assert "reconr" in g + >>> assert "broadr" not in g and "thermr" not in g and "purr" not in g and "heatr" not in g and "unresr" not in g and "gaspr" not in g + """ + def inner( + self, + groupr_kws={}, + **kwargs, + ): + """ + Parameters + ---------- + err : TYPE, optional + reconstruction tolerance for RECONR, BROADR and THERMR. + The default is 0.001. + minimal_processing: `bool`, optional + deactivate modules THERMR, GASPR, HEATR, PURR and UNRESR. + The default is False. + temperature : `float`, optional + temperature of the cross sections in K. If not given, stop + the processing after RECONR (before BROADR). The default is 0. + verbose : `bool`, optional + flag to print NJOY input file to screen before running the + executable. The default is False. + """ + fission = 18 in self.get_records().query("MF==3").MT.values + groupr_kws["nubar"] = fission + groupr_kws["chi"] = fission + groupr_kws["mubar"] = True + return method(self, groupr_kws=groupr_kws, **kwargs) + return inner def read_section(self, mat, mf, mt, raise_error=True): """ @@ -1407,20 +1479,6 @@ def _update_info(self, descr=None): tape.loc[mat,1,451].TEXT = text return Endf6(tape) - def parse(self): - mats = self.index.get_level_values("MAT").unique() - if len(mats) > 1: - raise NotImplementedError("file contains more than 1 MAT") - self.mat = self.endf = mats[0] - if hasattr(self, "tape"): - self.filename = os.path.basename(self.tape) - INFO = self.read_section(mats[0], 1 ,451) - del INFO["TEXT"], INFO["RECORDS"] - self.__dict__.update(**INFO) - self.SECTIONS = self.loc[INFO["MAT"]].reset_index()["MF"].unique() - self.EHRES = 0 - self.THNMAX = - self.EHRES if self.EHRES != 0 else 1.0E6 - def get_id(self, method="nndc"): """ Extract ID for a given MAT for a ENDF-6 file. @@ -1469,10 +1527,9 @@ def get_id(self, method="nndc"): ID = zam if method.lower() == "aleph" else za_new return ID + @_handle_njoy_inputs def get_ace(self, - temperature, - njoy=None, - verbose=False, + suffix=None, pendf=None, **kwargs, ): @@ -1481,219 +1538,205 @@ def get_ace(self, Parameters ---------- - temperature : `float` - temperature of the cross sections in K. - njoy : `str`, optional, default is `None` - NJOY executable, if `None` search in the system path. - verbose : TYPE, optional, default is `False` - flag to print NJOY input file to screen before running the - executable. - **kwargs : TYPE - keyword argument to pass to `sandy.njoy.process`. + dryrun : `bool`, optional + Do not run NJOY and return NJOY input. Default is False. + pendf : :func:`~sandy.Endf6`, optional + provide manually PENDF object and add it to the processing + sequence after RECONR and before BROADR. Default is None. + suffix : `str`, optional + suffix in the form `".[0-9][0-9]"` to assign to the ACE data. + If not given, generate automatic suffix according to ALEPH rules. + Default is None. + **kwargs : `dict` + keyword argument to pass to :func:`~sandy.njoy.process_neutron`. Returns ------- - outs : `dict` - output with `'ace'` and `'xsdir'` as keys pointing to the - filenames of the corresponding ACE and xsdir files generated in - the run. + `dict` of `str` + output with `'ace'` and `'xsdir'` as keys. Examples -------- - >>> sandy.get_endf6_file("jeff_33", "xs", 10010).get_ace(700) - {'ace': '1001.07c', 'xsdir': '1001.07c.xsd'} + Check that output is a ace file. + >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> ace = e6.get_ace(temperature=700, err=1, minimal_processing=True)["ace"] + >>> assert "1001.07c" in ace + >>> assert "sandy runs acer" in ace + >>> assert "mat 125" in ace + + Check that ace is processed at a different temperature. + >>> ace = e6.get_ace(temperature=800, err=1, minimal_processing=True)["ace"] + >>> assert "1001.08c" in ace + Check xsdir. + >>> print(outs[xsdir]) + 1001.08c 0.999167 filename 0 1 1 3297 0 0 6.894E-08 + + Check that using option `pendf` results in the same output. + >>> pendf = e6.get_pendf(temperature=0, err=1) + >>> ace2 = e6.get_ace(temperature=800, err=1, , minimal_processing=True, pendf=pendf)["ace"] + >>> assert ace == ace2 + + Check that the option suffix is used correctly. + >>> ace = e6.get_ace(temperature=800, suffix=".85", err=1) + >>> assert "1001.85c" in ace + + Check input pendf file + >>> with pytest.raises(Exception) as e_info: + >>> e6.get_ace(pendf=e6) """ - outs = {} - pendftape = None + if suffix: + kwargs["suffixes"] = [suffix] + with TemporaryDirectory() as td: endf6file = os.path.join(td, "endf6_file") self.to_file(endf6file) + # we don not call to_pendf because we might want to pass a pendf in input if pendf: + if pendf.kind != 'pendf': + raise TypeError(f"kw argument 'pendf' does not contain a PENDF file") pendftape = os.path.join(td, "pendf_file") pendf.to_file(pendftape) - text, inputs, outputs = sandy.njoy.process( + else: + pendftape = None + outputs = sandy.njoy.process_neutron( endf6file, pendftape=pendftape, - wdir=".", - keep_pendf=False, - exe=njoy, - temperatures=[temperature], - verbose=verbose, **kwargs, ) - acefile = outputs["tape50"] - basename = os.path.split(acefile)[1] - dest = os.path.join(os.getcwd(), basename) - outs["ace"] = basename - shutil.move(acefile, dest) - xsdfile = outputs["tape70"] - basename = os.path.split(xsdfile)[1] - dest = os.path.join(os.getcwd(), basename) - outs["xsdir"] = basename - shutil.move(xsdfile, dest) - return outs - - def get_pendf(self, - temperature=0, - njoy=None, - to_file=False, - verbose=False, - **kwargs, - ): + if kwargs.get("dryrun", False): + return outputs # this contains the NJOY input + return {k: outputs[k] for k in ["ace", "xsdir"]} + + @_handle_njoy_inputs + def get_pendf(self, **kwargs,): """ Process `Endf6` instance into an PENDF file using NJOY. Parameters ---------- - temperature : `float`, optional, default is `0`. - temperature of the cross sections in K. - If not given, stop the processing after RECONR (before BROADR). - njoy : `str`, optional, default is `None` - NJOY executable, if `None` search in the system path. - to_file : `str`, optional, default is `None` - if not `None` write processed ERRORR data to file. - The name of the PENDF file is the keyword argument. - verbose : `bool`, optional, default is `False` - flag to print NJOY input file to screen before running the - executable. **kwargs : `dict` - keyword argument to pass to `sandy.njoy.process`. + keyword argument to pass to :func:`~sandy.njoy.process_neutron`. Returns ------- - pendf : `sandy.Endf6` - `Endf6` instance constaining the nuclear data of the PENDF file. + pendf : :func:`~sandy.Endf6` + Pendf object Examples -------- - Process H1 file from ENDF/B-VII.1 into PENDF - >>> pendf =sandy.get_endf6_file("endfb_71", "xs", 10010).get_pendf(verbose=True) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.001 0. / - 0/ - moder - -22 30 / - stop - - >>> pendf - MAT MF MT - 125 1 451 1.001000+3 9.991673-1 2 0 ... - 2 151 1.001000+3 9.991673-1 0 0 ... - 3 1 1.001000+3 9.991673-1 0 99 ... - 2 1.001000+3 9.991673-1 0 0 ... - 102 1.001000+3 9.991673-1 0 0 ... - dtype: object - - >>> pendf.kind - 'pendf' - - Test `to_file` + Default run. >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> out = endf6.get_pendf(to_file="out.pendf") - >>> assert os.path.isfile('out.pendf') - + >>> out = endf6.get_pendf(verbose=True, temperature=293.6, err=1, minimal_processing=True) + >>> assert isinstance(out, sandy.Endf6) """ - if float(temperature) == 0: - kwargs["broadr"] = False - kwargs["thermr"] = False - kwargs["gaspr"] = False - kwargs["heatr"] = False - kwargs["purr"] = False - kwargs["unresr"] = False - msg = """Zero or no temperature was requested, NJOY processing will stop after RECONR. -If you want to process 0K cross sections use `temperature=0.1`. -""" - logging.info(msg) + # always deactivate acer + kwargs["acer"] = False + with TemporaryDirectory() as td: endf6file = os.path.join(td, "endf6_file") self.to_file(endf6file) - text, inputs, outputs = sandy.njoy.process( + outputs = sandy.njoy.process_neutron( endf6file, - acer=False, - keep_pendf=True, - exe=njoy, - temperatures=[temperature], suffixes=[0], - verbose=verbose, **kwargs, ) - pendffile = outputs["tape30"] - pendf = Endf6.from_file(pendffile) - if to_file: - shutil.move(pendffile, to_file) + if kwargs.get("dryrun", False): + return outputs # this contains the NJOY input + pendf = Endf6.from_text(outputs["pendf"]) return pendf - def merge_pendf(self, pendf): + @_handle_njoy_inputs + @_handle_groupr_inputs + def get_gendf(self, **kwargs,): """ - Merge endf-6 file content with that of a pendf file. + Process `Endf6` instance into a Gendf file using NJOY. Parameters ---------- - pendf : `sandy.Endf6` - `Endf6` object containing pendf tape. + **kwargs : `dict` + keyword argument to pass to :func:`~sandy.njoy.process_neutron`. Returns ------- - `sandy.Endf6` - `Endf6` object with MF3 and MF1MT451 from PENDF - - Notes - ----- - .. note:: the `Endf6` object in output has attribute `kind='pendf'`. - - .. note:: the `Endf6` object in output contains all sections from the - original endf-6 file, but for all MF=3 and MF=1 MT=451. + gendf : :func:`~sandy.Gendf` + Gendf object Examples -------- - >>> file = os.path.join(sandy.data.__path__[0], "h1.endf") - >>> endf6 = sandy.Endf6.from_file(file) - >>> file = os.path.join(sandy.data.__path__[0], "h1.pendf") - >>> pendf = sandy.Endf6.from_file(file) - >>> merged = endf6.merge_pendf(pendf) - >>> merged - MAT MF MT - 125 1 451 1.001000+3 9.991673-1 2 0 ... - 2 151 1.001000+3 9.991673-1 0 0 ... - 3 1 1.001000+3 9.991673-1 0 99 ... - 2 1.001000+3 9.991673-1 0 0 ... - 102 1.001000+3 9.991673-1 0 0 ... - 4 2 1.001000+3 9.991673-1 0 1 ... - 6 102 1.001000+3 9.991673-1 0 2 ... - 33 1 1.001000+3 9.991673-1 0 0 ... - 2 1.001000+3 9.991673-1 0 0 ... - 102 1.001000+3 9.991673-1 0 0 ... - dtype: object + Default run. + >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> out = endf6.get_gendf(temperature=293.6, minimal_processing=True) + >>> assert isinstance(out, sandy.Gendf) - The cross section in the merged file come from the pendf. - >>> assert merged.data[125, 3, 1] == pendf.data[125, 3, 1] - >>> assert merged.data[125, 3, 1] != endf6.data[125, 3, 1] + Test keyword `sigz` + >>> out = endf6.get_gendf(groupr_kws=dict(sigz=[1e10, 1e2])) + >>> assert 1e10 in sandy.gendf.read_mf1(out, 125)[sigz] + >>> assert 1e10 in sandy.gendf.read_mf1(out, 125)[sigz] + + Test keyword `iwt` + >>> g = endf6.get_gendf(groupr_kws=dict(iwt=3), dryrun=True) + >>> found = re.search('groupr(.*)moder', g, flags=re.DOTALL).group().splitlines() + assert "125 2 0 3 0 1 1 0 /" == found[2] + + Test keyword `ign` + >>> g = endf6.get_gendf(groupr_kws=dict(ign=3), dryrun=True) + >>> found = re.search('groupr(.*)moder', g, flags=re.DOTALL).group().splitlines() + assert "125 3 0 2 0 1 1 0 /" == found[2] + + Test keyword `ek` + >>> g = endf6.get_gendf(groupr_kws=dict(ek=sandy.energy_grids.CASMO12), dryrun=True) + >>> found = re.search('groupr(.*)moder', g, flags=re.DOTALL).group().splitlines() + >>> ek = np.array(list(map(float, found[7].replace("/", "").split()))) + >>> assert np.testing.array_allclose(ek, sandy.energy_grids.CASMO12, rtol=1e-14, atol=1e-14) + + Test groupr MFs and MTs for fissile and non-fissile nuclides + >>> g = endf6.get_gendf(dryrun=True) + >>> found = re.search('groupr(.*)moder', g, flags=re.DOTALL).group().splitlines() + assert " ".join(found[6:10]) == '3/ 3 251 / 0/ 0/' + U-238 test because it contains mubar, xs, chi and nubar + >>> endf6 = sandy.get_endf6_file('jeff_33','xs', 922380) + >>> g = endf6.get_gendf(dryrun=True) + >>> found = re.search('groupr(.*)moder', g, flags=re.DOTALL).group().splitlines() + >>> assert " ".join(found[6:15]) == '3/ 3 452 / 3 455 / 3 456 / 3 251 / 5/ 5 18 / 0/ 0/' - The new file is also a pendf. - >>> merged.kind - 'pendf' - """ - if pendf.kind != "pendf": - raise sandy.Error("given file is not a pendf") - section_3_endf6 = self.filter_by(listmf=[3]).data - section_3_pendf = pendf.filter_by(listmf=[3]).data - section_1451_pendf = pendf.filter_by(listmf=[1], listmt=[451]).data - return self.delete_sections(section_3_endf6) \ - .add_sections(section_3_pendf) \ - .add_sections(section_1451_pendf) + Test custom MTs + >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> g = endf6.get_gendf(dryrun=True, groupr_kws=dict(mt=4)) + >>> found = re.search('groupr(.*)moder', g, flags=re.DOTALL).group().splitlines() + assert " ".join(found[6:10]) == '3 4 / 3 251 / 0/ 0/' + >>> g = endf6.get_gendf(dryrun=True, groupr_kws=dict(mt=4)) + >>> found = re.search('groupr(.*)moder', g, flags=re.DOTALL).group().splitlines() + assert " ".join(found[6:11]) == '3 4 / 3 102 / 3 251 / 0/ 0/' + """ + groupr_kws = kwargs.get("groupr_kws", {}) + fission = 18 in self.get_records().query("MF==3").MT.values + groupr_kws["nubar"] = fission + groupr_kws["chi"] = fission + groupr_kws["mubar"] = True + kwargs["groupr_kws"] = groupr_kws + + # always activate groupr + kwargs["groupr"] = True + + # always deactivate acer + kwargs["acer"] = False + + with TemporaryDirectory() as td: + endf6file = os.path.join(td, "endf6_file") + self.to_file(endf6file) + outputs = sandy.njoy.process_neutron( + endf6file, + suffixes=[0], + **kwargs, + ) + if kwargs.get("dryrun", False): + return outputs # this contains the NJOY input + gendf = sandy.Gendf.from_text(outputs["gendf"]) + return gendf + @_handle_njoy_inputs + @_handle_groupr_inputs def get_errorr(self, - temperature=0, - njoy=None, - to_file=None, - verbose=False, - groupr=False, - err=0.005, nubar=True, mubar=True, chi=True, @@ -1707,73 +1750,17 @@ def get_errorr(self, ---------- chi : `bool`, optional Process the chi covariance (default is `True`) - groupr : `bool`, optional, default is `False` - option to generate covariances from a multigroup cross section - ..note:: this option is activated by default if `nubar=True` or - `chi=True` mubar : `bool`, optional Process the mubar covariance (default is `True`) - njoy : `str`, optional, default is `None` - NJOY executable, if `None` search in the system path. nubar : `bool`, optional Process the nubar covariance (default is `True`) - temperature : `float`, optional, default is `0`. - temperature of the cross sections in K. - If not given, stop the processing after RECONR (before BROADR). - to_file : `str`, optional, default is `None` - if not `None` write processed ERRORR data to file. - The name of the ERRORR file is the keyword argument. - verbose : `bool`, optional, default is `False` - flag to print NJOY input file to screen before running the - executable. xs : `bool`, optional Process the xs covariance (default is `True`) **kwargs : `dict` keyword argument to pass to `sandy.njoy.process`. - Parameters for RECONR - --------------------- - err : `float`, optional - reconstruction tolerance (default is 0.005) - - Parameters for GROUPR - --------------------- - ign_groupr : `int`, optional - neutron group option (default is 2, csewg 239-group structure) - ek_groupr : iterable, optional - derived cross section energy bounds - (default is `[1e-5, 2e7]` if `ign_groupr==1`) - sigz : iterable of `float` - sigma zero values. The default is 1.0e10. - iwt_groupr : `int`, optional - weight function option (default is 2, constant) - spectrum_groupr : iterable, optional - Weight function as a iterable (default is None) - - Parameters for ERRORR - --------------------- - ign_errorr : `int`, optional - neutron group option (default is 2, csewg 239-group structure) - ek_errorr : iterable, optional - derived cross section energy bounds - (default is `[1e-5, 2e7]` if `ign_errorr==1`) - iwt_errorr : `int`, optional - weight function option (default is 2, constant) spectrum_errorr : iterable, optional weight function as a iterable (default is None) - irespr: `int`, optional - processing for resonance parameter covariances - (default is 1, 1% sensitivity method) - mt: `int` or iterable of `int`, optional - list of MT reactions to be processed - - .. note:: this list will be used for all covariance types, i.e., - MF31, MF33, MF34, MF35. - If this is not the expected behavior, use keyword - arguments `nubar`, `xs`, `mubar` and `chi`. - - .. note:: keyword `mt` is currently incompatible with keyword - `groupr`. Returns ------- @@ -1788,178 +1775,71 @@ def get_errorr(self, Examples -------- - Test verbose keyword + Default run + >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 942410) + >>> out = endf6.get_errorr(temperature=300, minimal_processing=True, err=1, errorr_kws=dict(ign=3, mt=18)) + Check `ign` and `ek` + This test check also the type of each output + >>> assert out["errorr33"].get_xs().data.shape[0] == 30 + >>> assert out["errorr31"].get_xs().data.shape[0] == 30 + >>> assert out["errorr34"].get_xs().data.shape[0] == 30 + >>> assert out["errorr33"].get_xs().data.shape[0] == 30 + Check `ign` and `ek` >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> out = endf6.get_errorr(ek_errorr=sandy.energy_grids.CASMO12, verbose=True) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - errorr - -21 -22 0 33 0 / - 125 1 2 0 1 / - 0 0.0 / - 0 33 1/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - stop - - Test output type - >>> assert isinstance(out, sandy.Errorr) - - Test `ign` and `ek` - >>> assert out.get_xs().data[(125, 1)].size == 12 - - Test `to_file` - >>> out = endf6.get_errorr(to_file="out.err") - >>> assert os.path.isfile('out.err') - - Test groupr and errorr: - >>> out = endf6.get_errorr(verbose=True, groupr=True) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - groupr - -21 -22 0 -23 / - 125 2 0 2 0 1 1 0 / - 'sandy runs groupr' / - 0.0/ - 10000000000.0/ - 3/ - 0/ - 0/ - errorr - -21 0 -23 33 0 / - 125 2 2 0 1 / - 0 0.0 / - 0 33 1/ - stop - - Test groupr and errorr for neutron energy grids: - >>> out = endf6.get_errorr(ek_errorr=sandy.energy_grids.CASMO12, ek_groupr=sandy.energy_grids.CASMO12, verbose=True, groupr=True) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - groupr - -21 -22 0 -23 / - 125 1 0 2 0 1 1 0 / - 'sandy runs groupr' / - 0.0/ - 10000000000.0/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - 3/ - 0/ - 0/ - errorr - -21 0 -23 33 0 / - 125 1 2 0 1 / - 0 0.0 / - 0 33 1/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - stop - - Test groupr and errorr for neutron and photons energy grids: - >>> out = endf6.get_errorr(ek_groupr=sandy.energy_grids.CASMO12, ek_errorr=sandy.energy_grids.CASMO12, ep=sandy.energy_grids.CASMO12, verbose=True, groupr=True) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - groupr - -21 -22 0 -23 / - 125 1 1 2 0 1 1 0 / - 'sandy runs groupr' / - 0.0/ - 10000000000.0/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - 3/ - 0/ - 0/ - errorr - -21 0 -23 33 0 / - 125 1 2 0 1 / - 0 0.0 / - 0 33 1/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - stop - - U-238 test because it contains mubar, xs, chi and nubar: - >>> endf6 = sandy.get_endf6_file('jeff_33','xs', 922380) - >>> out = endf6.get_errorr(ek_errorr=sandy.energy_grids.CASMO12, ek_groupr=sandy.energy_grids.CASMO12, verbose=True, err=1) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 9237 0 0 / - 1 0. / - 0/ - groupr - -21 -22 0 -23 / - 9237 1 0 2 0 1 1 0 / - 'sandy runs groupr' / - 0.0/ - 10000000000.0/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - 3/ - 3 251 'mubar' / - 5/ - 5 18 'chi' / - 0/ - 0/ - errorr - -21 0 -23 31 0 / - 9237 1 2 0 1 / - 0 0.0 / - 0 31 1/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - errorr - -21 0 -23 33 0 / - 9237 1 2 0 1 / - 0 0.0 / - 0 33 1/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - errorr - -21 0 -23 35 0 / - 9237 1 2 0 1 / - 0 0.0 / - 0 35 1/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - errorr - -21 0 -23 34 0 / - 9237 1 2 0 1 / - 0 0.0 / - 0 34 1/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - stop + >>> out = endf6.get_errorr(errorr_kws=dict(ek=sandy.energy_grids.CASMO12)) + Check `mt` + assert out["errorr33"].get_xs().data.squeeze().name == (9443, 2) + assert out["errorr34"].get_xs().data.squeeze().name == (9443, 251) + columns = out["errorr31"].get_xs().data.columns + assert (9443, 452) in columns and (9443, 455) in columns and (9443, 456) in columns + + Check consistency between keywords errorr_kws and errorr33_kws + >>> ekws = dict(irespr=0, iwt=5, ek=[1e-5, 2e7], mt=(16, 18, 102)) + >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 942410) + >>> inp1 = e6.get_errorr(temperature=300, dryrun=True, xs=True, chi=False, nubar=False, mubar=False, errorr_kws=ekws) + >>> inp2 = e6.get_errorr(temperature=300, dryrun=True, xs=True, chi=False, nubar=False, mubar=False, errorr33_kws=ekws) + >>> inp3 = e6.get_errorr(temperature=300, dryrun=True, xs=True, chi=False, nubar=False, mubar=False) + >>> assert "groupr" not in inp1 and "groupr" not in inp2 and "groupr" not in inp3 + >>> assert inp1 == inp2 and inp1 != inp3 + Check consistency between keywords errorr_kws and errorr35_kws + >>> inp1 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=True, nubar=False, mubar=False, errorr_kws=ekws) + >>> inp2 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=True, nubar=False, mubar=False, errorr35_kws=ekws) + >>> inp3 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=True, nubar=False, mubar=False) + >>> assert "groupr" in inp1 and "groupr" in inp2 and "groupr" in inp3 + >>> assert inp1 == inp2 and inp1 != inp3 + Check consistency between keywords errorr_kws and errorr31_kws + >>> inp1 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=False, nubar=True, mubar=False, errorr_kws=ekws) + >>> inp2 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=False, nubar=True, mubar=False, errorr31_kws=ekws) + >>> inp3 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=False, nubar=True, mubar=False) + >>> assert inp1 == inp2 and inp1 != inp3 + >>> assert "groupr" in inp1 and "groupr" in inp2 and "groupr" in inp3 + Check consistency between keywords errorr_kws and errorr34_kws + >>> inp1 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=False, nubar=False, mubar=True, errorr_kws=ekws) + >>> inp2 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=False, nubar=False, mubar=True, errorr34_kws=ekws) + >>> inp3 = e6.get_errorr(temperature=300, dryrun=True, xs=False, chi=False, nubar=False, mubar=True) + >>> assert inp1 == inp2 and inp1 != inp3 + >>> assert "groupr" in inp1 and "groupr" in inp2 and "groupr" in inp3 + >>> inp1 = e6.get_errorr(temperature=300, dryrun=True, errorr_kws=ekws) + >>> inp2 = e6.get_errorr(temperature=300, dryrun=True, errorr33_kws=ekws, errorr31_kws=ekws, errorr34_kws=ekws, errorr35_kws=ekws) + >>> assert inp1 == inp2 + >>> assert "groupr" in inp1 and "groupr" in inp2 + + Check default options + >>> g = sandy.get_endf6_file("jeff_33", "xs", 10010).get_errorr(temperature=300, dryrun=True) + >>> found = re.search('errorr(.*)', g, flags=re.DOTALL).group().splitlines() + Check ign(2), iwt (2), iprint (0) and relative (1) options + >>> assert found[2] == '125 2 2 0 1 /' + Check temperature (300) option + >>> assert found[3] == '0 300.0 /' + Check irespr (1) option + >>> assert found[4] = '0 33 1/' + Check options changes + >>> ekws = dict(ign=3, iwt=5, iprint=True, relative=False) + >>> g = sandy.get_endf6_file("jeff_33", "xs", 10010).get_errorr(temperature=400, dryrun=True) + >>> found = re.search('errorr(.*)', g, flags=re.DOTALL).group().splitlines() + >>> assert found[2] == '125 3 5 1 0 /' + >>> assert found[3] == '0 400.0 /' + >>> assert found[4] = '0 33 0/' Test spectrum: >>> spect = [1.000000e-5, 2.00000000, 3.000000e-2, 2.00000000, 5.800000e-2, 4.00000000, 3, 1] @@ -1985,551 +1865,89 @@ def get_errorr(self, 3.00000000 1.00000000 / stop - - - >>> spect_g = [1.000000e-5, 1.00000000, 3.000000e-2, 2.00000000, 5.800000e-2, 3.00000000, 3, 2] - >>> out = endf6.get_errorr(spectrum_errorr=spect, spectrum_groupr=spect_g, ek_errorr=[1.000000e-5, 3.000000e-2, 5.800000e-2, 3], ek_groupr=[1.000000e-5, 3.000000e-2, 5.800000e-2, 3], verbose=True, nubar=False, chi=False, mubar=False, groupr=True) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 9237 0 0 / - 0.005 0. / - 0/ - groupr - -21 -22 0 -23 / - 9237 1 0 1 0 1 1 0 / - 'sandy runs groupr' / - 0.0/ - 10000000000.0/ - 3 / - 1.00000e-05 3.00000e-02 5.80000e-02 3.00000e+00 / - 0.00000000 0.00000000 0 0 1 4 - 4 1 - 1.000000-5 1.00000000 3.000000-2 2.00000000 5.800000-2 3.00000000 - 3.00000000 2.00000000 - / - 3/ - 0/ - 0/ - errorr - -21 0 -23 33 0 / - 9237 1 1 0 1 / - 0 0.0 / - 0 33 1/ - 3 / - 1.00000e-05 3.00000e-02 5.80000e-02 3.00000e+00 / - 0.00000000 0.00000000 0 0 1 4 - 4 1 - 1.000000-5 2.00000000 3.000000-2 2.00000000 5.800000-2 4.00000000 - 3.00000000 1.00000000 - / - stop - - Test irespr: - out = endf6.get_errorr(spectrum_errorr=spect, ek_errorr=[1.000000e-5, 3.000000e-2, 5.800000e-2, 3], verbose=True, nubar=False, chi=False, mubar=False, irespr=0) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - errorr - -21 -22 0 33 0 / - 125 1 1 0 1 / - 0 0.0 / - 0 33 0/ - 3 / - 1.00000e-05 3.00000e-02 5.80000e-02 3.00000e+00 / - 1.000000-5 2.00000000 3.000000-2 2.00000000 5.800000-2 4.00000000 3.00000000 1.00000000 - / - stop - - Test for MT: - >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> out = endf6.get_errorr(verbose=True, mt=[1, 2], ek_errorr=sandy.energy_grids.CASMO12) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - errorr - -21 -22 0 33 0 / - 125 1 2 0 1 / - 0 0.0 / - 1 33 1/ - 2 0 / - 1 2 / - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - stop - - Keywords `mt` and `groupr` are incompatible - >>> with pytest.raises(sandy.SandyError): - ... sandy.get_endf6_file("jeff_33", "xs", 10010).get_errorr(err=1, mt=1, groupr=True) - - Test content of output `Errorr` file - >>> out = sandy.get_endf6_file('jeff_33', "xs", 922350).get_errorr(err=1., irespr=0, mubar=False, chi=False) - >>> keys = [(9228, 1, 451), (9228, 3, 456), (9228, 33, 456), (9228, 3, 1), (9228, 3, 2), (9228, 3, 4), (9228, 3, 16), (9228, 3, 17), (9228, 3, 18), (9228, 3, 37), (9228, 3, 102), (9228, 33, 1), (9228, 33, 2), (9228, 33, 4), (9228, 33, 16), (9228, 33, 17), (9228, 33, 18), (9228, 33, 37), (9228, 33, 102)] - >>> for key in keys: assert key in out.data """ - kwds_njoy = kwargs.copy() - if float(temperature) == 0: - kwds_njoy["broadr"] = False - kwds_njoy["thermr"] = False - kwds_njoy["gaspr"] = False - kwds_njoy["heatr"] = False - kwds_njoy["purr"] = False - kwds_njoy["unresr"] = False - kwds_njoy['keep_pendf'] = False - else: - kwds_njoy["broadr"] = True - kwds_njoy["thermr"] = kwds_njoy.get("thermr", False) - kwds_njoy["gaspr"] = kwds_njoy.get("gaspr", False) - kwds_njoy["heatr"] = kwds_njoy.get("heatr", False) - kwds_njoy["purr"] = kwds_njoy.get("purr", False) - kwds_njoy["unresr"] = kwds_njoy.get("unresr", False) - kwds_njoy['keep_pendf'] = kwds_njoy.get('keep_pendf', False) - - cov_info = self.covariance_info(nubar=nubar, xs=xs, - mubar=mubar, chi=chi) - if not np.any(list(cov_info.values())): - return # no covariance found or wanted - kwds_njoy.update(cov_info) - - # Mandatory groupr module activation - groupr_ = True if (kwds_njoy["nubar"] or kwds_njoy["chi"] or "ek_groupr" in kwds_njoy or "spectrum_groupr" in kwds_njoy) else groupr + # Activate specific errorr module according to covariance info and input options + mf31 = self.get_records().query("MF==31") + errorr31 = False if mf31.empty else nubar + mf33 = self.get_records().query("MF==33") + errorr33 = False if mf33.empty else xs + mf34 = self.get_records().query("MF==34") + errorr34 = False if mf34.empty else mubar + mf35 = self.get_records().query("MF==35") + errorr35 = False if mf35.empty else chi + kwargs.update(dict( + errorr31=errorr31, + errorr33=errorr33, + errorr34=errorr34, + errorr35=errorr35, + )) + + # Activate groupr if errorr requires multigroup data + groupr = kwargs.get("groupr", False) + if errorr35 or errorr34 or errorr31: + groupr = True + kwargs["groupr"] = groupr + kwargs["groupr"] = True + + # Always deactivate acer + kwargs["acer"] = False + + # keyword arguments in error_kws, if any, overwrite the others + errorr_kws = kwargs.get("errorr_kws", {}) + errorr31_kws = kwargs.get("errorr31_kws", {}) + errorr31_kws.update(**errorr_kws) + errorr33_kws = kwargs.get("errorr33_kws", {}) + errorr33_kws.update(**errorr_kws) + errorr34_kws = kwargs.get("errorr34_kws", {}) + errorr34_kws.update(**errorr_kws) + errorr35_kws = kwargs.get("errorr35_kws", {}) + errorr35_kws.update(**errorr_kws) + kwargs.update(dict( + errorr31_kws=errorr31_kws, + errorr33_kws=errorr33_kws, + errorr34_kws=errorr34_kws, + errorr35_kws=errorr35_kws, + )) with TemporaryDirectory() as td: endf6file = os.path.join(td, "endf6_file") self.to_file(endf6file) - outputs = sandy.njoy.process( + # update kwargs, or else error because multiple keyword argument + outputs = sandy.njoy.process_neutron( endf6file, - errorr=True, - acer=False, - verbose=verbose, - temperatures=[temperature], suffixes=[0], - err=err, - groupr=groupr_, - **kwds_njoy, - )[2] - seq = map(sandy.Errorr.from_file, outputs.values()) - errorr = reduce(lambda x, y: x.merge(y), seq) - if to_file: - errorr.to_file(to_file) - return errorr - - def get_gendf(self, - temperature=293.6, - njoy=None, - to_file=None, - verbose=False, - err=0.005, - nubar=False, - xs=True, - mubar=False, - chi=False, - **kwargs): - """ - Process `Endf6` instance into a Gendf file using NJOY. - - Parameters - ---------- - temperature : `float`, optional, default is `293.6`. - temperature of the cross sections in K. - If not given, stop the processing after RECONR (before BROADR). - njoy : `str`, optional, default is `None` - NJOY executable, if `None` search in the system path. - to_file : `str`, optional, default is `None` - if not `None` write processed GENDF data to file. - The name of the GENDF file is the keyword argument. - verbose : `bool`, optional, default is `False` - flag to print NJOY input file to screen before running the - executable. - broadr : `bool`, optional, default is `True` - option to generate gendf file with Doppler-broadened cross sections - **kwargs : `dict` - keyword argument to pass to `sandy.njoy.process`. - - Parameters for RECONR and BROADR - -------------------------------- - err : `float`, optional - reconstruction tolerance (default is 0.005) - - Parameters for GROUPR - --------------------- - chi : `bool`, optional - Proccess the chi covariance(default is `False`) - ign : `int`, optional - neutron group option (default is 2, csewg 239-group structure) - iwt_groupr : `int`, optional - weight function option (default is 2, constant) - mubar : `bool`, optional - Proccess multigroup mubar (default is `False`) - mt: `int` or iterable of `int`, optional - run groupr only for the selected MT numbers - nubar : `bool`, optional - Proccess multigroup nubar (default is `False`) - nuclide_production : `bool`, optional - process multigroup activation yields (default is `False`) - spectrum_groupr : iterable, optional - Weight function as a iterable (default is None) - sigz : iterable of `float` - sigma zero values. The default is 1.0e10. - xs : `bool`, optional - Proccess multigroup xs (default is `True`) - - Returns - ------- - gendf : `sandy.Gendf` - Gendf object - - Examples - -------- - Default test - >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> out = endf6.get_gendf(verbose=True) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - broadr - -21 -22 -23 / - 125 1 0 0 0. / - 0.005 / - 293.6 / - 0 / - groupr - -21 -23 0 -24 / - 125 2 0 2 0 1 1 0 / - 'sandy runs groupr' / - 293.6/ - 10000000000.0/ - 3/ - 0/ - 0/ - moder - -24 32 / - stop - - Test keyword `sigz` - >>> out = endf6.get_gendf(verbose=True, sigz=[1.0e10, 1e2]) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - broadr - -21 -22 -23 / - 125 1 0 0 0. / - 0.005 / - 293.6 / - 0 / - groupr - -21 -23 0 -24 / - 125 2 0 2 0 1 2 0 / - 'sandy runs groupr' / - 293.6/ - 10000000000.0 100.0/ - 3/ - 0/ - 0/ - moder - -24 32 / - stop - - Test keyword `iwt_groupr` - >>> out = endf6.get_gendf(verbose=True, iwt_groupr=3) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - broadr - -21 -22 -23 / - 125 1 0 0 0. / - 0.005 / - 293.6 / - 0 / - groupr - -21 -23 0 -24 / - 125 2 0 3 0 1 1 0 / - 'sandy runs groupr' / - 293.6/ - 10000000000.0/ - 3/ - 0/ - 0/ - moder - -24 32 / - stop - - Test keyword `ign_groupr` - >>> out = endf6.get_gendf(verbose=True, ign_groupr=3) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - broadr - -21 -22 -23 / - 125 1 0 0 0. / - 0.005 / - 293.6 / - 0 / - groupr - -21 -23 0 -24 / - 125 3 0 2 0 1 1 0 / - 'sandy runs groupr' / - 293.6/ - 10000000000.0/ - 3/ - 0/ - 0/ - moder - -24 32 / - stop - - Test keyword `to_file` - >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> out = endf6.get_gendf(to_file="out.gendf") - >>> assert os.path.isfile('out.gendf') - - Test keyword `ek_groupr` - >>> out = endf6.get_gendf(verbose=True, ek_groupr=sandy.energy_grids.CASMO12) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - broadr - -21 -22 -23 / - 125 1 0 0 0. / - 0.005 / - 293.6 / - 0 / - groupr - -21 -23 0 -24 / - 125 1 0 2 0 1 1 0 / - 'sandy runs groupr' / - 293.6/ - 10000000000.0/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - 3/ - 0/ - 0/ - moder - -24 32 / - stop - - U-238 test because it contains mubar, xs, chi and nubar: - >>> endf6 = sandy.get_endf6_file('jeff_33','xs', 922380) - >>> out = endf6.get_gendf(ek_groupr=sandy.energy_grids.CASMO12, verbose=True, err=1, nubar=True, mubar=True, chi=True) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 9237 0 0 / - 1 0. / - 0/ - broadr - -21 -22 -23 / - 9237 1 0 0 0. / - 1 / - 293.6 / - 0 / - groupr - -21 -23 0 -24 / - 9237 1 0 2 0 1 1 0 / - 'sandy runs groupr' / - 293.6/ - 10000000000.0/ - 12 / - 1.00000e-05 3.00000e-02 5.80000e-02 1.40000e-01 2.80000e-01 3.50000e-01 6.25000e-01 4.00000e+00 4.80520e+01 5.53000e+03 8.21000e+05 2.23100e+06 1.00000e+07 / - 3/ - 3 251 'mubar' / - 5/ - 5 18 'chi' / - 0/ - 0/ - moder - -24 32 / - stop - - Test keyword `spectrum_groupr` - >>> endf6 = sandy.get_endf6_file('jeff_33','xs', 10010) - >>> spect = [1.000000e-5, 2.00000000, 3.000000e-2, 2.00000000, 5.800000e-2, 4.00000000, 3, 1] - >>> out = endf6.get_gendf(spectrum_groupr=spect, ek_groupr=[1.000000e-5, 3.000000e-2, 5.800000e-2, 3], verbose=True, nubar=False, chi=False, mubar=False) - moder - 20 -21 / - reconr - -21 -22 / - 'sandy runs njoy'/ - 125 0 0 / - 0.005 0. / - 0/ - broadr - -21 -22 -23 / - 125 1 0 0 0. / - 0.005 / - 293.6 / - 0 / - groupr - -21 -23 0 -24 / - 125 1 0 1 0 1 1 0 / - 'sandy runs groupr' / - 293.6/ - 10000000000.0/ - 3 / - 1.00000e-05 3.00000e-02 5.80000e-02 3.00000e+00 / - 0.00000000 0.00000000 0 0 1 4 - 4 1 - 1.000000-5 2.00000000 3.000000-2 2.00000000 5.800000-2 4.00000000 - 3.00000000 1.00000000 - / - 3/ - 0/ - 0/ - moder - -24 32 / - stop - """ - kwds_njoy = kwargs.copy() - if float(temperature) == 0: - kwds_njoy["broadr"] = False - kwds_njoy["thermr"] = False - kwds_njoy["gaspr"] = False - kwds_njoy["heatr"] = False - kwds_njoy["purr"] = False - kwds_njoy["unresr"] = False - kwds_njoy['keep_pendf'] = False - else: - kwds_njoy["broadr"] = True - kwds_njoy["thermr"] = kwds_njoy.get("thermr", False) - kwds_njoy["gaspr"] = kwds_njoy.get("gaspr", False) - kwds_njoy["heatr"] = kwds_njoy.get("heatr", False) - kwds_njoy["purr"] = kwds_njoy.get("purr", False) - kwds_njoy["unresr"] = kwds_njoy.get("unresr", False) - kwds_njoy['keep_pendf'] = kwds_njoy.get('keep_pendf', False) - - kwds_njoy["acer"] = False - kwds_njoy["keep_pendf"] = False - - kwds_njoy["nubar"] = nubar - kwds_njoy["xs"] = xs - kwds_njoy["chi"] = chi - kwds_njoy["mubar"] = mubar + **kwargs, + ) + if kwargs.get("dryrun", False): + return outputs # this contains the NJOY input + outputs = {k: sandy.Errorr.from_text(v) for k, v in outputs.items() if "errorr" in k} + return outputs - with TemporaryDirectory() as td: - endf6file = os.path.join(td, "endf6_file") - self.to_file(endf6file) - outputs = sandy.njoy.process( - endf6file, - groupr=True, - verbose=verbose, - temperatures=[temperature], - suffixes=[0], - err=err, - **kwds_njoy, - )[2] # keep only gendf filename - gendf_file = outputs["tape32"] - groupr = sandy.Groupr.from_file(gendf_file) - if to_file: - groupr.to_file(to_file) - return groupr - - def covariance_info(self, nubar=True, xs=True, mubar=True, chi=True): + def get_records(self): """ - Check the covariance information in the formatted file. - - Parameters - ---------- - nubar : `bool`, optional - default parameter for MF31 (default is `True`) - it will overwrite what found in the file - xs : `bool`, optional - default parameter for MF33 (default is `True`) - it will overwrite what found in the file - mubar : `bool`, optional - default parameter for MF34 (default is `True`) - it will overwrite what found in the file - chi : `bool`, optional - default parameter for MF35 (default is `True`) - it will overwrite what found in the file + Extract MAT, MF and MT combinations avaialbel in the file and + report it in tabulated format. Returns ------- - cov_info : `dict` - dictionary reporting if covariances were found. - - Notes - ----- - .. note:: this method only works with MF31, MF33, MF34 and MF35 + df : `pd.DataFrame` + Dataframe with MAT, MF and MT as columns. Examples -------- - Check file contatining MF31, MF33, MF34 and MF35 - >>> endf6 = sandy.get_endf6_file('jeff_33', 'xs', 922380) - >>> endf6.covariance_info() - {'nubar': True, 'xs': True, 'mubar': True, 'chi': True} - - Set all values to `False` - >>> endf6.covariance_info(xs=False, mubar=False, chi=False, nubar=False) - {'nubar': False, 'xs': False, 'mubar': False, 'chi': False} - - 2nd example without MF34 - >>> endf6 = sandy.get_endf6_file('jeff_33', 'xs', 922350) - >>> endf6.covariance_info() - {'nubar': True, 'xs': True, 'mubar': False, 'chi': True} - - If MF34 is not found, setting `mubar=True` won't change anything' - >>> endf6 = sandy.get_endf6_file('jeff_33', 'xs', 922350) - >>> endf6.covariance_info(mubar=True) - {'nubar': True, 'xs': True, 'mubar': False, 'chi': True} - - All infos are `False` if no covariance is found - >>> endf6 = sandy.get_endf6_file('jeff_33', 'xs', 10030) - >>> endf6.covariance_info() - {'nubar': False, 'xs': False, 'mubar': False, 'chi': False} + Short test for hydrogen + >>> sandy.get_endf6_file("jeff_33", "xs", 10010).get_records() + MAT MF MT + 0 125 1 451 + 1 125 2 151 + 2 125 3 1 + 3 125 3 2 + 4 125 3 102 + 5 125 4 2 + 6 125 6 102 + 7 125 33 1 + 8 125 33 2 + 9 125 33 102 """ - supported_mf = [31, 33, 34, 35] - endf6_cov_mf = self.to_series().index.get_level_values("MF")\ - .intersection(supported_mf) - - run_nubar = True if 31 in endf6_cov_mf else False - run_xs = True if 33 in endf6_cov_mf else False - run_mubar = True if 34 in endf6_cov_mf else False - run_chi = True if 35 in endf6_cov_mf else False - - cov_info = { - 'nubar': run_nubar if nubar else False, - 'xs': run_xs if xs else False, - 'mubar': run_mubar if mubar else False, - 'chi': run_chi if chi else False, - } - return cov_info + df = self.to_series().rename("TEXT").reset_index().drop("TEXT", axis=1) + return df diff --git a/sandy/core/xs.py b/sandy/core/xs.py index 0373268a..b0116322 100644 --- a/sandy/core/xs.py +++ b/sandy/core/xs.py @@ -434,6 +434,63 @@ def _perturb(self, pert, method=2, **kwargs): frame[mat,mt] = xs return Xs(frame).reconstruct_sums() + def perturb(self, s): + """ + Apply perturbations to cross sections. + + Parameters + ---------- + s : `pd.DataFrame` + input perturbations or samples. Index and columns must have the + same names and be the same type as in `self.data`. + + Returns + ------- + xs : :func:`~Xs` + perturbed cross section object. + + Examples + -------- + >>> index = pd.IntervalIndex.from_breaks([1e-5, 3e7], name="E", closed="right") + >>> columns = pd.MultiIndex.from_product([[9437], [2, 4]], names=["MAT", "MT"]) + >>> s = pd.DataFrame(1, index=index, columns=columns) + >>> xp = xs.perturb(s) + >>> assert xp.data.equals(xs.data) + + >>> s = pd.DataFrame([[1, 2]], index=index, columns=columns) + >>> xp = xs.perturb(s) + >>> assert not xp.data.equals(xs.data) + >>> assert xp.data.loc[:, xp.data.columns != (9437, 4)].equals(xp.data.loc[:, xs.data.columns != (9437, 4)]) + >>> assert xp.data[(9437, 4)].equals(xs.data[(9437, 4)] * 2) + + >>> index = pd.IntervalIndex.from_breaks([1e-5, 2e7], name="E", closed="right") + >>> columns = pd.MultiIndex.from_product([[9437], [2, 4]], names=["MAT", "MT"]) + >>> s = pd.DataFrame([[1, 2]], index=index, columns=columns) + >>> xp = xs.perturb(s) + >>> assert not xp.data.equals(xs.data) + >>> assert xp.data.loc[:, xp.data.columns != (9437, 4)].equals(xp.data.loc[:, xs.data.columns != (9437, 4)]) + >>> assert xp.data.loc[:2e7, (9437, 4)].equals(xs.data.loc[:2e7, (9437, 4)] * 2) + >>> assert xp.data.loc[2e7:, (9437, 4)].iloc[1:].equals(xs.data.loc[2e7:, (9437, 4)].iloc[1:]) + """ + x = self.data + + # reshape indices (energy) + idx = s.index.get_indexer(x.index) + # need to copy, or else it returns a view + # seed https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + s_ = s.iloc[idx].copy() + s_.index = x.index + s_.loc[idx < 0, :] = 1. # idx = -1 indicates out of range lines + + # reshape columns (MAT and MT) + idx = s_.columns.get_indexer(x.columns) + s_ = s_.iloc[:, idx] + s_.columns = x.columns + s_.loc[:, idx < 0] = 1. # idx = -1 indicates out of range lines + + xs = self.__class__(s_ * x) + return xs + @classmethod def _from_errorr(cls, errorr): """ diff --git a/sandy/errorr.py b/sandy/errorr.py index dbd6e23e..da1c9a2f 100644 --- a/sandy/errorr.py +++ b/sandy/errorr.py @@ -15,11 +15,21 @@ class Errorr(_FormattedFile): """ Container for ERRORR file text grouped by MAT, MF and MT numbers. + + Methods + ------- + get_cov + Extract mulitgroup covariance matrix. + get_energy_grid + Extract breaks of multi-group energy grid from ERRORR output file. + get_xs + Extract multigroup xs values. """ def get_energy_grid(self, **kwargs): """ - Obtaining the energy grid. + Extract breaks of multi-group energy grid from ERRORR + output file. Parameters ---------- @@ -33,17 +43,11 @@ def get_energy_grid(self, **kwargs): Examples -------- - >>> endf6_2 = sandy.get_endf6_file("jeff_33", "xs", 942410) - >>> err = endf6_2.get_errorr(ek_errorr=sandy.energy_grids.CASMO12, err=1, ek_groupr=sandy.energy_grids.CASMO12) - >>> err.get_energy_grid() - array([1.0000e-05, 3.0000e-02, 5.8000e-02, 1.4000e-01, 2.8000e-01, - 3.5000e-01, 6.2500e-01, 4.0000e+00, 4.8052e+01, 5.5300e+03, - 8.2100e+05, 2.2310e+06, 1.0000e+07]) - - >>> err.get_energy_grid(mat=9443) - array([1.0000e-05, 3.0000e-02, 5.8000e-02, 1.4000e-01, 2.8000e-01, - 3.5000e-01, 6.2500e-01, 4.0000e+00, 4.8052e+01, 5.5300e+03, - 8.2100e+05, 2.2310e+06, 1.0000e+07]) + >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> ek = sandy.energy_grids.CASMO12 + >>> err = e6.get_errorr(errorr_kws=dict(ek=ek), err=1)['errorr33'] + >>> np.testing.assert_allclose(err.get_energy_grid(), ek, atol=1e-14, rtol=1e-14) + >>> np.testing.assert_allclose(err.get_energy_grid(mat=125), ek, atol=1e-14, rtol=1e-14) """ mat_ = kwargs.get('mat', self.mat[0]) mf1 = read_mf1(self, mat_) @@ -51,7 +55,7 @@ def get_energy_grid(self, **kwargs): def get_xs(self, **kwargs): """ - Obtain the xs values across the energy grid. + Extract multigroup xs values. Returns ------- @@ -60,8 +64,9 @@ def get_xs(self, **kwargs): Examples -------- - >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> err = endf6.get_errorr(ek_errorr=sandy.energy_grids.CASMO12, err=1) + >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> ek = sandy.energy_grids.CASMO12 + >>> err = e6.get_errorr(err=1, errorr_kws=dict(ek=ek))['errorr33'] >>> err.get_xs() MAT 125 MT 1 2 102 @@ -143,9 +148,10 @@ def get_cov(self, multigroup=True): Examples -------- - >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> err = endf6.get_errorr(ek_errorr=[1e-2, 1e1, 2e7], err=1) - >>> err.get_cov().data + >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> err = e6.get_errorr(errorr_kws=dict(ek=[1e-2, 1e1, 2e7]), err=1)['errorr33'] + >>> datamg = err.get_cov().data + >>> datamg MAT1 125 MT1 1 2 102 E1 (0.01, 10.0] (10.0, 20000000.0] (0.01, 10.0] (10.0, 20000000.0] (0.01, 10.0] (10.0, 20000000.0] @@ -157,20 +163,15 @@ def get_cov(self, multigroup=True): 102 (0.01, 10.0] 1.07035e-06 7.58742e-09 0.00000e+00 0.00000e+00 6.51764e-04 3.40163e-04 (10.0, 20000000.0] 5.58627e-07 1.49541e-06 0.00000e+00 0.00000e+00 3.40163e-04 6.70431e-02 - >>> err.get_cov(multigroup=False).data - MAT1 125 - MT1 1 2 102 - E1 1.00000e-02 1.00000e+01 2.00000e+07 1.00000e-02 1.00000e+01 2.00000e+07 1.00000e-02 1.00000e+01 2.00000e+07 - MAT MT E - 125 1 1.00000e-02 8.74838e-06 4.62556e-05 0.00000e+00 8.76101e-06 4.62566e-05 0.00000e+00 1.07035e-06 5.58627e-07 0.00000e+00 - 1.00000e+01 4.62556e-05 2.47644e-04 0.00000e+00 4.63317e-05 2.47650e-04 0.00000e+00 7.58742e-09 1.49541e-06 0.00000e+00 - 2.00000e+07 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 - 2 1.00000e-02 8.76101e-06 4.63317e-05 0.00000e+00 8.77542e-06 4.63327e-05 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 - 1.00000e+01 4.62566e-05 2.47650e-04 0.00000e+00 4.63327e-05 2.47655e-04 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 - 2.00000e+07 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 - 102 1.00000e-02 1.07035e-06 7.58742e-09 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 6.51764e-04 3.40163e-04 0.00000e+00 - 1.00000e+01 5.58627e-07 1.49541e-06 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.40163e-04 6.70431e-02 0.00000e+00 - 2.00000e+07 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 + >>> data = err.get_cov(multigroup=False).data + >>> np.testing.assert_array_equal( + ... data.index.get_level_values("E").unique()[:-1], + ... datamg.index.get_level_values("E").left.unique(), + ... ) + >>> np.testing.assert_array_equal( + ... data.index.get_level_values("E").unique()[1:], + ... datamg.index.get_level_values("E").right.unique(), + ... ) """ eg = self.get_energy_grid() if multigroup: @@ -207,14 +208,14 @@ def read_mf1(tape, mat): """ Parse MAT/MF=1/MT=451 section from `sandy.Errorr` object and return structured content in nested dcitionaries. + Parameters ---------- tape : `sandy.Errorr` endf6 object containing requested section mat : `int` MAT number - mt : `int` - MT number + Returns ------- out : `dict` @@ -248,6 +249,7 @@ def read_mf3(tape, mat, mt): """ Parse MAT/MF=33/MT section from `sandy.Errorr` object and return structured content in nested dcitionaries. + Parameters ---------- tape : `sandy.Errorr` @@ -256,6 +258,7 @@ def read_mf3(tape, mat, mt): MAT number mt : `int` MT number + Returns ------- out : `dict` @@ -281,6 +284,7 @@ def read_mf33(tape, mat, mt): """ Parse MAT/MF=33/MT section from `sandy.Errorr` object and return structured content in nested dcitionaries. + Parameters ---------- tape : `sandy.Errorr` @@ -289,6 +293,7 @@ def read_mf33(tape, mat, mt): MAT number mt : `int` MT number + Returns ------- out : `dict` diff --git a/sandy/groupr.py b/sandy/gendf.py similarity index 81% rename from sandy/groupr.py rename to sandy/gendf.py index b3b64817..2ca5c94e 100644 --- a/sandy/groupr.py +++ b/sandy/gendf.py @@ -6,15 +6,15 @@ __author__ = "Luca Fiorito" __all__ = [ - "Groupr", + "Gendf", ] pd.options.display.float_format = '{:.5e}'.format -class Groupr(_FormattedFile): +class Gendf(_FormattedFile): """ - Container for groupr information grouped by MAT, MF and MT numbers. + Container for gendf information grouped by MAT, MF and MT numbers. """ def get_n_energy_grid(self, **kwargs): @@ -24,21 +24,18 @@ def get_n_energy_grid(self, **kwargs): Returns ------- `np.array` - The energy grid of the `sandy.Groupr` object. + The energy grid of the :func:`~sandy.Gendf` object. Examples -------- >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> groupr = endf6.get_gendf(verborse=True) - >>> len(groupr.get_n_energy_grid()) - 241 + >>> gendf = endf6.get_gendf(verborse=True) + >>> assert len(gendf.get_n_energy_grid()) == 241 >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> groupr = endf6.get_gendf(verborse=True, ek_groupr=sandy.energy_grids.CASMO12) - >>> groupr.get_n_energy_grid() - array([1.0000e-05, 3.0000e-02, 5.8000e-02, 1.4000e-01, 2.8000e-01, - 3.5000e-01, 6.2500e-01, 4.0000e+00, 4.8052e+01, 5.5300e+03, - 8.2100e+05, 2.2310e+06, 1.0000e+07]) + >>> gendf = endf6.get_gendf(groupr_kws=dict(ek=sandy.energy_grids.CASMO12)) + >>> np.testing.assert_allclose(gendf.get_n_energy_grid(), sandy.energy_grids.CASMO12, atol=1e-14, rtol=1e-14) + >>> np.testing.assert_allclose(gendf.get_n_energy_grid(mat=125), sandy.energy_grids.CASMO12, atol=1e-14, rtol=1e-14) """ mat_ = kwargs.get('mat', self.mat[0]) mf1 = read_mf1(self, mat_) @@ -51,21 +48,14 @@ def get_g_energy_grid(self, **kwargs): Returns ------- `np.array` - The energy grid of the `sandy.Gendf` object. + The energy grid of the :func:`~sandy.Gendf` object. Examples -------- >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> groupr = endf6.get_gendf(verborse=True, ep=sandy.energy_grids.CASMO12) - >>> groupr.get_g_energy_grid() - array([1.0000e-05, 3.0000e-02, 5.8000e-02, 1.4000e-01, 2.8000e-01, - 3.5000e-01, 6.2500e-01, 4.0000e+00, 4.8052e+01, 5.5300e+03, - 8.2100e+05, 2.2310e+06, 1.0000e+07]) - - >>> groupr.get_g_energy_grid(mat=125) - array([1.0000e-05, 3.0000e-02, 5.8000e-02, 1.4000e-01, 2.8000e-01, - 3.5000e-01, 6.2500e-01, 4.0000e+00, 4.8052e+01, 5.5300e+03, - 8.2100e+05, 2.2310e+06, 1.0000e+07]) + >>> gendf = endf6.get_gendf(groupr_kws=dict(ep=sandy.energy_grids.CASMO12)) + >>> np.testing.assert_allclose(gendf.get_g_energy_grid(), sandy.energy_grids.CASMO12, atol=1e-14, rtol=1e-14) + >>> np.testing.assert_allclose(gendf.get_g_energy_grid(mat=125), sandy.energy_grids.CASMO12, atol=1e-14, rtol=1e-14) """ mat_ = kwargs.get('mat', self.mat[0]) mf1 = read_mf1(self, mat_) @@ -77,31 +67,31 @@ def get_xs(self, **kwargs): Returns ------- - xs : `sandy.Xs` + xs : :func:`~sandy.Xs` multigroup cross sections Examples -------- >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> groupr = endf6.get_gendf(verborse=True, ek_groupr=sandy.energy_grids.CASMO12) - >>> groupr.get_xs() - MAT 125 - MT 1 2 102 - E - (1e-05, 0.03] 4.74500e+01 4.68507e+01 5.99276e-01 - (0.03, 0.058] 2.66592e+01 2.64039e+01 2.55277e-01 - (0.058, 0.14] 2.33852e+01 2.32133e+01 1.71860e-01 - (0.14, 0.28] 2.18356e+01 2.17186e+01 1.17013e-01 - (0.28, 0.35] 2.13559e+01 2.12616e+01 9.43025e-02 - (0.35, 0.625] 2.10611e+01 2.09845e+01 7.66054e-02 - (0.625, 4.0] 2.06169e+01 2.05790e+01 3.79424e-02 - (4.0, 48.052] 2.04594e+01 2.04475e+01 1.18527e-02 - (48.052, 5530.0] 2.00729e+01 2.00716e+01 1.28270e-03 - (5530.0, 821000.0] 8.05819e+00 8.05812e+00 6.41591e-05 - (821000.0, 2231000.0] 3.48869e+00 3.48866e+00 3.54245e-05 - (2231000.0, 10000000.0] 1.52409e+00 1.52406e+00 3.44005e-05 - - >>> groupr.get_xs(mt=1) + >>> gendf = endf6.get_gendf(minimal_processing=True, err=0.005, temperature=293.6, groupr_kws=dict(ek=sandy.energy_grids.CASMO12)) + >>> gendf.get_xs() + MAT 125 + MT 1 2 102 251 + E + (1e-05, 0.03] 4.74500e+01 4.68507e+01 5.99276e-01 6.67348e-01 + (0.03, 0.058] 2.66592e+01 2.64039e+01 2.55277e-01 6.67289e-01 + (0.058, 0.14] 2.33852e+01 2.32133e+01 1.71860e-01 6.67323e-01 + (0.14, 0.28] 2.18356e+01 2.17186e+01 1.17013e-01 6.67259e-01 + (0.28, 0.35] 2.13559e+01 2.12616e+01 9.43025e-02 6.67231e-01 + (0.35, 0.625] 2.10611e+01 2.09845e+01 7.66054e-02 6.67220e-01 + (0.625, 4.0] 2.06169e+01 2.05790e+01 3.79424e-02 6.67215e-01 + (4.0, 48.052] 2.04594e+01 2.04475e+01 1.18527e-02 6.67220e-01 + (48.052, 5530.0] 2.00729e+01 2.00716e+01 1.28270e-03 6.67237e-01 + (5530.0, 821000.0] 8.05819e+00 8.05812e+00 6.41591e-05 6.67120e-01 + (821000.0, 2231000.0] 3.48869e+00 3.48866e+00 3.54245e-05 6.66838e-01 + (2231000.0, 10000000.0] 1.52409e+00 1.52406e+00 3.44005e-05 6.65044e-01 + + >>> gendf.get_xs(mt=1) MAT 125 MT 1 E @@ -118,7 +108,7 @@ def get_xs(self, **kwargs): (821000.0, 2231000.0] 3.48869e+00 (2231000.0, 10000000.0] 1.52409e+00 - >>> groupr.get_xs(mt=[1, 2]) + >>> gendf.get_xs(mt=[1, 2]) MAT 125 MT 1 2 E @@ -135,9 +125,10 @@ def get_xs(self, **kwargs): (821000.0, 2231000.0] 3.48869e+00 3.48866e+00 (2231000.0, 10000000.0] 1.52409e+00 1.52406e+00 + `err=1` or else it takes too long >>> endf6 = sandy.get_endf6_file('jeff_33','xs', 922350) - >>> groupr = endf6.get_gendf(ek_groupr=sandy.energy_grids.CASMO12) - >>> groupr.get_xs(mt=[4, 5]) + >>> gendf = endf6.get_gendf(minimal_processing=True, err=1, groupr_kws=dict(ek=sandy.energy_grids.CASMO12)) + >>> gendf.get_xs(mt=[4, 5]) MAT 9228 MT 4 5 E @@ -165,7 +156,7 @@ def get_xs(self, **kwargs): for mat, mf, mt in self.filter_by(listmf=[3], listmt=listmt_, listmat=listmat_).data: - mf3 = sandy.groupr.read_mf3(self, mat, mt) + mf3 = sandy.gendf.read_mf3(self, mat, mt) lowest_range = mf3["GROUPS"][0]["IG"] - 1 xs = np.array([x["DATA"][1].tolist() for x in mf3["GROUPS"]]) xs = np.insert(xs, [0]*lowest_range, 0) if lowest_range != 0 else xs @@ -188,8 +179,8 @@ def get_flux(self, **kwargs): Examples -------- >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> groupr = endf6.get_gendf(verborse=True, ek_groupr=sandy.energy_grids.CASMO12) - >>> groupr.get_flux() + >>> gendf = endf6.get_gendf(minimal_processing=True, err=1, temperature=293.6, groupr_kws=dict(ek=sandy.energy_grids.CASMO12)) + >>> gendf.get_flux() (1e-05, 0.03] 2.99900e-02 (0.03, 0.058] 2.80000e-02 (0.058, 0.14] 8.20000e-02 @@ -204,7 +195,7 @@ def get_flux(self, **kwargs): (2231000.0, 10000000.0] 7.76900e+06 Name: iwt, dtype: float64 - >>> groupr.get_flux(mat=125, mt=2) + >>> gendf.get_flux(mat=125, mt=2) (1e-05, 0.03] 2.99900e-02 (0.03, 0.058] 2.80000e-02 (0.058, 0.14] 8.20000e-02 @@ -238,7 +229,7 @@ def read_mf1(tape, mat): Parameters ---------- - tape : `sandy.Errorr` + tape : :func:`~sandy.Gendf` endf6 object containing requested section mat : `int` MAT number @@ -253,8 +244,8 @@ def read_mf1(tape, mat): Examples -------- >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> groupr = endf6.get_gendf(verborse=True, ek_groupr=sandy.energy_grids.CASMO12) - >>> mf1 = sandy.groupr.read_mf1(groupr, 125) + >>> gendf = endf6.get_gendf(groupr_kws=dict(ek=sandy.energy_grids.CASMO12)) + >>> mf1 = sandy.gendf.read_mf1(gendf, 125) >>> mf1['AWR'] = round(mf1['AWR'], 3) >>> mf1 {'MAT': 125, @@ -263,7 +254,7 @@ def read_mf1(tape, mat): 'ZA': 1001.0, 'AWR': 0.999, 'LRP': -1, - 'TEMPIN': 293.6, + 'TEMPIN': 0.0, 'TITLE': [0.0], 'SIGZ': [10000000000.0], 'EGN': array([1.0000e-05, 3.0000e-02, 5.8000e-02, 1.4000e-01, 2.8000e-01, @@ -310,7 +301,7 @@ def read_mf3(tape, mat, mt): Parameters ---------- - tape : `sandy.Errorr` + tape : :func:`~sandy.Gendf` endf6 object containing requested section mat : `int` MAT number @@ -325,8 +316,8 @@ def read_mf3(tape, mat, mt): Examples -------- >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) - >>> groupr = endf6.get_gendf(verborse=True, ek_groupr=sandy.energy_grids.CASMO12) - >>> sandy.groupr.read_mf3(groupr, 125, 1)['GROUPS'][0] + >>> gendf = endf6.get_gendf(temperature=293.6, err=0.005, minimal_processing=True, groupr_kws=dict(ek=sandy.energy_grids.CASMO12)) + >>> sandy.gendf.read_mf3(gendf, 125, 1)['GROUPS'][0] {'TEMPIN': 293.6, 'NG2': 2, 'IG2LO': 1, diff --git a/sandy/njoy.py b/sandy/njoy.py index e21ea0a4..daa0b1db 100644 --- a/sandy/njoy.py +++ b/sandy/njoy.py @@ -1,77 +1,3 @@ -# -*- coding: utf-8 -*- -""" -Outline -======= -1. Summary_ -2. Examples_ -3. Routines_ - -.. _Summary: - -Summary -======= -This module contains template inputs for NJOY routines and functions to run them. - -Two major functions `process` and `process_protons` are provided to process nuclear data -files with NJOY into ACE format, respectively for fast neutron-induced and proton-induced -nuclear data. - -Given any nuclear data evaluation file for incident neutrons (fast, not SAB) function `process` -generates the correspoding ACE filea for a given set of temperatures (one file per temperature). -If no keyword argument is provided, function `process` runs with default options, which include -NJOY routines RECONR, BROADR, THERMR, HEATR, GASPR, PURR, ACER. -Keyword arguments can be changed to add/remove NJOY routines using `True/False` flags, or to change -a routine's input parameters. - -Major default parmameters: - -+------------------+-----------------------------------------------------------+------------------------------+ -| Parameter | Value | Description | -+==================+===========================================================+==============================+ -| err | `0.001` | xs reconstruction tolerance | -+------------------+-----------------------------------------------------------+------------------------------+ -| temperatures | `[293.6]` | `list` of temperatures (K) | -+------------------+-----------------------------------------------------------+------------------------------+ -| bins | `20` | # probability bins (PURR) | -+------------------+-----------------------------------------------------------+------------------------------+ -| ladders | `32` | # resonance ladders (PURR) | -+------------------+-----------------------------------------------------------+------------------------------+ -| iprint | `False` | output verbosity | -+------------------+-----------------------------------------------------------+------------------------------+ -| kermas | `[302, 303, 304, 318, 402, 442, 443, 444, 445, 446, 447]` | `list` of KERMA factors (MT) | -+------------------+-----------------------------------------------------------+------------------------------+ - -.. _Examples: - -Examples -======== - -Extract njoy executable ------------------------ - -#>>> import sandy -#>>> exe = sandy.get_njoy() - -It raises an error if the system environment variable `NJOY` is not set. - -Default njoy processing of a neutron file ------------------------------------------ -Process a ENDF-6 neutron file "my_file.endf6" using NJOY with default options - -#>>> import sandy.njoy -#>>> endftape = "my_file.endf6" -#>>> input, inputs, outputs = sandy.njoy.process(endftape) - - -.. _Routines: - -Routines -======== - -* get_njoy -* process -* process_proton -""" import os from os.path import join @@ -79,17 +5,20 @@ import re import logging import pdb -import tempfile +from tempfile import TemporaryDirectory import subprocess as sp import pandas as pd import numpy as np import sandy -from sandy.settings import SandyError __author__ = "Luca Fiorito" -__all__ = ["process", "process_proton", "get_njoy"] +__all__ = [ + "process_neutron", + "process_proton", + "get_njoy", + ] sab = pd.DataFrame.from_records([[48,9237,1,1,241,'uuo2'], [42,125,0,8,221,'tol'], @@ -139,16 +68,9 @@ 1300: "13", 1400: "14", 1500: "15", - 1600: "16", - 1700: "17", 1800: "18", - 1900: "19", - 2000: "20", 2100: "21", - 2200: "22", - 2300: "23", 2400: "24", - 2500: "25", } tmp2ext_meta = { @@ -175,10 +97,7 @@ 1500: "52", 1800: "53", 2100: "54", - 2200: "56", - 2300: "57", - 2400: "58", - 2500: "59", + 2400: "55", } @@ -196,51 +115,117 @@ def get_njoy(): ------- `string` njoy executable - - Raises - ------ - `SandyError` - if environment variable `NJOY` is not assigned """ - if "NJOY" in os.environ: - exe = os.environ["NJOY"] - else: - raise ValueError("environment variable 'NJOY' is not assigned") - return exe + return os.environ["NJOY"] -def get_suffix(temp, meta, method=None): +def get_temperature_suffix(temperature, meta=False): """ Determine suffix saccording to temperature value. - + The following table is used, in line with the ALEPH manual. + + | | EXT | META | + |:-----------------|------:|-------:| + | [275.0, 325.0) | 03 | 31 | + | [325.0, 375.0) | 35 | 32 | + | [375.0, 425.0) | 04 | 33 | + | [425.0, 475.0) | 45 | 34 | + | [475.0, 525.0) | 05 | 36 | + | [525.0, 575.0) | 55 | 37 | + | [575.0, 625.0) | 06 | 38 | + | [625.0, 675.0) | 65 | 39 | + | [675.0, 725.0) | 07 | 40 | + | [725.0, 775.0) | 75 | 41 | + | [775.0, 825.0) | 08 | 42 | + | [825.0, 875.0) | 85 | 43 | + | [875.0, 925.0) | 09 | 44 | + | [925.0, 975.0) | 95 | 46 | + | [975.0, 1050.0) | 10 | 47 | + | [1050.0, 1150.0) | 11 | 48 | + | [1150.0, 1250.0) | 12 | 49 | + | [1250.0, 1350.0) | 13 | 50 | + | [1350.0, 1450.0) | 14 | 51 | + | [1450.0, 1650.0) | 15 | 52 | + | [1650.0, 1950.0) | 18 | 53 | + | [1950.0, 2250.0) | 21 | 54 | + + If temperature is outside the interval range given above, suffix `'00'` is + returned. + If temperature is 293.6 K, suffix `'02'` and `'30'` are returned + respectively for ground and meta states. + Parameters ---------- - temp : `float` + temperature : `float` processing temperature - meta : `int` - metastate number - method : `str`, optional, default `None` - use `method="aleph"` to treat metastate extensions using ALEPH rules - - Raise - ----- - `ValueError` - if extension was not found for given temperature + meta : `bool`, optional, default is `True` + `True` if metastable (any), `False` if ground level Returns ------- `str` suffix + + Examples + -------- + Test temperatures outside range + >>> assert get_temperature_suffix(3000, True) == get_temperature_suffix(3000, False) + >>> assert get_temperature_suffix(3000, True) == get_temperature_suffix(0, True) + >>> assert get_temperature_suffix(3000, True) == get_temperature_suffix(0, False) + + Test reference ALEPH temperatures for ground and meta states + >>> for k, v in sandy.njoy.tmp2ext.items(): + ... assert v == get_temperature_suffix(k) + ... assert v == get_temperature_suffix(k, 0) + + >>> for k, v in sandy.njoy.tmp2ext_meta.items(): + ... assert v == get_temperature_suffix(k, meta=True) + ... assert v == get_temperature_suffix(k, 1) + ... assert v == get_temperature_suffix(k, 2) """ - dct = tmp2ext_meta if meta and method == "aleph" else tmp2ext - if temp in dct: - temp_in_dict = temp + closed = "left" + + if temperature == 293.6: + return "30" if meta else "02" + + # Up to 1000 K temperatures are split every 50 degrees. + splitter = 50 + idx = pd.IntervalIndex.from_breaks(np.arange(300-splitter/2, 1000+splitter/2, splitter).tolist() + [(1100+1000)/2], closed=closed) + suffix1 = pd.DataFrame({ + "EXT": ["03", "35", "04", "45", "05", "55", "06", "65", "07", "75", "08", "85", "09", "95", "10"], + "META": ["31", "32", "33", "34", "36", "37", "38", "39", "40", "41", "42", "43", "44", "46", "47"], + }, index=idx) + + # Between 1000 K and 1500 K temperatures are split every 100 degrees. + splitter = 100 + idx = pd.IntervalIndex.from_breaks(np.arange(1100-splitter/2, 1500+splitter/2, splitter).tolist() + [(1800+1500)/2], closed=closed) + suffix2 = pd.DataFrame({ + "EXT": ["11", "12", "13", "14", "15"], + "META": ["48", "49", "50", "51", "52"], + }, index=idx) + suffix = pd.concat([suffix1, suffix2]) + + # Between 1500 K and 2400 K temperatures are split every 300 degrees. + splitter = 300 + idx = pd.IntervalIndex.from_breaks(np.arange(1800-splitter/2, 2400+splitter/2, splitter).tolist() + [2400+splitter/2], closed=closed) + suffix3 = pd.DataFrame({ + "EXT": ["18", "21", "24"], + "META": ["53", "54", "55"], + }, index=idx) + + suffix = pd.concat([suffix1, suffix2, suffix3]) + + mask = suffix.index.contains(temperature) + if suffix[mask].empty: + suff = "00" + msg = f"extension '{suffix}' will be used for temperature '{temperature}'" + logging.warning(msg) else: - splitter = 50 if temp < 1000 else 100 - temp_in_dict = int(round(temp / splitter) * splitter) - if temp_in_dict not in dct: - raise ValueError(f"extension was not found for temperature '{temp}'") - return dct[temp_in_dict] + if meta: + suff = suffix[mask].META.squeeze() + else: + suff = suffix[mask].EXT.squeeze() + return suff def _moder_input(nin, nout, **kwargs): @@ -279,10 +264,10 @@ def _reconr_input(endfin, pendfout, mat, tape number for output PENDF file mat : `int` MAT number - header : `str` - file header (default is "sandy runs njoy") err : `float` tolerance (default is 0.001) + header : `str` + file header (default is "sandy runs njoy") Returns ------- @@ -315,10 +300,10 @@ def _broadr_input(endfin, pendfin, pendfout, mat, tape number for output PENDF file mat : `int` MAT number - temperatures : iterable of `float` - iterable of temperature values in K (default is 293.6 K) err : `float` tolerance (default is 0.001) + temperatures : iterable of `float` + iterable of temperature values in K (default is 293.6 K) Returns ------- @@ -535,10 +520,10 @@ def _heatr_input(endfin, pendfin, pendfout, mat, pks, def _acer_input(endfin, pendfin, aceout, dirout, mat, - temp=NJOY_TEMPERATURES[0], + temperature=NJOY_TEMPERATURES[0], iprint=False, itype=1, - suff=".00", + suffix=".00", header="sandy runs acer", photons=True, **kwargs): @@ -557,21 +542,19 @@ def _acer_input(endfin, pendfin, aceout, dirout, mat, tape number for output ACE file mat : `int` MAT number - temp : `float` - temperature in K (default is 293.6 K) - local : `bool` - option to deposit gamma rays locally (default is `False`) + header : `str` + descriptive character string of max. 70 characters + (default is "sandy runs acer") iprint : `bool` print option (default is `False`) itype : `int` ace output type: 1, 2, or 3 (default is 1) - suff : `str` - id suffix for zaid (default is ".00") - header : `str` - descriptive character string of max. 70 characters - (default is "sandy runs acer") photons : `bool` detailed photons (default is `True`) + suffix : `str` + id suffix for zaid (default is ".00") + temperature : `float` + temperature in K (default is 293.6 K) Returns ------- @@ -581,9 +564,9 @@ def _acer_input(endfin, pendfin, aceout, dirout, mat, text = ["acer"] text += [f"{endfin:d} {pendfin:d} 0 {aceout:d} {dirout:d} /"] printflag = int(iprint) - text += [f"1 {printflag:d} {itype:d} {suff} 0 /"] + text += [f"1 {printflag:d} {itype:d} {suffix} 0 /"] text += [f"'{header}'/"] - text += [f"{mat:d} {temp:.1f} /"] + text += [f"{mat:d} {temperature:.1f} /"] photonsflag = int(photons) text += [f"1 {photonsflag:d} /"] text += ["/"] @@ -591,10 +574,10 @@ def _acer_input(endfin, pendfin, aceout, dirout, mat, def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, - ign_errorr=2, ek_errorr=None, spectrum_errorr=None, - iwt_errorr=2, relative=True, + ign=2, ek=None, spectrum=None, + iwt=2, relative=True, mt=None, irespr=1, - temp=NJOY_TEMPERATURES[0], mfcov=33, + temperature=NJOY_TEMPERATURES[0], mfcov=33, iprint=False, **kwargs): """ @@ -612,32 +595,40 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, tape number for output ERRORR file mat : `int` MAT number - ek_errorr : iterable, optional + ek : iterable, optional derived cross section energy bounds (default is None) - ign_errorr : `int`, optional + ign : `int`, optional neutron group option (default is 2, csewg 239-group structure) + + .. note:: this parameter will not be used if keyword argument + `ek` is provided. + iprint : `bool`, optional print option (default is `False`) irespr: `int`, optional processing for resonance parameter covariances (default is 1, 1% sensitivity method) - iwt_errorr : `int`, optional + iwt : `int`, optional weight function option (default is 2, constant) - + .. note:: this parameter will not be used if keyword argument - `spect` is provided + `spect` is provided. relative: `bool` use relative covariance form (default is `True`) - temp : `float`, optional - temperature in K (default is 293.6 K) mfcov : `int` endf covariance file to be processed (default is 33) - mt: `int` or iterable of `int`, optional + mt : `int` or iterable of `int`, optional run errorr only for the selected mt numbers (default is `None`, i.e., process all MT) - spectrum_errorr : iterable, optional + + .. note:: this parameter will not be used if keyword argument + `mfcov!=33`. + + spectrum : iterable, optional weight function (default is `None`) + temperature : `float`, optional + temperature in K (default is 293.6 K) Returns ------- @@ -654,24 +645,24 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 0 293.6 / 0 33 1/ - Test argument `temp` - >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9440, temp=600)) + Test argument `temperature` + >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9440, temperature=600)) errorr 20 21 0 22 0 / 9440 2 2 0 1 / 0 600.0 / 0 33 1/ - Test argument `iwt_errorr` - >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, iwt_errorr=6)) + Test argument `iwt` + >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, iwt=6)) errorr 20 21 0 22 0 / 9237 2 6 0 1 / 0 293.6 / 0 33 1/ - Test argument `ek_errorr` - >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, ek_errorr=[1e-2, 1e3, 2e5])) + Test argument `ek` + >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, ek=[1e-2, 1e3, 2e5])) errorr 20 21 0 22 0 / 9237 1 2 0 1 / @@ -680,8 +671,8 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 2 / 1.00000e-02 1.00000e+03 2.00000e+05 / - Test argument `ign_errorr` - >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, ign_errorr=3)) + Test argument `ign` + >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, ign=3)) errorr 20 21 0 22 0 / 9237 3 2 0 1 / @@ -712,14 +703,6 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 0 293.6 / 0 35 1/ - Test radioactive nuclide production - >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, mfcov=40)) - errorr - 20 21 0 22 0 / - 9237 2 2 0 1 / - 0 293.6 / - 0 40 1/ - Test keyword `relative` >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, relative=False)) errorr @@ -757,14 +740,14 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 2 / """ irelco = 0 if relative is False else 1 - iread = 1 if mt is not None else 0 - iwt_ = 1 if spectrum_errorr is not None else iwt_errorr - ign_ = 1 if ek_errorr is not None else ign_errorr + iread = 1 if (mt is not None and mfcov == 33) else 0 + iwt_ = 1 if spectrum is not None else iwt + ign_ = 1 if ek is not None else ign text = ["errorr"] text += [f"{endfin:d} {pendfin:d} {gendfin:d} {errorrout:d} 0 /"] printflag = int(iprint) text += [f"{mat:d} {ign_:d} {iwt_:d} {printflag:d} {irelco} /"] - text += [f"{printflag:d} {temp:.1f} /"] + text += [f"{printflag:d} {temperature:.1f} /"] text += [f"{iread:d} {mfcov} {irespr:d}/"] if iread == 1: # only specific mts mtlist = [mt] if isinstance(mt, int) else mt @@ -772,27 +755,27 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, text += [f"{nmt:d} 0 /"] text += [" ".join(map(str, mtlist)) + " /"] if ign_ == 1: - nk = len(ek_errorr) - 1 + nk = len(ek) - 1 text += [f"{nk} /"] - text += [" ".join(map("{:.5e}".format, ek_errorr)) + " /"] + text += [" ".join(map("{:.5e}".format, ek)) + " /"] if iwt_ == 1: INT = 1 # constant interpolation - NBT = int(len(spectrum_errorr) / 2) # only 1 interpolation group + NBT = int(len(spectrum) / 2) # only 1 interpolation group tab1 = "\n".join(sandy.write_tab1(0, 0, 0, 0, [NBT], [INT], - spectrum_errorr[::2], - spectrum_errorr[1::2])) + spectrum[::2], + spectrum[1::2])) text += [tab1] text += ["/"] return "\n".join(text) + "\n" def _groupr_input(endfin, pendfin, gendfout, mat, - ign_groupr=2, ek_groupr=None, igg=0, ep=None, - iwt_groupr=2, lord=0, sigz=[1e+10], - temp=NJOY_TEMPERATURES[0], - spectrum_groupr=None, mt=None, - iprint=False, nubar=False, mubar=False, chi=False, - nuclide_production=False, + ign=2, ek=None, igg=0, ep=None, + iwt=2, lord=0, sigz=[1e+10], + temperature=NJOY_TEMPERATURES[0], + spectrum=None, mt=None, + iprint=False, + mubar=False, chi=False, nubar=False, **kwargs): """ Write GROUPR input @@ -809,21 +792,21 @@ def _groupr_input(endfin, pendfin, gendfout, mat, MAT number chi : `bool`, optional Process chi (default is `False`) - ek_groupr : iterable, optional + ek : iterable, optional derived cross section energy bounds (default is None) ep : iterable, optional derived gamma cross section energy bounds (default is None) igg : `int`, optional gamma group option (default is 0, no structure) - ign_groupr : `int`, optional + ign : `int`, optional neutron group option (default is 2, csewg 239-group structure) iprint : `bool`, optional print option (default is `False`) - iwt_groupr : `int`, optional + iwt : `int`, optional weight function option (default is 2, constant) .. note:: this parameter will not be used if keyword argument - `spect` is provided + `spectrum` is provided lord : `int`, optional Legendre order (default is 0) @@ -838,9 +821,9 @@ def _groupr_input(endfin, pendfin, gendfout, mat, process MF10 (default is `False`) sigz : iterable of `float` sigma zero values (he default is 1.0e10) - spectrum_groupr : iterable, optional + spectrum : iterable, optional weight function (default is `None`) - temp : iterable of `float` + temperature : iterable of `float` iterable of temperature values in K (default is 293.6 K) Returns @@ -862,8 +845,8 @@ def _groupr_input(endfin, pendfin, gendfout, mat, 0/ 0/ - Test argument `temp` - >>> print(sandy.njoy._groupr_input(20, 21, 22, 9440, temp=600)) + Test argument `temperature` + >>> print(sandy.njoy._groupr_input(20, 21, 22, 9440, temperature=600)) groupr 20 21 0 22 / 9440 2 0 2 0 1 1 0 / @@ -874,8 +857,8 @@ def _groupr_input(endfin, pendfin, gendfout, mat, 0/ 0/ - Test argument `iwt_groupr` - >>> print(sandy.njoy._groupr_input(20, 21, 22, 9237, iwt_groupr=6)) + Test argument `iwt` + >>> print(sandy.njoy._groupr_input(20, 21, 22, 9237, iwt=6)) groupr 20 21 0 22 / 9237 2 0 6 0 1 1 0 / @@ -886,8 +869,8 @@ def _groupr_input(endfin, pendfin, gendfout, mat, 0/ 0/ - Test argument `ign_groupr` - >>> print(sandy.njoy._groupr_input(20, 21, 22, 9237, ign_groupr=3)) + Test argument `ign` + >>> print(sandy.njoy._groupr_input(20, 21, 22, 9237, ign=3)) groupr 20 21 0 22 / 9237 3 0 2 0 1 1 0 / @@ -910,8 +893,8 @@ def _groupr_input(endfin, pendfin, gendfout, mat, 0/ 0/ - Test argument `ek_groupr` - >>> print(sandy.njoy._groupr_input(20, 21, 0, 22, 9237, ek_groupr=[1e-2, 1e3, 2e5])) + Test argument `ek` + >>> print(sandy.njoy._groupr_input(20, 21, 0, 22, 9237, ek=[1e-2, 1e3, 2e5])) groupr 20 21 0 0 / 22 1 0 2 0 1 1 0 / @@ -959,7 +942,7 @@ def _groupr_input(endfin, pendfin, gendfout, mat, 293.6/ 10000000000.0/ 3/ - 3 251 'mubar' / + 3 251 / 0/ 0/ @@ -973,20 +956,7 @@ def _groupr_input(endfin, pendfin, gendfout, mat, 10000000000.0/ 3/ 5/ - 5 18 'chi' / - 0/ - 0/ - - Test radioactive nuclide production: - >>> print(sandy.njoy._groupr_input(20, 21, 22, 9237, nuclide_production=True)) - groupr - 20 21 0 22 / - 9237 2 0 2 0 1 1 0 / - 'sandy runs groupr' / - 293.6/ - 10000000000.0/ - 3/ - 10/ + 5 18 / 0/ 0/ @@ -1015,52 +985,56 @@ def _groupr_input(endfin, pendfin, gendfout, mat, 0/ 0/ """ - iwt_ = 1 if spectrum_groupr is not None else iwt_groupr - ign_ = 1 if ek_groupr is not None else ign_groupr + iwt_ = 1 if spectrum is not None else iwt + ign_ = 1 if ek is not None else ign igg_ = 1 if ep is not None else igg + sigzlist = sigz if hasattr(sigz, "__len__") else [sigz] text = ["groupr"] text += [f"{endfin:d} {pendfin:d} 0 {gendfout:d} /"] - nsigz = len(sigz) + nsigz = len(sigzlist) printflag = int(iprint) text += [f"{mat:d} {ign_:d} {igg_:d} {iwt_:d} {lord:d} 1 {nsigz:d} {printflag:d} /"] text += ["'sandy runs groupr' /"] # run label - text += [f"{temp:.1f}/"] - text += [" ".join(map("{:.1f}".format, sigz)) + "/"] + text += [f"{temperature:.1f}/"] + text += [" ".join(map("{:.1f}".format, sigzlist)) + "/"] if ign_ == 1: - nk = len(ek_groupr) - 1 + nk = len(ek) - 1 text += [f"{nk} /"] - text += [" ".join(map("{:.5e}".format, ek_groupr)) + " /"] + text += [" ".join(map("{:.5e}".format, ek)) + " /"] if igg_ == 1: pk = len(ep) - 1 text += [f"{pk} /"] text += [" ".join(map("{:.5e}".format, ep)) + " /"] if iwt_ == 1: INT = 1 # constant interpolation - NBT = int(len(spectrum_groupr) / 2) # only 1 interpolation group + NBT = int(len(spectrum) / 2) # only 1 interpolation group tab1 = "\n".join(sandy.write_tab1(0, 0, 0, 0, [NBT], [INT], - spectrum_groupr[::2], - spectrum_groupr[1::2])) + spectrum[::2], + spectrum[1::2])) text += [tab1] text += ["/"] + if mt is None: text += ["3/"] # by default process all cross sections (MF=3) else: - mtlist = [mt] if isinstance(mt, int) else mt + mtlist = mt if hasattr(mt, "__len__") else [mt] for mt_ in mtlist: text += [f"3 {mt_:d} /"] + if nubar: + text += [f"3 452 /"] + text += [f"3 455 /"] + text += [f"3 456 /"] if mubar: - text += ["3 251 'mubar' /"] + text += [f"3 251 /"] if chi: text += ["5/"] - text += ["5 18 'chi' /"] - if nuclide_production: - text += ["10/"] - text += ["0/"] # terimnate list of reactions for this material + text += ["5 18 /"] + text += ["0/"] # terminate list of reactions for this material text += ["0/"] # terminate materials (only 1 allowed) return "\n".join(text) + "\n" -def _run_njoy(text, inputs, outputs, exe=None): +def _run_njoy(text, endf, pendf=None, exe=None): """ Run njoy executable for given input. @@ -1077,13 +1051,12 @@ def _run_njoy(text, inputs, outputs, exe=None): """ if exe is None: exe = get_njoy() - logging.debug("Use NJOY executable '{}'".format(exe)) stdout = stderr = None stdin = text.encode() - with tempfile.TemporaryDirectory() as tmpdir: - logging.debug("Create temporary directory '{}'".format(tmpdir)) - for tape, src in inputs.items(): - shutil.copy(src, os.path.join(tmpdir, tape)) + with TemporaryDirectory() as tmpdir: + shutil.copy(endf, os.path.join(tmpdir, "tape20")) + if pendf: + shutil.copy(pendf, os.path.join(tmpdir, "tape99")) process = sp.Popen(exe, shell=True, cwd=tmpdir, @@ -1096,60 +1069,75 @@ def _run_njoy(text, inputs, outputs, exe=None): retrn = process.returncode if retrn != 0: msg = f"process status={retrn}, cannot run njoy executable" - raise SandyError(msg) - for tape, dst in outputs.items(): - path = os.path.split(dst)[0] - if path: - os.makedirs(path, exist_ok=True) - shutil.move(os.path.join(tmpdir, tape), dst) - - -def process( - endftape, - pendftape=None, - kermas=[302, 303, 304, 318, 402, 442, 443, 444, 445, 446, 447], - temperatures=[293.6], - suffixes=None, + raise ValueError(msg) + + # Move outputs + tapes = { + 30: "pendf", + 40: "gendf", + 31: "errorr31", + 33: "errorr33", + 34: "errorr34", + 35: "errorr35", + } + outputs = {} + for k, v in tapes.items(): + out = os.path.join(tmpdir, f"tape{k}") + if os.path.exists(out): + with open(out, mode="r") as f: + outputs[v] = f.read() + text = "" + for k in range(50, 70): + out = os.path.join(tmpdir, f"tape{k}") + if os.path.exists(out): + with open(out, mode="r") as f: + text += f.read() + if text: + outputs["ace"] = text + text = "" + for k in range(70, 90): + out = os.path.join(tmpdir, f"tape{k}") + if os.path.exists(out): + with open(out, mode="r") as f: + text += f.read() + if text: + outputs["xsdir"] = text + return outputs + + +def _prepare_njoy_input( + mat, temperatures, suffixes, + acer=True, broadr=True, - thermr=True, - unresr=False, - heatr=True, gaspr=True, - purr=True, - errorr=False, groupr=False, - acer=True, - wdir="", - dryrun=False, - tag="", - method=None, - exe=None, - keep_pendf=True, - route="0", - addpath=None, - verbose=False, + heatr=True, + purr=True, + reconr=True, + thermr=True, + unresr=False, + errorr33=False, + errorr31=False, + errorr34=False, + errorr35=False, + acer_kws={}, + broadr_kws={}, + gaspr_kws={}, + groupr_kws={}, + heatr_kws={}, + purr_kws={}, + reconr_kws={}, + thermr_kws={}, + unresr_kws={}, + errorr31_kws={}, + errorr33_kws={}, + errorr34_kws={}, + errorr35_kws={}, **kwargs, ): """ - Run sequence to process file with njoy. - Parameters ---------- - pendftape : `str`, optional, default is `None` - name (with absolute of relative path) of a pendf file. - If given, skip module reconr and use this PENDF file, else run reconr - kermas : iterable of `int`, optional, default is - `[302, 303, 304, 318, 402, 442, 443, 444, 445, 446, 447]` - MT numbers for partial kermas to pass to heatr. - .. note:: `MT=301` is the KERMA total (energy balance) and is - always calculated - temperatures : iterable of `float`, optional, default is [293.6] - iterable of temperature values in K - suffixes : iterable of `int`, optional, default is `None` - iterable of suffix values for ACE files: if `None` is given, - use internal routine to determine suffixes - .. warning:: `suffixes` must match the number of entries in - `temperatures` broadr : `bool`, optional, default is `True` option to run module broadr thermr : `bool`, optional, default is `True` @@ -1168,219 +1156,207 @@ def process( option to run module errorr acer : `bool`, optional, default is `True` option to run module acer - wdir : `str`, optional, default is `""` - working directory (absolute or relative) where all output files are - saved - .. note:: `wdir` will appear as part of the `filename` in any - `xsdir` file if `addpath` is not set - addpath : `str`, optional, default is `None` - path to add in xsdir, by default use `wdir` - dryrun : `bool`, optional, default is `False` - option to produce the njoy input file without running njoy - tag : `str`, optional, default is `""` - tag to append to each output filename before the extension - (default is `None`) - .. hint:: to process JEFF-3.3 files you could set `tag = "_j33"` - exe : `str`, optional, default is `None` - njoy executable (with path) - .. note:: if no executable is given, SANDY looks for a default - executable in `PATH` and in env variable `NJOY` - keep_pendf : `bool`, optional, default is `True` - save output PENDF file - route : `str`, optional, default is `0` - xsdir "route" parameter - verbose : `bool`, optional, default is `False` - flag to print NJOY input to screen before running the executable - Returns - ------- - input : `str` - njoy input text - inputs : `map` - map of {`tape` : `file`) for input files - outputs : `map` - map of {`tape` : `file`) for ouptut files + Notes + ----- + .. note:: the four calls to NJOY module ERRORR (for MF31, MF33, MF34 + and MF35) are treated as if four different NJOY modules were + to be run. """ - tape = sandy.Endf6.from_file(endftape) - mat = tape.mat[0] - info = tape.read_section(mat, 1, 451) - meta = info["LISO"] - za = int(info["ZA"]) - zam = za*10 + meta - za_new = za + meta*100 + 300 if meta else za - outprefix = zam if method == "aleph" else za_new - inputs = {} - outputs = {} - # Only kwargs are passed to NJOY inputs, then add temperatures and mat - kwargs.update({ - "temperatures": temperatures, - "mat": mat, - }) - # Check input args - if not suffixes: - suffixes = [get_suffix(temp, meta, method) for temp in temperatures] - if len(suffixes) != len(temperatures): - msg = "number of suffixes must match number of temperatures" - raise ValueError(msg) - inputs["tape20"] = endftape + e = 21 p = e + 1 text = _moder_input(20, -e) - if pendftape: - inputs["tape99"] = pendftape - text += _moder_input(99, -p) + + # this part produces a single PENDF file + if reconr: + text += _reconr_input(-e, -p, + mat=mat, temperatures=temperatures, + **reconr_kws) else: - text += _reconr_input(-e, -p, **kwargs) + text += _moder_input(99, -p) if broadr: o = p + 1 - text += _broadr_input(-e, -p, -o, **kwargs) + text += _broadr_input(-e, -p, -o, + mat=mat, temperatures=temperatures, + **broadr_kws) p = o if thermr: o = p + 1 - text += _thermr_input(0, -p, -o, **kwargs) + text += _thermr_input(0, -p, -o, + mat=mat, temperatures=temperatures, + **thermr_kws) p = o if unresr: o = p + 1 - text += _unresr_input(-e, -p, -o, **kwargs) + text += _unresr_input(-e, -p, -o, + mat=mat, temperatures=temperatures, + **unresr_kws) p = o if heatr: + kermas=[302, 303, 304, 318, 402, 442, 443, 444, 445, 446, 447] for i in range(0, len(kermas), 7): o = p + 1 - kwargs["pks"] = kermas[i:i+7] - text += _heatr_input(-e, -p, -o, **kwargs) + pks = kermas[i:i+7] + text += _heatr_input(-e, -p, -o, + mat=mat, temperatures=temperatures, pks=pks, + **heatr_kws) p = o if gaspr: o = p + 1 - text += _gaspr_input(-e, -p, -o, **kwargs) + text += _gaspr_input(-e, -p, -o, + mat=mat, temperatures=temperatures, + **gaspr_kws) p = o if purr: o = p + 1 - text += _purr_input(-e, -p, -o, **kwargs) + text += _purr_input(-e, -p, -o, + mat=mat, temperatures=temperatures, + **purr_kws) p = o - if keep_pendf: - o = 30 - text += _moder_input(-p, o) - outputs[f"tape{o}"] = join( - wdir, - f"{outprefix}{tag}.pendf", - ) - if groupr and errorr is False: - for i, (temp, suff) in enumerate(zip(temperatures, suffixes)): - kwargs["temp"] = temp - kwargs["suff"] = suff = f".{suff}" - g = o + 1 + i - text += _groupr_input(-e, -p, -g, **kwargs) - o = 32 + i - text += _moder_input(-g, o) - outputs[f"tape{o}"] = join( - wdir, - f"{outprefix}{tag}{suff}.gendf", - ) - if errorr: - g = p+1 - p_ = 0 if groupr else p - g_ = g if groupr else 0 - outputs = {} - for i, (temp, suff) in enumerate(zip(temperatures, suffixes)): - kwargs["temp"] = temp - kwargs["suff"] = suff = f".{suff}" - if groupr: - text += _groupr_input(-e, -p, -g_, **kwargs) - if kwargs['nubar']: - o = 31 + i * 5 - kwargs['mfcov'] = mfcov = 31 - text += _errorr_input(-e, -p_, -g_, o, **kwargs) - outputs[f"tape{o}"] = join( - wdir, - f"{outprefix}{tag}{suff}_{mfcov}.errorr", - ) - if kwargs['xs']: - o = 33 + i * 5 - kwargs['mfcov'] = mfcov = 33 - text += _errorr_input(-e, -p_, -g_, o, **kwargs) - outputs[f"tape{o}"] = join( - wdir, - f"{outprefix}{tag}{suff}_{mfcov}.errorr", - ) - # NJOY's errorr module WILL produce a MF35 covariance tape - # if the errorr module called before the errorr call to produce a MF34 - if kwargs['chi']: - o = 35 + i * 5 - kwargs['mfcov'] = mfcov = 35 - text += _errorr_input(-e, -p_, -g_, o, **kwargs) - outputs[f"tape{o}"] = join( - wdir, - f"{outprefix}{tag}{suff}_{mfcov}.errorr", - ) - if kwargs['mubar']: - o = 34 + i * 5 - kwargs['mfcov'] = mfcov = 34 - text += _errorr_input(-e, -p_, -g_, o, **kwargs) - outputs[f"tape{o}"] = join( - wdir, - f"{outprefix}{tag}{suff}_{mfcov}.errorr", - ) + o = 30 + text += _moder_input(-p, o) + + # this part produces a single GENDF file + if errorr31 or errorr34 or errorr35: + groupr_ = True # groupr is needed by ERRORR31, 34 and 35 + else: + groupr_ = groupr + if groupr_: + if len(temperatures) > 1: + logging.info("Multiple temperatures were requested.\nGROUPR will only process the first.") + temperature = temperatures[0] + g = 39 + text += _groupr_input(-e, -p, -g, + mat=mat, temperature=temperature, + **groupr_kws) + o = 40 + text += _moder_input(-g, o) + + # this part produces a maximimum of four ERRORR files, one per data type + if errorr33 or errorr31 or errorr34 or errorr35: + if len(temperatures) > 1: + logging.info("Multiple temperatures were requested.\nERRORR will only process the first.") + temperature = temperatures[0] + if errorr33: + # ERRORR for xs never uses a GENDF file + o = errorr33_kws["mfcov"] = 33 +# text += _errorr_input(-e, -p, 0, o, + text += _errorr_input(-e, 0, -g, o, + mat=mat, temperature=temperature, + **errorr33_kws) + if errorr31: + o = errorr31_kws["mfcov"] = 31 + text += _errorr_input(-e, 0, -g, o, + mat=mat, temperature=temperature, + **errorr31_kws) + # NJOY's errorr module WILL produce a MF35 covariance tape + # if the errorr module called before the errorr call to produce a MF34 + if errorr35: + o = errorr35_kws["mfcov"] = 35 + text += _errorr_input(-e, 0, -g, o, + mat=mat, temperature=temperature, + **errorr35_kws) + if errorr34: + o = errorr34_kws["mfcov"] = 34 + text += _errorr_input(-e, 0, -g, o, + mat=mat, temperature=temperature, + **errorr34_kws) + + # this part produces multiple ACE files (one per temperature) if acer: - for i, (temp, suff) in enumerate(zip(temperatures, suffixes)): + for i, (temperature, suffix) in enumerate(zip(temperatures, suffixes)): a = 50 + i x = 70 + i - kwargs["temp"] = temp - kwargs["suff"] = suff = f".{suff}" - text += _acer_input(-e, -p, a, x, **kwargs) - outputs[f"tape{a}"] = join( - wdir, - f"{outprefix}{tag}{suff}c", - ) - outputs[f"tape{x}"] = join( - wdir, - f"{outprefix}{tag}{suff}c.xsd", - ) + text += _acer_input(-e, -p, a, x, + mat=mat, temperature=temperature, suffix=suffix, + **acer_kws) text += "stop" - # stop here if a dryrun is requested + return text + + +def process_neutron( + endftape, + temperatures, + pendftape=None, + suffixes=None, + zaid="nndc", + route="0", + exe=None, + verbose=True, + dryrun=False, + **kwargs, + ): + """ + Run sequence to process file with njoy. + + Parameters + ---------- + pendftape : `str`, optional, default is `None` + name (with absolute of relative path) of a pendf file. + If given, skip module reconr and use this PENDF file, else run reconr + temperatures : iterable of `float`, optional, default is [293.6] + iterable of temperature values in K + dryrun : `bool`, optional, default is `False` + option to produce the njoy input file without running njoy + exe : `str`, optional, default is `None` + njoy executable (with path) + .. note:: if no executable is given, SANDY looks for a default + executable in `PATH` and in env variable `NJOY` + route : `str`, optional, default is `0` + xsdir "route" parameter + suffixes : iterable of `int`, optional, default is `None` + iterable of suffix values for ACE files: if `None` is given, + use internal routine to determine suffixes + + .. warning :: `suffixes` must match the number of entries in + `temperatures` + + verbose : `bool`, optional, default is `False` + flag to print NJOY input to screen before running the executable + + Returns + ------- + outputs : `map` + map of {`tape` : `text`) for ouptut files + """ + tape = sandy.Endf6.from_file(endftape) + mat = tape.mat[0] + info = tape.read_section(mat, 1, 451) + za = int(info["ZA"]) + meta = info["LISO"] + + kwargs["reconr"] = False if pendftape else True + + # Prepare njoy input + temperatures_ = temperatures if hasattr(temperatures, "__len__") else [temperatures] + if suffixes: + suffixes_ = suffixes if hasattr(suffixes, "__len__") else [suffixes] + else: + meta_ = 0 if zaid == "nndc" else meta + suffixes_ = ["." + get_temperature_suffix(t, meta_) for t in temperatures_] + text = _prepare_njoy_input(mat, temperatures_, suffixes_, **kwargs) if verbose: print(text) + + # Run njoy if dryrun: return text - - _run_njoy(text, inputs, outputs, exe=exe) - if acer: - # Change route and filename in xsdir file. - for i, (temp, suff) in enumerate(zip(temperatures, suffixes)): - a = 50 + i - x = 70 + i - acefile = outputs["tape{}".format(a)] - if addpath is None: - filename = acefile - else: - filename = os.path.basename(acefile) - if addpath: - filename = os.path.join(addpath, filename) - xsdfile = outputs["tape{}".format(x)] - text_xsd = open(xsdfile).read() \ - .replace("route", route) \ - .replace("filename", filename) - text_xsd = " ".join(text_xsd.split()) - # If isotope is metatable rewrite ZA in xsdir and ace as - # ZA = Z*1000 + 300 + A + META*100. - if meta and method != "aleph": - pattern = f'{za:d}' + '\.(?P\d{2}[ct])' - found = re.search(pattern, text_xsd) - ext = found.group("ext") - text_xsd = text_xsd.replace( - f"{za:d}.{ext}", - f"{za_new:d}.{ext}", - 1, - ) - text_ace = open(acefile).read().replace( - f"{za:d}.{ext}", - f"{za_new:d}.{ext}", - 1, - ) - with open(acefile, 'w') as f: - f.write(text_ace) - with open(xsdfile, 'w') as f: - f.write(text_xsd) - return text, inputs, outputs + outputs = _run_njoy(text, endftape, pendftape, exe=exe) + + # Minimal output post-processing + if "xsdir" in outputs: + outputs["xsdir"] = outputs["xsdir"].replace("route", route) + if zaid == "nndc": + za_new = sandy.zam.zam2za(za*10 + meta, method=zaid)[0] + for s in suffixes_: + pattern = f"{za}{s}[c]" + new_pattern = f"{za_new}{s}c" + if "xsdir" in outputs: + outputs["xsdir"] = re.sub(pattern, new_pattern, outputs["xsdir"]) + if "acer" in outputs: + outputs["acer"] = re.sub(pattern, new_pattern, outputs["acer"]) + return outputs def process_proton( diff --git a/sandy/sampling.py b/sandy/sampling.py index bdb38d49..83da4da2 100755 --- a/sandy/sampling.py +++ b/sandy/sampling.py @@ -33,6 +33,8 @@ __all__ = [ "SamplingManager", "sampling", + "get_perturbations", + "apply_perturbations", ] @@ -776,6 +778,74 @@ def sampling_csv33(ftape, csv): seed=init.seed33 ) +def get_perturbations( + endf6, + nsmp=100, + to_excel=None, + errorr_kws={}, + **kwargs, + ): + """ + Construct multivariate normal distributions with a unit vector for + mean and with relative covariances taken from the evaluated files. + Perturbation factors are sampled with the same multigroup structure of + the covariance matrix, and are applied to the pointwise data to produce + the perturbed files. + """ + smp = {} + + tape = sandy.Endf6.from_file(endf6) + outs = tape.get_errorr(**errorr_kws) + + if "errorr31" in outs: + smp[31] = outs["errorr31"].get_cov().sampling(nsmp).data.T + if "errorr33" in outs: + smp[33] = outs["errorr33"].get_cov().sampling(nsmp).data.T + if to_excel and smp: + with pd.ExcelWriter(to_excel) as writer: + for k, v in smp.items(): + v.to_excel(writer, sheet_name=f'MF{k}') + return smp + + +def _to_file(method): + def inner( + self, + to_file=False + **kwargs, + ): + outs = method(self, **kawrgs) + if to_file: + pass + return outs + return inner + + +def apply_perturbations( + endf6, + smp, + processes=1, + ): + tape = sandy.Endf6.from_file(endf6) + pendfs = [] + endf6 = [] + + map33 = None + if 33 in smp: + pendf = tape.get_pendf(err=1, minimal_processing=True) + xs = sandy.Xs.from_endf6(tape) + s = smp[33].unstack(level=[0, 1]) # levels to be defined + pendfs = {n: xs.perturb(p.droplevel("SMP", axis=1)).to_endf6(pendf) for n, p in s.groupby(axis=1, level="SMP")} + + if processes > 1 and platform.system() == "Windows": + logging.info("Running on Windows does not allow parallel processing") + if processes > 1: + raise ValueError("multiprocessing is not yet implemented") + + return pendfs + + + def sampling(iargs=None): """ diff --git a/sandy/spectra.py b/sandy/spectra.py new file mode 100644 index 00000000..54a95e3f --- /dev/null +++ b/sandy/spectra.py @@ -0,0 +1,35 @@ +import pandas as pd + +__author__ = "Luca Fiorito" +__all__ = [ + "custom_spectra", + "get_custom_spectrum", + ] + + +pd.options.display.float_format = '{:.5e}'.format + + +custom_spectra = { + "PWR_UO2_0_1102": "https://fispact.ukaea.uk/wiki/images/2/29/1102_PWR-UO2-0.txt", + "PWR_UO2_15_1102": "https://fispact.ukaea.uk/wiki/images/3/33/1102_PWR-UO2-15.txt", + "BIGTEN_407": "https://fispact.ukaea.uk/wiki/images/a/a6/407_Bigten.txt", + } + + +def get_custom_spectrum(key): + file = custom_spectra[key] + data = pd.read_csv(file, header=None).iloc[:-1].squeeze().astype(float) + split = data.size // 2 + e = data.iloc[:split].values[::-1] + # Set lower bin to 1e-5 eV + e[0] = 1e-5 + e = pd.IntervalIndex.from_breaks(e, name="E") + f = data.iloc[split:-1].values[::-1] + spe = pd.Series(f, index=e).rename("SPE") + return spe + + +# Allocate all spectra in "custom_spectra" as module attributes +for k in custom_spectra: + exec(f"{k} = get_custom_spectrum(k)") From ac4b97a2cb1767c8a8e8d2fb103c88a3dd6513ce Mon Sep 17 00:00:00 2001 From: Fiorito Luca Date: Mon, 26 Dec 2022 10:59:45 +0100 Subject: [PATCH 02/17] update --- sandy/errorr.py | 27 +++++++++++++++++++-------- 1 file changed, 19 insertions(+), 8 deletions(-) diff --git a/sandy/errorr.py b/sandy/errorr.py index da1c9a2f..b2bbc394 100644 --- a/sandy/errorr.py +++ b/sandy/errorr.py @@ -136,7 +136,7 @@ def get_xs(self, **kwargs): data = pd.concat(data, axis=1).fillna(0) return sandy.Xs(data) - def get_cov(self, multigroup=True): + def get_cov(self, multigroup=True, mt=None): """ Extract cross section/nubar covariance from `Errorr` instance. @@ -176,21 +176,27 @@ def get_cov(self, multigroup=True): eg = self.get_energy_grid() if multigroup: eg = pd.IntervalIndex.from_breaks(eg) + data = [] - for mat, mf, mt in self.filter_by(listmf=[31, 33]).data: - mf33 = sandy.errorr.read_mf33(self, mat, mt) + for mat_, mf_, mt_ in self.filter_by(listmf=[31, 33]).data: + if mt and mt_ not in mt: + continue + mf33 = sandy.errorr.read_mf33(self, mat_, mt_) + for mt1, cov in mf33["COVS"].items(): + if mt and mt1 not in mt: + continue if not multigroup: # add zero row and column at the end of the matrix # (this must be done for ERRORR covariance matrices) cov = np.insert(cov, cov.shape[0], [0]*cov.shape[1], axis=0) cov = np.insert(cov, cov.shape[1], [0]*cov.shape[0], axis=1) idx = pd.MultiIndex.from_product( - [[mat], [mt], eg], + [[mat_], [mt_], eg], names=["MAT", "MT", "E"], ) idx1 = pd.MultiIndex.from_product( - [[mat], [mt1], eg], + [[mat_], [mt1], eg], names=["MAT1", "MT1", "E1"], ) df = pd.DataFrame(cov, index=idx, columns=idx1) \ @@ -199,9 +205,14 @@ def get_cov(self, multigroup=True): .reset_index() data.append(df) data = pd.concat(data) - return sandy.CategoryCov.from_stack(data, index=["MAT", "MT", "E"], - columns=["MAT1", "MT1", "E1"], - values='VAL') + + out = sandy.CategoryCov.from_stack( + data, + index=["MAT", "MT", "E"], + columns=["MAT1", "MT1", "E1"], + values='VAL', + ) + return out def read_mf1(tape, mat): From 6fec4e4d1c513375bc5dc6aded32313f2038b781 Mon Sep 17 00:00:00 2001 From: Fiorito Luca Date: Thu, 29 Dec 2022 17:21:23 +0100 Subject: [PATCH 03/17] update --- sandy/core/endf6.py | 1 - sandy/njoy.py | 7 ++++--- sandy/sampling.py | 9 +++++++-- 3 files changed, 11 insertions(+), 6 deletions(-) diff --git a/sandy/core/endf6.py b/sandy/core/endf6.py index 8a2f6f3f..b58a594e 100644 --- a/sandy/core/endf6.py +++ b/sandy/core/endf6.py @@ -1887,7 +1887,6 @@ def get_errorr(self, if errorr35 or errorr34 or errorr31: groupr = True kwargs["groupr"] = groupr - kwargs["groupr"] = True # Always deactivate acer kwargs["acer"] = False diff --git a/sandy/njoy.py b/sandy/njoy.py index daa0b1db..d29b2d1e 100644 --- a/sandy/njoy.py +++ b/sandy/njoy.py @@ -1222,11 +1222,11 @@ def _prepare_njoy_input( groupr_ = True # groupr is needed by ERRORR31, 34 and 35 else: groupr_ = groupr + g = 39 if groupr_: if len(temperatures) > 1: logging.info("Multiple temperatures were requested.\nGROUPR will only process the first.") temperature = temperatures[0] - g = 39 text += _groupr_input(-e, -p, -g, mat=mat, temperature=temperature, **groupr_kws) @@ -1241,8 +1241,9 @@ def _prepare_njoy_input( if errorr33: # ERRORR for xs never uses a GENDF file o = errorr33_kws["mfcov"] = 33 -# text += _errorr_input(-e, -p, 0, o, - text += _errorr_input(-e, 0, -g, o, + p_ = 0 if groupr_ else p + g_ = g if groupr_ else 0 + text += _errorr_input(-e, -p_, -g_, o, mat=mat, temperature=temperature, **errorr33_kws) if errorr31: diff --git a/sandy/sampling.py b/sandy/sampling.py index 83da4da2..b5db4a71 100755 --- a/sandy/sampling.py +++ b/sandy/sampling.py @@ -825,6 +825,7 @@ def apply_perturbations( endf6, smp, processes=1, + verbose=False, ): tape = sandy.Endf6.from_file(endf6) pendfs = [] @@ -833,9 +834,13 @@ def apply_perturbations( map33 = None if 33 in smp: pendf = tape.get_pendf(err=1, minimal_processing=True) - xs = sandy.Xs.from_endf6(tape) + xs = sandy.Xs.from_endf6(pendf) s = smp[33].unstack(level=[0, 1]) # levels to be defined - pendfs = {n: xs.perturb(p.droplevel("SMP", axis=1)).to_endf6(pendf) for n, p in s.groupby(axis=1, level="SMP")} + pendfs = {} + for n, p in s.groupby(axis=1, level="SMP"): + if verbose: + print(f"Processing sample {n}...") + pendfs[n] = xs.perturb(p.droplevel("SMP", axis=1))#.to_endf6(pendf) if processes > 1 and platform.system() == "Windows": logging.info("Running on Windows does not allow parallel processing") From 05209285fb1b1c0b2a587d49d9caa3d398a947fe Mon Sep 17 00:00:00 2001 From: Luca Fiorito Date: Mon, 16 Jan 2023 10:53:58 +0100 Subject: [PATCH 04/17] update --- requirements_conda.txt | 2 +- sandy/core/cov.py | 166 ++++++++++--------- sandy/core/endf6.py | 274 +++++++++++++++++++++++++++++++- sandy/core/records.py | 15 ++ sandy/core/samples.py | 115 +++----------- sandy/core/xs.py | 352 +++++++++++++++++++++++------------------ sandy/njoy.py | 11 +- sandy/sampling.py | 75 --------- sandy/sections/mf1.py | 253 ++++++++++++++++++----------- 9 files changed, 745 insertions(+), 518 deletions(-) diff --git a/requirements_conda.txt b/requirements_conda.txt index c712a5e4..14bd012a 100644 --- a/requirements_conda.txt +++ b/requirements_conda.txt @@ -11,4 +11,4 @@ scipy sphinx seaborn >= 0.9 statsmodels -pytables \ No newline at end of file +pytables diff --git a/sandy/core/cov.py b/sandy/core/cov.py index 2c5582b4..b460f03f 100644 --- a/sandy/core/cov.py +++ b/sandy/core/cov.py @@ -268,7 +268,7 @@ def __repr__(self): return self.data.__repr__() def __init__(self, *args, **kwargs): - self.data = pd.DataFrame(*args, **kwargs) + self.data = pd.DataFrame(*args, dtype=float, **kwargs) @property def data(self): @@ -304,7 +304,7 @@ def data(self): @data.setter def data(self, data): - self._data = pd.DataFrame(data, dtype=float) + self._data = data if not len(data.shape) == 2 and data.shape[0] == data.shape[1]: raise TypeError("Covariance matrix must have two dimensions") if not (np.diag(data) >= 0).all(): @@ -709,105 +709,101 @@ def sampling(self, nsmp, seed=None, rows=None, pdf='normal', Examples -------- Draw 3 sets of samples using custom seed: - >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11, relative=False).data + 1 - 0 1 + >>> index = columns = ["A", "B"] + >>> c = pd.DataFrame([[1, 0.4],[0.4, 1]], index=index, columns=index) + >>> cov = sandy.CategoryCov(c) + >>> cov.sampling(3, seed=11, relative=False).data.T + 1 + A B + SMP 0 -7.49455e-01 -2.13159e+00 1 1.28607e+00 1.10684e+00 2 1.48457e+00 9.00879e-01 - >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11, rows=1, relative=False).data + 1 - 0 1 + >>> cov.sampling(3, seed=11, rows=1, relative=False).data.T + 1 + A B + SMP 0 -7.49455e-01 -2.13159e+00 1 1.28607e+00 1.10684e+00 2 1.48457e+00 9.00879e-01 - >>> sample = sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(1000000, seed=11, relative=False) - >>> sample.data.cov() - 0 1 - 0 9.98662e-01 3.99417e-01 - 1 3.99417e-01 9.98156e-01 + >>> cov.sampling(3, seed=11, pdf='normal', relative=True).data.T + A B + SMP + 0 0.00000e+00 0.00000e+00 + 1 1.28607e+00 1.10684e+00 + 2 1.48457e+00 9.00879e-01 - Small negative eigenvalue: - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, tolerance=0, relative=False).data + 1 - 0 1 - 0 2.74945e+00 5.21505e+00 - 1 7.13927e-01 1.07147e+00 - 2 5.15435e-01 1.64683e+00 + >>> cov.sampling(3, seed=11, pdf='uniform', relative=True).data.T + A B + SMP + 0 3.60539e-01 1.44987e+00 + 1 3.89505e-02 8.40407e-01 + 2 9.26437e-01 9.70854e-01 + + For a large number of samples, the sample covariance will converge to + the original covariance matrix within a certain tolerance (if the cov + is positive definite). + >>> smp = cov.sampling(10000, seed=11, relative=False) + >>> np.testing.assert_array_almost_equal(c, smp.get_cov(), decimal=2) - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, tolerance=0, relative=False).data.cov() - 0 1 - 0 9.98662e-01 -1.99822e-01 - 1 -1.99822e-01 2.99437e+00 + + These tests are for a covariance matrix with small negative eigenvalues. + >>> c = pd.DataFrame([[1, -.2],[-.2, 3]], index=index, columns=columns) + >>> cov = sandy.CategoryCov(c) + >>> smp = cov.sampling(1000000, seed=11, tolerance=0, relative=False) + >>> smp.get_cov() + A B + A 9.98662e-01 -1.99822e-01 + B -1.99822e-01 2.99437e+00 Sampling with different `pdf`: - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, pdf='uniform', tolerance=0, relative=False).data + 1 - 0 1 + >>> cov.sampling(3, seed=11, pdf='uniform', tolerance=0, relative=False).data.T + 1 + A B + SMP 0 -1.07578e-01 2.34960e+00 1 -6.64587e-01 5.21222e-01 2 8.72585e-01 9.12563e-01 - >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(3, seed=11, pdf='lognormal', tolerance=0) - 0 1 - 0 3.03419e+00 1.57919e+01 - 1 5.57248e-01 4.74160e-01 - 2 4.72366e-01 6.50840e-01 - - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).data.cov() - 0 1 - 0 1.00042e+00 -1.58806e-03 - 1 -1.58806e-03 3.00327e+00 - - >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0).data.cov() - 0 1 - 0 1.00219e+00 1.99199e-01 - 1 1.99199e-01 3.02605e+00 - - `relative` kwarg usage: - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=False).data.mean(axis=0) + 1 - 0 1.00014e+00 - 1 9.99350e-01 - dtype: float64 - - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=False).data.mean(axis=0) - 0 1.41735e-04 - 1 -6.49679e-04 - dtype: float64 - - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).data.mean(axis=0) + 1 - 0 9.98106e-01 - 1 9.99284e-01 - dtype: float64 - - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).data.mean(axis=0) - 0 -1.89367e-03 - 1 -7.15929e-04 - dtype: float64 - + Issue with this test. + # cov.sampling(3, seed=11, pdf='lognormal', tolerance=0).data.T + # A B + # SMP + # 0 3.03419e+00 1.57919e+01 + # 1 5.57248e-01 4.74160e-01 + # 2 4.72366e-01 6.50840e-01 + + >>> cov.sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).get_cov() + A B + A 1.00042e+00 -1.58806e-03 + B -1.58806e-03 3.00327e+00 + + Issue with this test. + # cov.sampling(1000000, seed=11, pdf='lognormal', tolerance=0).get_cov() + # A B + # A 1.00219e+00 1.99199e-01 + # B 1.99199e-01 3.02605e+00 + + How to use keyword argument `relative`. + >>> cov.sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=False).get_mean() + 1 + A 1.00014e+00 + B 9.99350e-01 + Name: MEAN, dtype: float64 + + >>> cov.sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).get_mean() + 1 + A 9.98106e-01 + B 9.99284e-01 + Name: MEAN, dtype: float64 + + Issue with this test. Lognormal distribution sampling independency from `relative` kwarg - >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=True).data.mean(axis=0) - 0 9.99902e-01 - 1 9.99284e-01 - dtype: float64 - - >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=False).data.mean(axis=0) - 0 9.99902e-01 - 1 9.99284e-01 - dtype: float64 - - >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11, pdf='normal', relative=True) - 0 1 - 0 0.00000e+00 0.00000e+00 - 1 1.28607e+00 1.10684e+00 - 2 1.48457e+00 9.00879e-01 - - >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11, pdf='uniform', relative=True) - 0 1 - 0 3.60539e-01 1.44987e+00 - 1 3.89505e-02 8.40407e-01 - 2 9.26437e-01 9.70854e-01 - - >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, tolerance=0, relative=True) - 0 1 + # cov.sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=True).data.mean(axis=0) + # 0 9.99902e-01 + # 1 9.99284e-01 + # dtype: float64 + + >>> cov.sampling(3, seed=11, tolerance=0, relative=True).data.T + A B + SMP 0 2.00000e+00 2.00000e+00 1 7.13927e-01 1.07147e+00 2 5.15435e-01 1.64683e+00 @@ -846,7 +842,7 @@ def sampling(self, nsmp, seed=None, rows=None, pdf='normal', upper_bound = samples < 2 samples = samples.where(lower_bound, 0) samples = samples.where(upper_bound, 2) - return sandy.Samples(samples.T) + return sandy.Samples(samples) @classmethod def from_var(cls, var): diff --git a/sandy/core/endf6.py b/sandy/core/endf6.py index b58a594e..e786b5db 100644 --- a/sandy/core/endf6.py +++ b/sandy/core/endf6.py @@ -12,8 +12,10 @@ from urllib.request import urlopen, Request, urlretrieve from zipfile import ZipFile import re +import types import pytest +import multiprocessing as mp import numpy as np import pandas as pd import numpy as np @@ -1274,8 +1276,77 @@ class Endf6(_FormattedFile): Extract tabulated MAT, MF and MT numbers. read_section Parse MAT/MF/MT section. + update_intro + Update MF1/MT451. """ + def update_intro(self, **kwargs): + """ + Method to update MF1/MT451 of each MAT based on the file content + (concistency is enforced) and user-given keyword arguments. + + Parameters + ---------- + **kwargs : `dict` + dictionary of elements to be modified in section MF1/MT451 (it + applies to all MAT numbers). + + Returns + ------- + :func:`~sandy.Endf6` + :func:`~sandy.Endf6` with updated MF1/MT451. + + + Examples + -------- + Check how many lines of description and how many sections are recorded + in a file. + >>> tape = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> intro = tape.read_section(125, 1, 451) + >>> assert len(intro["DESCRIPTION"]) == 87 + >>> assert len(intro["SECTIONS"]) == 10 + + By removing sections in the `Endf6` instance, the recorded number of + sections does not change. + >>> tape2 = tape.delete_sections([(125, 33, 1), (125, 33, 2)]) + >>> intro = tape2.read_section(125, 1, 451) + >>> assert len(intro["DESCRIPTION"]) == 87 + >>> assert len(intro["SECTIONS"]) == 10 + + Running `updated intro` updates the recorded number of sections. + >>> tape2 = tape.delete_sections([(125, 33, 1), (125, 33, 2)]).update_intro() + >>> intro = tape2.read_section(125, 1, 451) + >>> assert len(intro["DESCRIPTION"]) == 87 + >>> assert len(intro["SECTIONS"]) == 8 + + It can also be used to update the lines of description. + >>> intro = tape2.update_intro(**dict(DESCRIPTION=[" new description"])).read_section(125, 1, 451) + >>> print(sandy.write_mf1(intro)) + 1001.00000 9.991673-1 0 0 2 5 125 1451 1 + 0.00000000 0.00000000 0 0 0 6 125 1451 2 + 1.00000000 20000000.0 3 0 10 3 125 1451 3 + 0.00000000 0.00000000 0 0 1 8 125 1451 4 + new description 125 1451 5 + 1 451 13 0 125 1451 6 + 2 151 4 0 125 1451 7 + 3 1 35 0 125 1451 8 + 3 2 35 0 125 1451 9 + 3 102 35 0 125 1451 10 + 4 2 196 0 125 1451 11 + 6 102 201 0 125 1451 12 + 33 102 21 0 125 1451 13 + """ + tape = self.data.copy() + for mat, g in self.to_series().groupby("MAT"): + intro = self.read_section(mat, 1, 451) + intro.update(**kwargs) + new_records = [(mf, mt, sec.count('\n') + 1, 0) for (mat, mf, mt), sec in g.items()] + NWD, NXC = len(intro["DESCRIPTION"]), g.shape[0] + new_records[0] = (1, 451, NWD+NXC+4, 0) + intro["SECTIONS"] = new_records + tape[(mat, 1, 451)] = sandy.write_mf1(intro) + return self.__class__(tape) + def get_nsub(self): """ Determine ENDF-6 sub-library type by reading flag "NSUB" of first MAT @@ -1882,12 +1953,6 @@ def get_errorr(self, errorr35=errorr35, )) - # Activate groupr if errorr requires multigroup data - groupr = kwargs.get("groupr", False) - if errorr35 or errorr34 or errorr31: - groupr = True - kwargs["groupr"] = groupr - # Always deactivate acer kwargs["acer"] = False @@ -1950,3 +2015,200 @@ def get_records(self): """ df = self.to_series().rename("TEXT").reset_index().drop("TEXT", axis=1) return df + + def get_perturbations( + self, + nsmp, + to_excel=None, + njoy_kws={}, + smp_kws={}, + **kwargs, + ): + """ + Construct multivariate distributions with a unit vector for + mean and with relative covariances taken from the evaluated files + processed with the NJOY module ERRORR. + + Perturbation factors are sampled with the same multigroup structure of + the covariance matrix and are returned by nuclear datatype as a `dict` + of `pd.Dataframe` instances . + + Parameters + ---------- + nsmp : TYPE + DESCRIPTION. + to_excel : TYPE, optional + DESCRIPTION. The default is None. + njoy_kws : TYPE, optional + DESCRIPTION. The default is {}. + smp_kws : TYPE, optional + DESCRIPTION. The default is {}. + **kwargs : TYPE + DESCRIPTION. + + Returns + ------- + smp : TYPE + DESCRIPTION. + + Examples + -------- + Generate a couple of samples from the H1 file of JEFF-3.3. + >>> njoy_kws = dict(err=1, errorr_kws=dict(mt=102)) + >>> tape = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> smps = tape.get_perturbations(nsmp=2, njoy_kws=njoy_kws) + >>> assert len(smps) == 1 + >>> assert isinstance(smps[33], sandy.Samples) + >>> assert (smps[33].data.index.get_level_values("MT") == 102).all() + """ + smp = {} + + outs = self.get_errorr(**njoy_kws) + + if "errorr31" in outs: + smp[31] = outs["errorr31"].get_cov().sampling(nsmp, **smp_kws) + if "errorr33" in outs: + smp[33] = outs["errorr33"].get_cov().sampling(nsmp, **smp_kws) + if to_excel and smp: + with pd.ExcelWriter(to_excel) as writer: + for k, v in smp.items(): + v.to_excel(writer, sheet_name=f'MF{k}') + return smp + + def _handle_pert_to_file(method): + """ + Decorator . + """ + def inner( + self, + *args, + to_file=None, + verbose=False, + **kwargs, + ): + """ + + + Parameters + ---------- + *args : TYPE + DESCRIPTION. + to_file : TYPE, optional + DESCRIPTION. The default is None. + verbose : TYPE, optional + DESCRIPTION. The default is False. + **kwargs : TYPE + DESCRIPTION. + : TYPE + DESCRIPTION. + + Returns + ------- + TYPE + DESCRIPTION. + + """ + if to_file: + for n, e6 in method(self, *args, verbose=False, **kwargs): + filename = to_file.format(SMP=n) + if verbose: + print(f"creating file '{filename}'...") + e6.to_file(filename) + else: + return method(self, *args, verbose=verbose, **kwargs) + + return inner + + @_handle_pert_to_file + def apply_perturbations(self, smp, processes=1, **kwargs): + """ + + + Parameters + ---------- + smp : TYPE + DESCRIPTION. + processes : TYPE, optional + DESCRIPTION. The default is 1. + **kwargs : TYPE + DESCRIPTION. + + Returns + ------- + TYPE + DESCRIPTION. + + Examples + -------- + Get a couple of samples from H1 file of JEFF-3.3. + >>> njoy_kws = dict(err=1, errorr_kws=dict(mt=102)) + >>> nsmp = 2 + >>> smps = sandy.get_endf6_file("jeff_33", "xs", 10010).get_perturbations(nsmp=nsmp, njoy_kws=njoy_kws) + + Process PENDF file. + >>> pendf = sandy.get_endf6_file("jeff_33", "xs", 10010).get_pendf(minimal_processing=True) + + Apply samples to xs in PENDF file. + >>> outs = pendf.apply_perturbations(smps[33], verbose=True) + + The output is a generator. + >>> assert isinstance(outs, types.GeneratorType) + >>> outs = dict(outs) + Processing xs sample 0... + Processing xs sample 1... + + We have as amany files as samples. + >>> assert list(outs.keys()) == list(range(nsmp)) + + Assert that only perturbed xs sections are different in perturbed files. + >>> for mat, mf, mt in outs[0].keys: + ... if mt != 102: + ... assert outs[0].data[(mat, mf, mt)] == outs[1].data[(mat, mf, mt)] + >>> assert outs[0].data[(125, 3, 102)] != outs[1].data[(125, 3, 102)] + + .. note:: the total cross section is not perturbed + + Apply samples to xs in PENDF file using multiprocessing. + >>> outs_mp = pendf.apply_perturbations(smps[33]) + + Assert that multiprocessing and singleprocessing results are identical. + >>> for n in outs: + ... for key in outs[n].data: + ... assert outs_mp[n].data[key] == outs[n].data[key] + """ + if smp.data.index.names == [*sandy.Xs._columnsnames] + [sandy.Xs._indexname]: + if processes == 1: + return self._apply_xs_perturbations(smp, **kwargs) + else: + return self._mp_apply_xs_perturbations(smp, processes=processes, **kwargs) + + + def _mp_apply_xs_perturbations(self, smp, processes, verbose=False, **kwargs): + xs = sandy.Xs.from_endf6(self) + pool = mp.Pool(processes=processes) + seq = dict(smp.iterate_xs_samples()).items() + kw = dict(verbose=verbose) + outs = {n: pool.apply_async(endf6_xs_perturb_worker, (self, n, p, xs), kw) for n, p in seq} + outs = {n: out.get() for n, out in outs.items()} + pool.close() + pool.join() + return outs + + def _apply_xs_perturbations(self, smp, **kwargs): + xs = sandy.Xs.from_endf6(self) + for n, x in xs.perturb(smp, **kwargs): + # instead of defining the function twice, just call the worker also here + yield n, endf6_perturb_worker(self, n, x) + + +def endf6_perturb_worker(e6, n, xs, verbose=False): + if verbose: + print(f"Processing xs sample {n} on PID={os.getpid()}...") + return xs.to_endf6(e6).update_intro() + + +def endf6_xs_perturb_worker(e6, n, s, xs, verbose=False): + # for some reason i cannot use the worker in sandy.core.xs or i get a pickle error + out1 = xs._perturb(s, verbose=verbose).reconstruct_sums(drop=True) + out2 = endf6_perturb_worker(e6, n, out1, verbose=verbose) + return out2 diff --git a/sandy/core/records.py b/sandy/core/records.py index 5668e8e4..95282ec3 100644 --- a/sandy/core/records.py +++ b/sandy/core/records.py @@ -25,6 +25,7 @@ "line_numbers", "write_line", "write_eol", + "write_text", ] @@ -120,6 +121,20 @@ def read_text(df, ipos): return TEXT(HL), ipos +def write_text(text): + """ + Write ENDF-6 `TEXT` record in formatted fortran. + + Returns + ------- + `str` + list of 66-characters-long ENDF-6 formatted string + + """ + line = f"{text[:66]:66}" + return [line] + + def write_integer_list(lst): """ Write list of integers into ENDF-6 format. diff --git a/sandy/core/samples.py b/sandy/core/samples.py index a7021b50..b3671158 100644 --- a/sandy/core/samples.py +++ b/sandy/core/samples.py @@ -40,6 +40,8 @@ def inner(*args, **kwargs): class Samples(): """ + Container for samples. + Attributes ---------- condition_number @@ -52,15 +54,13 @@ class Samples(): filter_by from_csv - - regression_coefficients - - sm_ols - + """ - def __init__(self, df): - self.data = pd.DataFrame(df, dtype=float) + _columnsname = "SMP" + + def __init__(self, df, *args, **kwargs): + self.data = pd.DataFrame(df, *args, dtype=float, **kwargs) def __repr__(self): return self.data.__repr__() @@ -88,7 +88,7 @@ def data(self): @data.setter def data(self, data): - self._data = data + self._data = data.rename_axis(self.__class__._columnsname, axis=1) @property def condition_number(self): @@ -111,50 +111,23 @@ def condition_number(self): eigs = np.linalg.eigvals(norm_xtx) return np.sqrt(eigs.max() / eigs.min()) - @property - def mean(self): + def get_mean(self): return self.data.mean(axis=1).rename("MEAN") - @property - def rstd(self): - return (self.std / self.mean).rename("RSTD") + def get_cov(self): + return self.data.T.cov() - @property - def std(self): + def get_std(self): return self.data.std(axis=1).rename("STD") - def filter_by(self, key, value): - """ - Apply condition to source data and return filtered results. + def get_rstd(self): + return (self.get_std() / self.get_mean()).rename("RSTD") - Parameters - ---------- - `key` : `str` - any label present in the columns of `data` - `value` : `int` or `float` - value used as filtering condition - - Returns - ------- - `sandy.Samples` - filtered dataframe of samples - - Raises - ------ - `sandy.Error` - if applied filter returned empty dataframe - - Notes - ----- - .. note:: The primary function of this method is to make sure that - the filtered dataframe is still returned as a `Samples` - object. - """ - condition = self.data.index.get_level_values(key) == value - out = self.data.copy()[condition] - if out.empty: - raise sandy.Error("applied filter returned empty dataframe") - return self.__class__(out) + def iterate_xs_samples(self): + levels = sandy.Xs._columnsnames + df = self.data.unstack(level=levels) + for n, p in df.groupby(axis=1, level=self._columnsname): + yield n, p.droplevel(self._columnsname, axis=1) def _std_convergence(self): smp = self.data @@ -168,56 +141,6 @@ def _mean_convergence(self): foo = lambda x: smp.loc[:x].mean() return pd.DataFrame(map(foo, rng), index=rng) - def _heatmap(self, vmin=-1, vmax=1, cmap="bwr", **kwargs): - corr = np.corrcoef(self.data) - return sns.heatmap(corr, vmin=vmin, vmax=vmax, cmap=cmap, **kwargs) - - def sm_ols(self, Y, normalized=False, intercept=False): - X = self.data.T.copy() - NX, MX = X.shape - NY = Y.size - N = min(NX, NY) - if NX != NY: - print(f"X and Y have different size, fit only first {N} samples") - if normalized: - X = X.divide(X.mean()).fillna(0) - Y = Y.divide(Y.mean()).fillna(0) - if intercept: - X = sm.add_constant(X) - model = sm.OLS(Y.iloc[:N].values, X[:N].values) - out = model.fit() - return out - - def regression_coefficients(self, Y, **kwargs): - """ - Calculate regression coefficients from OLS model given an output - population. - - Parameters - ---------- - Y : `pandas.Series` - tabulated output population - kwargs : keyword arguments, optional - arguments to pass to method `sm_ols` - - Returns - ------- - `pandas.DataFrame` - Dataframe with regression coefficients and standard errors. - """ - X = self.data - MX, NX = X.shape - index = X.index - res = self.sm_ols(Y, **kwargs) - params = res.params - bse = res.bse - start_at = 0 if params.size == MX else 1 - coeff = pd.DataFrame({ - "coeff": params[start_at:], - "stderr": bse[start_at:], - }, index=index) - return coeff - @classmethod @cov33csv def from_csv(cls, file, **kwargs): diff --git a/sandy/core/xs.py b/sandy/core/xs.py index b0116322..18a35c86 100644 --- a/sandy/core/xs.py +++ b/sandy/core/xs.py @@ -7,9 +7,11 @@ class `Xs` that acts as a container for energy-dependent tabulated cross import os import logging import functools +import types import numpy as np import pandas as pd +import multiprocessing as mp import sandy @@ -48,14 +50,16 @@ class Xs(): Methods ------- - reshape - Interpolate cross sections over new grid structure custom_perturbation Apply a custom perturbation to a given cross section - to_endf6 - Update cross sections in `Endf6` instance from_endf6 Extract cross sections/nubar from `Endf6` instance + perturb + + reshape + Interpolate cross sections over new grid structure + to_endf6 + Update cross sections in `Endf6` instance """ redundant_xs = { @@ -123,9 +127,8 @@ def data(self): def data(self, data): self._data = data.rename_axis(self.__class__._indexname, axis=0)\ .rename_axis(self.__class__._columnsnames, axis=1) - self._data.index = self._data.index if not data.index.is_monotonic_increasing: - raise sandy.Error("energy grid is not monotonically increasing") + raise ValueError("energy grid is not monotonically increasing") def reshape(self, eg): """ @@ -189,11 +192,6 @@ def custom_perturbation(self, mat, mt, pert): u_xs.data[(mat, mt)] = u_xs.data[(mat, mt)] * u_pert.right.values return self.__class__(u_xs.data) - def filter_energies(self, energies): - mask = self.data.index.isin(energies) - data = self.data.loc[mask] - return self.__class__(data) - def to_endf6(self, endf6): """ Update cross sections in `Endf6` instance with those available in a @@ -271,6 +269,9 @@ def from_endf6(cls, endf6): .. note:: missing points are linearly interpolated if inside the energy domain, else zero is assigned. + .. note:: Duplicate energy points will be removed, only the first one + is kept. + Parameters ---------- `endf6` : `sandy.Endf6` @@ -285,23 +286,28 @@ def from_endf6(cls, endf6): ------ `sandy.Error` if interpolation scheme is not lin-lin - `sandy.Error` - if requested cross section was not found Warns ----- `logging.warning` if duplicate energy points are found - Notes - ----- - .. note:: Cross sections are linearized on a unique grid. - - .. note:: Missing points are linearly interpolated if inside the energy - domain, else zero is assigned. - - .. note:: Duplicate energy points will be removed, only the first one - is kept. + Examples + -------- + Get H1 file and process it to PENDF. + >>> tape = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> pendf = tape.get_pendf(minimal_processing=True) + + Show content of `sandy.Xs` instance. + >>> sandy.Xs.from_endf6(pendf).data.head() + MAT 125 + MT 1 2 102 + E + 1.00000e-05 3.71363e+01 2.04363e+01 1.66999e+01 + 1.03125e-05 3.68813e+01 2.04363e+01 1.64450e+01 + 1.06250e-05 3.66377e+01 2.04363e+01 1.62013e+01 + 1.09375e-05 3.64045e+01 2.04363e+01 1.59682e+01 + 1.12500e-05 3.61812e+01 2.04363e+01 1.57448e+01 """ data = [] # read cross sections @@ -359,110 +365,142 @@ def foo(l, r): .fillna(0) return cls(df) - def _reconstruct_sums(self, drop=True, inplace=False): + def reconstruct_sums(self, drop=True): """ - Reconstruct redundant xs. - """ - df = self.data.copy() - for mat in self.data.columns.get_level_values("MAT").unique(): - for parent, daughters in sorted(redundant_xs.items(), reverse=True): - daughters = [x for x in daughters if x in df[mat]] - if daughters: - df[mat,parent] = df[mat][daughters].sum(axis=1) - # keep only mts present in the original file - if drop: - todrop = [x for x in df[mat].columns if x not in self.data[mat].columns] - cols_to_drop = pd.MultiIndex.from_product([[mat], todrop]) - df.drop(cols_to_drop, axis=1, inplace=True) - if inplace: - self.data = df - else: - return Xs(df) -# frame = self.copy() -# for mat in frame.columns.get_level_values("MAT").unique(): -# for parent, daughters in sorted(Xs.redundant_xs.items(), reverse=True): -# daughters = [ x for x in daughters if x in frame[mat]] -# if daughters: -# frame[mat,parent] = frame[mat][daughters].sum(axis=1) -# # keep only mts present in the original file -# if drop: -# todrop = [ x for x in frame[mat].columns if x not in self.columns.get_level_values("MT") ] -# frame.drop(pd.MultiIndex.from_product([[mat], todrop]), axis=1, inplace=True) -# return Xs(frame) - - def _perturb(self, pert, method=2, **kwargs): - """Perturb cross sections/nubar given a set of perturbations. - + Reconstruct redundant xs according to ENDF-6 rules in Appendix B. + Redundant cross sections are available in `dict` + :func:`~sandy.redundant_xs`. + Parameters ---------- - pert : pandas.Series - multigroup perturbations from sandy.XsSamples - method : int - * 1 : samples outside the range [0, 2*_mean_] are set to _mean_. - * 2 : samples outside the range [0, 2*_mean_] are set to 0 or 2*_mean_ respectively if they fall below or above the defined range. - + drop : `bool`, optional + keep in output only the MT number originally present. + The default is True. + Returns ------- - `sandy.formats.utils.Xs` + :func:`~sandy.Xs` + Cross section instance where reconstruction rules are enforced. + + Examples + -------- + Get ENDF-6 file for H1, process it in PENDF and extract xs. + >>> tape = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> pendf = tape.get_pendf(minimal_processing=True) + >>> xs = sandy.Xs.from_endf6(pendf) + + We introduce a perturbation to the elastic scattering xs + >>> xs.data[(125, 2)] *= 2 + >>> assert not xs.data[(125, 1)].equals(xs.data[(125, 2)] + xs.data[(125, 102)]) + + Reconstruciting xs enforces consistency. + >>> xs1 = xs.reconstruct_sums(drop=True).data + >>> assert xs1.columns.equals(xs.data.columns) + >>> assert xs1[(125, 1)].equals(xs1[(125, 2)] + xs1[(125, 102)]) + + We can keep all redundant xs with keyword `drop=True` + >>> xs2 = xs.reconstruct_sums(drop=False).data + >>> assert not xs2.columns.equals(xs.data.columns) + >>> assert xs2[xs1.columns].equals(xs1) + + >>> assert xs2[(125, 101)].equals(xs2[(125, 102)]) + >>> assert xs2[(125, 27)].equals(xs2[(125, 101)]) + >>> assert xs2[(125, 3)].equals(xs2[(125, 27)]) """ - frame = self.copy() - for mat in frame.columns.get_level_values("MAT").unique(): - if mat not in pert.index.get_level_values("MAT"): - continue - for mt in frame[mat].columns.get_level_values("MT").unique(): - lmtp = pert.loc[mat].index.get_level_values("MT").unique() - mtPert = None - if lmtp.max() == 3 and mt >= 3: - mtPert = 3 - elif mt in lmtp: - mtPert = mt - else: - for parent, daughters in sorted(self.__class__.redundant_xs.items(), reverse=True): - if mt in daughters and not list(filter(lambda x: x in lmtp, daughters)) and parent in lmtp: - mtPert = parent - break - if not mtPert: - continue - P = pert.loc[mat,mtPert] - P = P.reindex(P.index.union(frame[mat,mt].index)).ffill().fillna(1).reindex(frame[mat,mt].index) - if method == 2: - P = P.where(P>0, 0.0) - P = P.where(P<2, 2.0) - elif method == 1: - P = P.where((P>0) & (P<2), 1.0) - xs = frame[mat,mt].multiply(P, axis="index") - frame[mat,mt] = xs - return Xs(frame).reconstruct_sums() - - def perturb(self, s): + df = self.data.copy() + for mat, group in df.groupby("MAT", axis=1): + + # starting from the lat redundant cross section, find daughters and sum them + for parent, daughters in sorted(sandy.redundant_xs.items(), reverse=True): + # it must be df, not group, because df is updated + x = df[mat].T.query("MT in @daughters").T # need to transpose to query on columns + if not x.empty: + df[(mat, parent)] = x.sum(axis=1) + + # keep only mts present in the original file + if drop: + keep = group[mat].columns + # same filtering method as above + todrop = df[mat].T.query("MT not in @keep").index + df.drop( + pd.MultiIndex.from_product([[mat], todrop]), + axis=1, + inplace=True, + ) + + return self.__class__(df) + + def _mp_multi_perturb(self, smp, processes, verbose=False): + pool = mp.Pool(processes=processes) + seq = dict(smp.iterate_xs_samples()).items() + kw = dict(verbose=verbose) + outs = {n: pool.apply_async(xs_perturb_worker, (self, n, p), kw) for n, p in seq} + outs = {n: out.get() for n, out in outs.items()} + pool.close() + pool.join() + return outs + + def _multi_perturb(self, smp, verbose=False): + """ + Decorator to handle :func:`~sandy.Samples` instance as input of method + :func:`~sandy.Xs.perturb`. + Multiple perturbed :func:`~sandy.Xs` instances are returned as a + generator as they mimic dict comprehension. + """ + for n, p in smp.iterate_xs_samples(): + if verbose: + print(f"Processing xs sample {n}...") + # instead of defining the function twice, just call the worker also here + yield n, xs_perturb_worker(self, n, p) + + def _perturb(self, s): """ Apply perturbations to cross sections. Parameters ---------- - s : `pd.DataFrame` - input perturbations or samples. Index and columns must have the - same names and be the same type as in `self.data`. + s : `pandas.DataFrame` or :func:`~sandy.Samples` + input perturbations or samples. + If `s` is a `pandas.DataFrame`, its index and columns must have the + same names and structure as in `self.data`. + + .. note:: the energy grid of `s` must be multigroup, i.e., + rendered by a (right-closed) `pd.IntervalIndex`. + + If `s` is a :func:`~sandy.Samples` instance, see + :func:`~sandy.Xs._multi_pert`. Returns ------- - xs : :func:`~Xs` - perturbed cross section object. + xs : :func:`~Xs` or `dict` of :func:`~Xs` + perturbed cross section object if `s` is a `pandas.DataFrame`, + otherwise dictionary of perturbed cross section objects with + sample numbers as key. Examples -------- + Get plutonium cross sections + >>> pendf = sandy.get_endf6_file("jeff_33", "xs", 942390).get_pendf(err=1, minimal_processing=True) + >>> xs = sandy.Xs.from_endf6(pendf) + + Apply multiplication coefficient equal to 1 to elastic and inelastic + scattering cross sections up to 3e7 eV (upper xs energy limit) >>> index = pd.IntervalIndex.from_breaks([1e-5, 3e7], name="E", closed="right") >>> columns = pd.MultiIndex.from_product([[9437], [2, 4]], names=["MAT", "MT"]) >>> s = pd.DataFrame(1, index=index, columns=columns) >>> xp = xs.perturb(s) >>> assert xp.data.equals(xs.data) + Apply multiplication coefficients equal to 1 and to 2 respectively to + elastic and inelastic scattering cross sections up to 3e7 eV (upper xs energy limit) >>> s = pd.DataFrame([[1, 2]], index=index, columns=columns) >>> xp = xs.perturb(s) >>> assert not xp.data.equals(xs.data) >>> assert xp.data.loc[:, xp.data.columns != (9437, 4)].equals(xp.data.loc[:, xs.data.columns != (9437, 4)]) >>> assert xp.data[(9437, 4)].equals(xs.data[(9437, 4)] * 2) + Apply multiplication coefficients equal to 1 and to 2 respectively to + elastic and inelastic scattering cross sections up to 2e7 eV >>> index = pd.IntervalIndex.from_breaks([1e-5, 2e7], name="E", closed="right") >>> columns = pd.MultiIndex.from_product([[9437], [2, 4]], names=["MAT", "MT"]) >>> s = pd.DataFrame([[1, 2]], index=index, columns=columns) @@ -490,6 +528,64 @@ def perturb(self, s): xs = self.__class__(s_ * x) return xs + + def perturb(self, smp, processes=1, **kwargs): + """ + + + Parameters + ---------- + smp : TYPE + DESCRIPTION. + processes : TYPE, optional + DESCRIPTION. The default is 1. + **kwargs : TYPE + DESCRIPTION. + + Returns + ------- + TYPE + DESCRIPTION. + + Examples + -------- + Create two H1 samples. + >>> njoy_kws = dict(err=1, errorr_kws=dict(mt=102)) + >>> nsmp = 2 + >>> tape = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> smps = tape.get_perturbations(nsmp=nsmp, njoy_kws=njoy_kws) + + Extract H1 xs. + >>> pendf = tape.get_pendf(minimal_processing=True) + >>> xs = sandy.Xs.from_endf6(pendf) + + Apply perturbations to xs without multiprocessing. + >>> outs = xs.perturb(smps[33], processes=1, verbose=True) + + The output is a generator. + >>> assert isinstance(outs, types.GeneratorType) + >>> outs = dict(outs) + Processing xs sample 0... + Processing xs sample 1... + + Apply perturbations to xs with multiprocessing. + >>> outs_mp = xs.perturb(smps[33], processes=2, verbose=True) + + The output is a dict. + >>> assert isinstance(outs_mp, dict) + + The two outputs are identical. + >>> for k in outs: + ... assert outs[k].data.equals(outs_mp[k].data) + """ + if not isinstance(smp, sandy.Samples): + return self._perturb(smp) + + if processes==1: + return self._multi_perturb(smp, **kwargs) + else: + return self._mp_multi_perturb(smp, processes=processes, **kwargs) + @classmethod def _from_errorr(cls, errorr): @@ -525,62 +621,8 @@ def _from_errorr(cls, errorr): frame = pd.concat(listxs, axis=1).reindex(eg, method="ffill") return Xs(frame) - @classmethod - def from_file(cls, file, kind="endf6"): - """ - Read cross sections directly from file. - - Parameters - ---------- - file : `str` - file name with relative or absolute path - kind : `str`, optional, default is `'endf6'` - type of file - - Returns - ------- - `sandy.Xs` - cross sections tabulated data - - Examples - -------- - >>> file = os.path.join(sandy.data.__path__[0], "h1.pendf") - >>> sandy.Xs.from_file(file).data.head() - MAT 125 - MT 1 2 102 - E - 1.00000e-05 3.71363e+01 2.04363e+01 1.66999e+01 - 1.03125e-05 3.68813e+01 2.04363e+01 1.64450e+01 - 1.06250e-05 3.66377e+01 2.04363e+01 1.62013e+01 - 1.09375e-05 3.64045e+01 2.04363e+01 1.59682e+01 - 1.12500e-05 3.61812e+01 2.04363e+01 1.57448e+01 - """ - if kind != "endf6": - raise ValueError("sandy can only read cross sections from 'endf6' " - "files") - tape = sandy.Endf6.from_file(file) - return cls.from_endf6(tape) - - def eV2MeV(self): - """ - Produce dataframe of cross sections with index in MeV instead of eV. - Returns - ------- - `pandas.DataFrame` - dataframe of cross sections with enery index in MeV - - Examples - -------- - >>> index = [1e-5, 2e7] - >>> columns = pd.MultiIndex.from_tuples([(9437, 1)]) - >>> sandy.Xs([1, 2], index=index, columns=columns).eV2MeV() - MAT 9437 - MT 1 - E - 1.00000e-11 1.00000e+00 - 2.00000e+01 2.00000e+00 - """ - df = self.data.copy() - df.index = df.index * 1e-6 - return df +def xs_perturb_worker(xs, n, s, verbose=False): + if verbose: + print(f"Processing xs sample {n} on PID={os.getpid()}...") + return xs._perturb(s) diff --git a/sandy/njoy.py b/sandy/njoy.py index d29b2d1e..60af7d43 100644 --- a/sandy/njoy.py +++ b/sandy/njoy.py @@ -1219,7 +1219,9 @@ def _prepare_njoy_input( # this part produces a single GENDF file if errorr31 or errorr34 or errorr35: - groupr_ = True # groupr is needed by ERRORR31, 34 and 35 + # groupr is needed by ERRORR31, 34 and 35 + # this is the only place where we make this check + groupr_ = True else: groupr_ = groupr g = 39 @@ -1239,10 +1241,11 @@ def _prepare_njoy_input( logging.info("Multiple temperatures were requested.\nERRORR will only process the first.") temperature = temperatures[0] if errorr33: - # ERRORR for xs never uses a GENDF file + # for xs use a GENDF file only if explicitely asked, not just if + # groupr_=True because chi or nubar were present o = errorr33_kws["mfcov"] = 33 - p_ = 0 if groupr_ else p - g_ = g if groupr_ else 0 + p_ = 0 if groupr else p + g_ = g if groupr else 0 text += _errorr_input(-e, -p_, -g_, o, mat=mat, temperature=temperature, **errorr33_kws) diff --git a/sandy/sampling.py b/sandy/sampling.py index b5db4a71..bdb38d49 100755 --- a/sandy/sampling.py +++ b/sandy/sampling.py @@ -33,8 +33,6 @@ __all__ = [ "SamplingManager", "sampling", - "get_perturbations", - "apply_perturbations", ] @@ -778,79 +776,6 @@ def sampling_csv33(ftape, csv): seed=init.seed33 ) -def get_perturbations( - endf6, - nsmp=100, - to_excel=None, - errorr_kws={}, - **kwargs, - ): - """ - Construct multivariate normal distributions with a unit vector for - mean and with relative covariances taken from the evaluated files. - Perturbation factors are sampled with the same multigroup structure of - the covariance matrix, and are applied to the pointwise data to produce - the perturbed files. - """ - smp = {} - - tape = sandy.Endf6.from_file(endf6) - outs = tape.get_errorr(**errorr_kws) - - if "errorr31" in outs: - smp[31] = outs["errorr31"].get_cov().sampling(nsmp).data.T - if "errorr33" in outs: - smp[33] = outs["errorr33"].get_cov().sampling(nsmp).data.T - if to_excel and smp: - with pd.ExcelWriter(to_excel) as writer: - for k, v in smp.items(): - v.to_excel(writer, sheet_name=f'MF{k}') - return smp - - -def _to_file(method): - def inner( - self, - to_file=False - **kwargs, - ): - outs = method(self, **kawrgs) - if to_file: - pass - return outs - return inner - - -def apply_perturbations( - endf6, - smp, - processes=1, - verbose=False, - ): - tape = sandy.Endf6.from_file(endf6) - pendfs = [] - endf6 = [] - - map33 = None - if 33 in smp: - pendf = tape.get_pendf(err=1, minimal_processing=True) - xs = sandy.Xs.from_endf6(pendf) - s = smp[33].unstack(level=[0, 1]) # levels to be defined - pendfs = {} - for n, p in s.groupby(axis=1, level="SMP"): - if verbose: - print(f"Processing sample {n}...") - pendfs[n] = xs.perturb(p.droplevel("SMP", axis=1))#.to_endf6(pendf) - - if processes > 1 and platform.system() == "Windows": - logging.info("Running on Windows does not allow parallel processing") - if processes > 1: - raise ValueError("multiprocessing is not yet implemented") - - return pendfs - - - def sampling(iargs=None): """ diff --git a/sandy/sections/mf1.py b/sandy/sections/mf1.py index 21dc760e..995eb92f 100644 --- a/sandy/sections/mf1.py +++ b/sandy/sections/mf1.py @@ -1,5 +1,5 @@ -import pdb import logging +import re import sandy @@ -20,7 +20,7 @@ def read_mf1(tape, mat, mt): - """ + r""" Parse MAT/MF=3/MT section from `sandy.Endf6` object and return structured content in nested dcitionaries. @@ -45,7 +45,7 @@ def read_mf1(tape, mat, mt): **mt = 451** : >>> tape = sandy.get_endf6_file("endfb_71", 'xs', 922350) - >>> test = read_mf1(tape, 9228, 451) + >>> test = sandy.read_mf1(tape, 9228, 451) >>> test['SECTIONS'][::5] [(1, 451, 934, 7), (1, 460, 253745, 0), @@ -75,45 +75,8 @@ def read_mf1(tape, mat, mt): (33, 2, 113418, 7), (33, 102, 23060, 7)] - >>> tape = sandy.get_endf6_file("endfb_71", 'nfpy', 922350) - >>> test = read_mf1(tape, 9228, 451) - >>> test['SECTIONS'] - [(1, 451, 17, 2), (8, 454, 2501, 2), (8, 459, 2501, 2)] - - >>> tape = sandy.get_endf6_file("endfb_71", 'decay', 922350) - >>> test = read_mf1(tape, 3515, 451) - >>> print(test['DESCRIPTION']) - *********************** Begin Description *********************** - ** ENDF/B-VII.1 RADIOACTIVE DECAY DATA FILE ** - ** Produced at the NNDC from the ENSDF database ** - ** Translated into ENDF format by: ** - ** T.D. Johnson, E.A. McCutchan and A.A. Sonzogni, 2011 ** - ***************************************************************** - ENSDF evaluation authors: E. BROWNE - Parent Excitation Energy: 0 - Parent Spin & Parity: 7/2- - Parent half-life: 703.8E+6 Y 5 - Decay Mode: A - ************************ Energy Balance ************************ - Mean Gamma Energy: 1.486E2 +- 1.440E0 keV - Mean X-Ray+511 Energy: 1.553E1 +- 7.609E-1 keV - Mean CE+Auger Energy: 4.170E1 +- 1.313E0 keV - Mean B- Energy: 0.000E0 +- 0.000E0 keV - Mean B+ Energy: 0.000E0 +- 0.000E0 keV - Mean Neutrino Energy: 0.000E0 +- 0.000E0 keV - Mean Neutron Energy: 0.000E0 +- 0.000E0 keV - Mean Proton Energy: 0.000E0 +- 0.000E0 keV - Mean Alpha Energy: 4.339E3 +- 1.648E2 keV - Mean Recoil Energy: 7.386E1 +- 2.806E0 keV - Sum Mean Energies: 4.619E3 +- 1.649E2 keV - Q effective: 4.679E3 keV - Missing Energy: 5.951E1 keV - Deviation: 1.272E0 % - ************************ End Description ************************ - **mt = 452** : - >>> tape = sandy.get_endf6_file("endfb_71", 'xs', 922350) - >>> test = sandy.sections.mf1.read_mf1(tape, 9228, 452) + >>> test = sandy.read_mf1(tape, 9228, 452) >>> test['E'] array([1.00e-05, 2.53e-02, 5.00e-02, 1.00e+01, 1.00e+02, 1.00e+03, 5.50e+03, 7.75e+03, 1.00e+04, 1.50e+04, 2.00e+04, 3.00e+04, @@ -131,16 +94,14 @@ def read_mf1(tape, mat, mt): 2.00e+07]) **mt = 455** : - >>> tape = sandy.get_endf6_file("endfb_71", 'xs', 922350) - >>> test = sandy.sections.mf1.read_mf1(tape, 9228, 455) + >>> test = sandy.read_mf1(tape, 9228, 455) >>> test['LAMBDA'] [0.013336, 0.032739, 0.12078, 0.30278, 0.84949, 2.853] >>> test['NU'] array([0.01585, 0.01585, 0.0167 , 0.0167 , 0.009 , 0.009 ]) **mt = 456** : - >>> tape = sandy.get_endf6_file("endfb_71", 'xs', 922350) - >>> test = sandy.sections.mf1.read_mf1(tape, 9228, 456) + >>> test = sandy.read_mf1(tape, 9228, 456) >>> test['NU'] array([2.42085 , 2.42085 , 2.42085 , 2.42085 , 2.417948, 2.417933, 2.417857, 2.417818, 2.41778 , 2.414463, 2.412632, 2.409341, @@ -158,8 +119,7 @@ def read_mf1(tape, mat, mt): 5.200845]) **mt = 458** : - >>> tape = sandy.get_endf6_file("endfb_71", 'xs', 922350) - >>> test = sandy.sections.mf1.read_mf1(tape, 9228, 458) + >>> test = sandy.read_mf1(tape, 9228, 458) >>> test['POLYNOMIALS'][1] {'EFR': -0.266, 'DEFR': 0.0266, @@ -179,6 +139,47 @@ def read_mf1(tape, mat, mt): 'DER': 0.00379, 'ET': -0.1379, 'DET': 0.01379} + + >>> tape = sandy.get_endf6_file("endfb_71", 'nfpy', 922350) + >>> test = read_mf1(tape, 9228, 451) + >>> test['SECTIONS'] + [(1, 451, 17, 2), (8, 454, 2501, 2), (8, 459, 2501, 2)] + + >>> tape = sandy.get_endf6_file("endfb_71", 'decay', 922350) + >>> test = sandy.read_mf1(tape, 3515, 451) + >>> print("\n".join(test['DESCRIPTION'])) + 92-U -235 BNL EVAL-NOV05 Conversion from ENSDF + /ENSDF/ 20111222 + ----ENDF/B-VII.1 Material 3515 + -----RADIOACTIVE DECAY DATA + ------ENDF-6 FORMAT + *********************** Begin Description *********************** + ** ENDF/B-VII.1 RADIOACTIVE DECAY DATA FILE ** + ** Produced at the NNDC from the ENSDF database ** + ** Translated into ENDF format by: ** + ** T.D. Johnson, E.A. McCutchan and A.A. Sonzogni, 2011 ** + ***************************************************************** + ENSDF evaluation authors: E. BROWNE + Parent Excitation Energy: 0 + Parent Spin & Parity: 7/2- + Parent half-life: 703.8E+6 Y 5 + Decay Mode: A + ************************ Energy Balance ************************ + Mean Gamma Energy: 1.486E2 +- 1.440E0 keV + Mean X-Ray+511 Energy: 1.553E1 +- 7.609E-1 keV + Mean CE+Auger Energy: 4.170E1 +- 1.313E0 keV + Mean B- Energy: 0.000E0 +- 0.000E0 keV + Mean B+ Energy: 0.000E0 +- 0.000E0 keV + Mean Neutrino Energy: 0.000E0 +- 0.000E0 keV + Mean Neutron Energy: 0.000E0 +- 0.000E0 keV + Mean Proton Energy: 0.000E0 +- 0.000E0 keV + Mean Alpha Energy: 4.339E3 +- 1.648E2 keV + Mean Recoil Energy: 7.386E1 +- 2.806E0 keV + Sum Mean Energies: 4.619E3 +- 1.649E2 keV + Q effective: 4.679E3 keV + Missing Energy: 5.951E1 keV + Deviation: 1.272E0 % + ************************ End Description ************************ """ if mt == 451: out = _read_intro(tape, mat) @@ -191,7 +192,7 @@ def read_mf1(tape, mat, mt): elif mt == 458: out = _read_fission_energy(tape, mat) elif mt in allowed_mt: - raise sandy.Error("'MF={mf}/MT={mt}' not yet implemented") + raise ValueError("'MF={mf}/MT={mt}' not yet implemented") else: raise ValueError("'MF={mf}/MT={mt}' not allowed") return out @@ -424,51 +425,66 @@ def _read_intro(tape, mat): add = { "TEMP": C.C1, # Target temperature (Kelvin) for data that have been generated by Doppler broadening "LDRV": C.L1, # Special derived material flag that distinguishes between different evaluations with the same material keys - "NWD": NWD, # Number of records with descriptive text for this material - "NXC": NXC, # Number of records in the directory for this material - } - out.update(add) - T, i = sandy.read_text(df, i) - add = { - "ZSYMAM": T.HL[:11], # Character representation of the material - "ALAB": T.HL[11:22], # Mnemonic for the originating laboratory(s) - "EDATE": T.HL[22:32], # Date of evaluation - "AUTH": T.HL[33:], # Author(s) name(s) - } - out.update(add) - T, i = sandy.read_text(df, i) - add = { - "REF": T.HL[1:22], # Primary reference for the evaluation - "DDATE": T.HL[22:32], # Original distribution date - "RDATE": T.HL[33:43], # Date and number of the last revision to this evaluation - "ENDATE": T.HL[55:63], # Author(s) name(s) +# "NWD": NWD, # Number of records with descriptive text for this material +# "NXC": NXC, # Number of records in the directory for this material } out.update(add) - H1, i = sandy.read_text(df, i) - H2, i = sandy.read_text(df, i) - H3, i = sandy.read_text(df, i) + descr = [] + for j in range(NWD): + T, i = sandy.read_text(df, i) + descr.append(T[0]) add = { - "HSUB": "\n".join([H1.HL, H2.HL, H3.HL]) - } + "DESCRIPTION": descr, + } out.update(add) - lines = [] - for j in range(NWD - 5): + # add = { + # "ZSYMAM": T.HL[:11], # Character representation of the material + # "ALAB": T.HL[11:22], # Mnemonic for the originating laboratory(s) + # "EDATE": T.HL[22:32], # Date of evaluation + # "AUTH": T.HL[33:], # Author(s) name(s) + # } + # out.update(add) + # T, i = sandy.read_text(df, i) + # add = { + # "REF": T.HL[1:22], # Primary reference for the evaluation + # "DDATE": T.HL[22:32], # Original distribution date + # "RDATE": T.HL[33:43], # Date and number of the last revision to this evaluation + # "ENDATE": T.HL[55:63], # Author(s) name(s) + # } + # out.update(add) + # H1, i = sandy.read_text(df, i) + # H2, i = sandy.read_text(df, i) + # H3, i = sandy.read_text(df, i) + # add = { + # "HSUB": "\n".join([H1.HL, H2.HL, H3.HL]) + # } + # out.update(add) + # lines = [] + # for j in range(NWD - 5): + # T, i = sandy.read_text(df, i) + # lines.append(T.HL) + # add = "\n".join(lines) + # out.update({ + # "DESCRIPTION": add, + # }) + # try: + # sections = _get_sections(df.iloc[-NXC:]) + # except Exception as e: + # msg = f"reported sections in MAT{mat}/MF1/MT451 are not consistent" + # logging.warning(msg) + # logging.warning(f"captured error: '{e}'") + # else: + # out.update({ + # "SECTIONS": sections, + # }) + sections = [] + for j in range(NXC): T, i = sandy.read_text(df, i) - lines.append(T.HL) - add = "\n".join(lines) + s = tuple(map(int, re.findall(".{11}" , T[0])[2:])) + sections.append(s) out.update({ - "DESCRIPTION": add, + "SECTIONS": sections, }) - try: - sections = _get_sections(df.iloc[-NXC:]) - except Exception as e: - msg = f"reported sections in MAT{mat}/MF1/MT451 are not consistent" - logging.warning(msg) - logging.warning(f"captured error: '{e}'") - else: - out.update({ - "SECTIONS": sections, - }) return out @@ -564,8 +580,8 @@ def write_mf1(sec): **mt = 452** : >>> tape = sandy.get_endf6_file("endfb_71", 'xs', 922350) - >>> sec = sandy.sections.mf1.read_mf1(tape, 9228, 452) - >>> text = sandy.sections.mf1.write_mf1(sec) + >>> sec = sandy.read_mf1(tape, 9228, 452) + >>> text = sandy.write_mf1(sec) >>> print(text[:1000]) 92235.0000 233.024800 0 2 0 09228 1452 1 0.00000000 0.00000000 0 0 1 799228 1452 2 @@ -582,9 +598,8 @@ def write_mf1(sec): 350000.000 2.47658400 40000 **mt = 455** : - >>> tape = sandy.get_endf6_file("endfb_71", 'xs', 922350) - >>> sec = sandy.sections.mf1.read_mf1(tape, 9228, 455) - >>> text = sandy.sections.mf1.write_mf1(sec) + >>> sec = sandy.read_mf1(tape, 9228, 455) + >>> text = sandy.write_mf1(sec) >>> print(text[:1000]) 92235.0000 233.024800 0 2 0 09228 1455 1 0.00000000 0.00000000 0 0 6 09228 1455 2 @@ -595,9 +610,8 @@ def write_mf1(sec): 4000000.00 1.670000-2 7000000.00 9.000000-3 20000000.0 9.000000-39228 1455 7 **mt = 456** : - >>> tape = sandy.get_endf6_file("endfb_71", 'xs', 922350) - >>> sec = sandy.sections.mf1.read_mf1(tape, 9228, 456) - >>> text = sandy.sections.mf1.write_mf1(sec) + >>> sec = sandy.read_mf1(tape, 9228, 456) + >>> text = sandy.write_mf1(sec) >>> print(text[:1000]) 92235.0000 233.024800 0 2 0 09228 1456 1 0.00000000 0.00000000 0 0 1 799228 1456 2 @@ -614,14 +628,16 @@ def write_mf1(sec): 350000.000 2.45988400 40000 """ mt = sec["MT"] - if mt == 452: + if mt == 451: + out = _write_intro(sec) + elif mt == 452: out = _write_nubar(sec) elif mt == 455: out = _write_dnubar(sec) elif mt == 456: out = _write_pnubar(sec) elif mt in allowed_mt: - raise sandy.Error(f"'MT={mt}' not yet implemented") + raise ValueError(f"'MT={mt}' not yet implemented") else: raise ValueError(f"'MT={mt}' not allowed") return out @@ -817,3 +833,48 @@ def _write_dnubar(sec): else: raise ValueError(f"'(LDG, LNU)' cannot be '({LDG}, {LNU})'") return "\n".join(sandy.write_eol(lines, mat, mf, mt)) + + +def _write_intro(sec): + mat = sec["MAT"] + mt = 451 + lines = sandy.write_cont( + sec["ZA"], + sec["AWR"], + sec["LRP"], + sec["LFI"], + sec["NLIB"], + sec["MOD"], + ) + lines += sandy.write_cont( + sec["ELIS"], + sec["STA"], + sec["LIS"], + sec["LISO"], + 0, + sec["NFOR"], + ) + lines += sandy.write_cont( + sec["AWI"], + sec["EMAX"], + sec["LREL"], + 0, + sec["NSUB"], + sec["NVER"], + ) + NWD = len(sec["DESCRIPTION"]) + NXC = len(sec["SECTIONS"]) + lines += sandy.write_cont( + sec["TEMP"], + 0, + sec["LDRV"], + 0, + NWD, + NXC, + ) + for t in sec["DESCRIPTION"]: + lines += sandy.write_text(t) + for MF, MT, NL, MOD in sec["SECTIONS"]: + t = " "*22 + f"{MF:>11d}{MT:>11d}{NL:>11d}{MOD:>11d}" + lines += sandy.write_text(t) + return "\n".join(sandy.write_eol(lines, mat, mf, mt)) From 10b4d20530a6dea8d91ada5672457eec895331a0 Mon Sep 17 00:00:00 2001 From: Luca Fiorito Date: Mon, 23 Jan 2023 11:41:44 +0100 Subject: [PATCH 05/17] update --- sandy/core/cov.py | 18 +- sandy/core/endf6.py | 192 ++++++-- sandy/core/samples.py | 137 +++--- sandy/core/xs.py | 2 +- sandy/njoy.py | 2 +- sandy/sampling.py | 1029 +++++------------------------------------ sandy/tools.py | 54 --- 7 files changed, 379 insertions(+), 1055 deletions(-) diff --git a/sandy/core/cov.py b/sandy/core/cov.py index b460f03f..a099e1c1 100644 --- a/sandy/core/cov.py +++ b/sandy/core/cov.py @@ -655,7 +655,7 @@ def log2norm_mean(self, mu): return np.log(mu_**2 / np.sqrt(np.diag(self.data) + mu_**2)) def sampling(self, nsmp, seed=None, rows=None, pdf='normal', - tolerance=0, relative=True): + tolerance=0, relative=True, **kwargs): """ Extract perturbation coefficients according to chosen distribution with covariance from given covariance matrix. See note for non-normal @@ -708,7 +708,7 @@ def sampling(self, nsmp, seed=None, rows=None, pdf='normal', Examples -------- - Draw 3 sets of samples using custom seed: + Draw 3 sets of samples using custom seed. >>> index = columns = ["A", "B"] >>> c = pd.DataFrame([[1, 0.4],[0.4, 1]], index=index, columns=index) >>> cov = sandy.CategoryCov(c) @@ -812,6 +812,7 @@ def sampling(self, nsmp, seed=None, rows=None, pdf='normal', pdf_ = pdf if pdf != 'lognormal' else 'normal' y = sample_distribution(dim, nsmp, seed=seed, pdf=pdf_) - 1 y = sps.csc_matrix(y) + # the covariance matrix to decompose is created depending on the chosen # pdf if pdf == 'uniform': @@ -828,20 +829,27 @@ def sampling(self, nsmp, seed=None, rows=None, pdf='normal', to_decompose = self.log2norm_cov(ones) else: to_decompose = self + L = sps.csr_matrix(to_decompose.get_L(rows=rows, tolerance=tolerance)) - samples = pd.DataFrame(L.dot(y).toarray(), index=self.data.index, - columns=list(range(nsmp))) + samples = pd.DataFrame( + L.dot(y).toarray(), + index=self.data.index, + columns=list(range(nsmp)), + ) + if pdf == 'lognormal': # mean value of lognormally sampled distributions will be one by # defaul samples = np.exp(samples.add(self.log2norm_mean(ones), axis=0)) + elif relative: samples += 1 lower_bound = samples > 0 upper_bound = samples < 2 samples = samples.where(lower_bound, 0) samples = samples.where(upper_bound, 2) + return sandy.Samples(samples) @classmethod @@ -2253,6 +2261,8 @@ def sample_distribution(dim, nsmp, seed=None, pdf='normal'): mn = 2 * np.log(ml) - .5 * np.log(sl**2 + np.exp(2 * np.log(ml))) # required mean of the corresponding normal distibution (note reference in the docstring) sn = np.sqrt(2 * (np.log(ml) - mn)) # required standard deviation of the corresponding normal distibution (note reference in the docstring) y = np.random.lognormal(mn, sn, (dim, nsmp)) + else: + raise ValueError(f"Value '{pdf}' not allowed for kwarg 'pdf'") return y diff --git a/sandy/core/endf6.py b/sandy/core/endf6.py index e786b5db..b6ea0a4b 100644 --- a/sandy/core/endf6.py +++ b/sandy/core/endf6.py @@ -2066,8 +2066,10 @@ def get_perturbations( outs = self.get_errorr(**njoy_kws) if "errorr31" in outs: + smp_kws["seed"] = smp_kws.get("seed31", None) smp[31] = outs["errorr31"].get_cov().sampling(nsmp, **smp_kws) if "errorr33" in outs: + smp_kws["seed"] = smp_kws.get("seed33", None) smp[33] = outs["errorr33"].get_cov().sampling(nsmp, **smp_kws) if to_excel and smp: with pd.ExcelWriter(to_excel) as writer: @@ -2079,13 +2081,7 @@ def _handle_pert_to_file(method): """ Decorator . """ - def inner( - self, - *args, - to_file=None, - verbose=False, - **kwargs, - ): + def inner(self, *args, to_file=None, verbose=False, **kwargs): """ @@ -2099,14 +2095,11 @@ def inner( DESCRIPTION. The default is False. **kwargs : TYPE DESCRIPTION. - : TYPE - DESCRIPTION. Returns ------- TYPE DESCRIPTION. - """ if to_file: for n, e6 in method(self, *args, verbose=False, **kwargs): @@ -2169,7 +2162,7 @@ def apply_perturbations(self, smp, processes=1, **kwargs): .. note:: the total cross section is not perturbed Apply samples to xs in PENDF file using multiprocessing. - >>> outs_mp = pendf.apply_perturbations(smps[33]) + >>> outs_mp = pendf.apply_perturbations(smps[33], processes=2) Assert that multiprocessing and singleprocessing results are identical. >>> for n in outs: @@ -2180,15 +2173,47 @@ def apply_perturbations(self, smp, processes=1, **kwargs): if processes == 1: return self._apply_xs_perturbations(smp, **kwargs) else: - return self._mp_apply_xs_perturbations(smp, processes=processes, **kwargs) + return self._mp_apply_perturbations(smp, processes=processes, **kwargs) + + + def _mp_apply_xs_perturbations(self, smp, processes, **kwargs): + # need to pass xs.data (dataframe), because sandy.Xs instance cannot be pickled + xs = sandy.Xs.from_endf6(self).data + seq = smp.iterate_xs_samples() + + pool = mp.Pool(processes=processes) + outs = {n: pool.apply_async(pendf_xs_perturb_worker, (self, xs, n, p), kwargs) for n, p in seq} + outs = {n: out.get() for n, out in outs.items()} + pool.close() + pool.join() + return outs + + def _mp_apply_perturbations(self, smps, processes, + pendf_kws={}, + **kwargs): + # Passed NEDF-6 and PENDF as dictionaries because class instances cannot be pickled + endf6 = self.data + if 33 in smps: + pendf = self.get_pendf(**pendf_kws).data + kwargs["process_xs"] = True + + # Samples passed as generator in apply_async + def null_gen(): + "generator mimicking dictionary and returning only None" + while True: + yield None, None + + def get_key(*lst): + return np.array([x for x in lst if x is not None]).item() + + seq_xs = smps[33].iterate_xs_samples() if 33 in smps else null_gen() + seq_nu = smps[31].iterate_xs_samples() if 31 in smps else null_gen() + seqs = zip(seq_xs, seq_nu) - def _mp_apply_xs_perturbations(self, smp, processes, verbose=False, **kwargs): - xs = sandy.Xs.from_endf6(self) pool = mp.Pool(processes=processes) - seq = dict(smp.iterate_xs_samples()).items() - kw = dict(verbose=verbose) - outs = {n: pool.apply_async(endf6_xs_perturb_worker, (self, n, p, xs), kw) for n, p in seq} + outs = {get_key(nxs, nnu): pool.apply_async(endf6_perturb_worker, (endf6, pendf, nxs, pxs), kwargs) + for (nxs, pxs), (nnu, pnu) in seqs} outs = {n: out.get() for n, out in outs.items()} pool.close() pool.join() @@ -2198,17 +2223,130 @@ def _apply_xs_perturbations(self, smp, **kwargs): xs = sandy.Xs.from_endf6(self) for n, x in xs.perturb(smp, **kwargs): # instead of defining the function twice, just call the worker also here - yield n, endf6_perturb_worker(self, n, x) + yield n, pendf_perturb_worker(self, n, x, **kwargs) + + +def pendf_perturb_worker(e6, n, xs, **kwargs): + # This is the function that needs to be changed for any concatenation + # in the pendf reconstruction pipeline + out = xs.reconstruct_sums(drop=True).to_endf6(e6).update_intro() + return out + + +def endf6_perturb_worker(e6, pendf, nxs, pxs, + verbose=False, + process_xs=False, + process_nu=False, + process_lpc=False, + process_chi=False, + to_ace=False, + to_file=False, + filename="{ZA}_{SMP}", + ace_kws={}, + **kwargs): + """ + + + Parameters + ---------- + e6 : TYPE + DESCRIPTION. + pendf : TYPE + DESCRIPTION. + nxs : TYPE + DESCRIPTION. + pxs : TYPE + DESCRIPTION. + verbose : TYPE, optional + DESCRIPTION. The default is False. + process_xs : TYPE, optional + DESCRIPTION. The default is False. + process_nu : TYPE, optional + DESCRIPTION. The default is False. + process_lpc : TYPE, optional + DESCRIPTION. The default is False. + process_chi : TYPE, optional + DESCRIPTION. The default is False. + to_ace : TYPE, optional + DESCRIPTION. The default is False. + to_file : TYPE, optional + DESCRIPTION. The default is False. + filename : TYPE, optional + DESCRIPTION. The default is "{ZA}_{SMP:d}". + ace_kws : TYPE, optional + DESCRIPTION. The default is {}. + **kwargs : TYPE + DESCRIPTION. + + Returns + ------- + TYPE + DESCRIPTION. + """ + # default initialization + endf6_pert = sandy.Endf6(e6.copy()) + pendf_pert = None + + # filename options, in case we erite to file + ismp = np.array([x for x in [nxs] if x is not None]).item() + mat = endf6_pert.mat[0] + intro = endf6_pert.read_section(mat, 1, 451) + za = int(intro["ZA"]) + meta = int(intro["LISO"]) + zam = sandy.zam.za2zam(za, meta=meta) + temperature = ace_kws["temperature"] = ace_kws.get("temperature", 0) + params = dict( + MAT=mat, + ZAM=zam, + ZA=za, + META=meta, + SMP=ismp, + ) + fn = filename.format(**params) + + # apply xs perturbation + if process_xs: + pendf_ = sandy.Endf6(pendf) + xs = sandy.Xs.from_endf6(pendf_) + xs_pert = sandy.core.xs.xs_perturb_worker(xs, nxs, pxs, verbose=verbose) + pendf_pert = xs_pert.reconstruct_sums(drop=True).to_endf6(pendf_).update_intro() + + # Run NJOY and convert to ace + if to_ace: + suffix = ace_kws.get("suffix", sandy.njoy.get_temperature_suffix(temperature)) + ace_kws["suffix"] = "." + suffix + ace = endf6_pert.get_ace(pendf=pendf_pert, **ace_kws) + + if to_file: + file = f"{fn}.{suffix}c" + with open(file, "w") as f: + if verbose: + print(f"writing to file '{file}'") + f.write(ace["ace"]) + file = f"{file}.xsd" + with open(file, "w") as f: + if verbose: + print(f"writing to file '{file}'") + f.write(ace["xsdir"]) + return -def endf6_perturb_worker(e6, n, xs, verbose=False): - if verbose: - print(f"Processing xs sample {n} on PID={os.getpid()}...") - return xs.to_endf6(e6).update_intro() + return ace + out = {"endf6": endf6_pert} + if pendf_pert: + out["pendf"] = pendf_pert -def endf6_xs_perturb_worker(e6, n, s, xs, verbose=False): - # for some reason i cannot use the worker in sandy.core.xs or i get a pickle error - out1 = xs._perturb(s, verbose=verbose).reconstruct_sums(drop=True) - out2 = endf6_perturb_worker(e6, n, out1, verbose=verbose) - return out2 + if to_file: + file = f"{fn}.endf6" + if verbose: + print(f"writing to file '{file}'") + endf6_pert.to_file(file) + if pendf_pert: + file = f"{fn}.pendf" + if verbose: + print(f"writing to file '{file}'") + pendf_pert.to_file(file) + return + + return out diff --git a/sandy/core/samples.py b/sandy/core/samples.py index b3671158..4d3211c6 100644 --- a/sandy/core/samples.py +++ b/sandy/core/samples.py @@ -1,11 +1,6 @@ -import logging -import io - import numpy as np import pandas as pd -import matplotlib.pyplot as plt -import seaborn as sns -import statsmodels.api as sm +import scipy import sandy @@ -14,29 +9,6 @@ "Samples", ] -np.random.seed(1) -minimal_testcase = np.random.randn(4, 3) - - -def cov33csv(func): - def inner(*args, **kwargs): - key = "cov33csv" - kw = kwargs.copy() - if key in kw: - if kw[key]: - print(f"found argument '{key}', ignore oher arguments") - out = func( - *args, - index_col=[0, 1, 2], - ) - out.data.index.names = ["MAT", "MT", "E"] - return out - else: - del kw[key] - out = func(*args, **kw) - return out - return inner - class Samples(): """ @@ -106,6 +78,7 @@ def condition_number(self): for i, name in enumerate(X): norm_x[:, i] = X[name] / np.linalg.norm(X[name]) norm_xtx = np.dot(norm_x.T, norm_x) + # Then, we take the square root of the ratio of the biggest to the # smallest eigen values eigs = np.linalg.eigvals(norm_xtx) @@ -140,48 +113,86 @@ def _mean_convergence(self): rng = range(1, smp.shape[0]) foo = lambda x: smp.loc[:x].mean() return pd.DataFrame(map(foo, rng), index=rng) - - @classmethod - @cov33csv - def from_csv(cls, file, **kwargs): + + def test_shapiro(self, size=None, pdf="normal"): """ - Read samples from csv file, + Parameters ---------- - file : `str` - csv file. - **kwargs : `dict` - keyword options for `pandas.read_csv`. + size : TYPE, optional + DESCRIPTION. The default is None. + pdf : TYPE, optional + DESCRIPTION. The default is "normal". Returns ------- - `sandy.Samples` - samples into a sandy object. + TYPE + DESCRIPTION. Examples -------- - >>> csv = minimal_testcase.to_string() - >>> sandy.Samples.from_csv(io.StringIO(csv), sep="\s+") - 0 1 2 - 0 1.62435e+00 -6.11756e-01 -5.28172e-01 - 1 -1.07297e+00 8.65408e-01 -2.30154e+00 - 2 1.74481e+00 -7.61207e-01 3.19039e-01 - 3 -2.49370e-01 1.46211e+00 -2.06014e+00 - - >>> index = pd.MultiIndex.from_product( - ... [[9437], [102], [1e-5, 1e-1, 1e1, 1e6]] - ... ) - >>> df = minimal_testcase.copy() - >>> df.index = index - >>> csv = df.to_csv() - >>> sandy.Samples.from_csv(io.StringIO(csv), sep="\s+", cov33csv=True) - 0 1 2 - MAT MT E - 9437 102 1.00000e-05 1.62435e+00 -6.11756e-01 -5.28172e-01 - 1.00000e-01 -1.07297e+00 8.65408e-01 -2.30154e+00 - 1.00000e+01 1.74481e+00 -7.61207e-01 3.19039e-01 - 1.00000e+06 -2.49370e-01 1.46211e+00 -2.06014e+00 + Generate 5000 xs samples normally and log-normally distributed + >>> tape = sandy.get_endf6_file("jeff_33", "xs", 10010) + >>> njoy_kws = dict(err=1, errorr33_kws=dict(mt=102)) + >>> nsmp = 5000 + >>> smp_norm = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=1, pdf="normal"))[33] + >>> smp_lognorm = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=1, pdf="lognormal"))[33] + + The Shapiro-Wilks test proves right for the normal samples and the normal distribution. + >>> stat_norm = [] + >>> stat_lognorm = [] + >>> for nsmp in [10, 50, 100, 500, 1000, 5000]: + ... df = smp_norm.test_shapiro(pdf="normal", size=nsmp) + ... idx = df.statistic.idxmin() + ... stat_norm.append(df.loc[idx].rename(nsmp)) + ... + ... df = smp_norm.test_shapiro(pdf="lognormal", size=nsmp) + ... idx = df.statistic.idxmin() + ... stat_lognorm.append(df.loc[idx].rename(nsmp)) + >>> + >>> opts = dict(left_index=True, right_index=True, suffixes=("_norm", "_lognorm")) + >>> df = pd.DataFrame(stat_norm).merge(pd.DataFrame(stat_lognorm), **opts).rename_axis("# SMP") + >>> print(df) + statistic_norm pvalue_norm statistic_lognorm pvalue_lognorm + # SMP + 10 9.19610e-01 3.15408e-01 9.40333e-01 6.43714e-41 + 50 9.44342e-01 1.84070e-02 9.40333e-01 6.43714e-41 + 100 9.78776e-01 1.03195e-01 9.40333e-01 6.43714e-41 + 500 9.85038e-01 5.02533e-05 9.40333e-01 6.43714e-41 + 1000 9.89657e-01 1.68679e-06 9.40333e-01 6.43714e-41 + 5000 9.90618e-01 1.03590e-17 9.40333e-01 6.43714e-41 + + The Shapiro-Wilks test proves right for the lognormal samples and the lognormal distribution. + >>> stat_norm = [] + >>> stat_lognorm = [] + >>> for nsmp in [10, 50, 100, 500, 1000, 5000]: + ... df = smp_lognorm.test_shapiro(pdf="normal", size=nsmp) + ... idx = df.statistic.idxmin() + ... stat_norm.append(df.loc[idx].rename(nsmp)) + ... + ... df = smp_lognorm.test_shapiro(pdf="lognormal", size=nsmp) + ... idx = df.statistic.idxmin() + ... stat_lognorm.append(df.loc[idx].rename(nsmp)) + >>> + >>> opts = dict(left_index=True, right_index=True, suffixes=("_norm", "_lognorm")) + >>> df = pd.DataFrame(stat_norm).merge(pd.DataFrame(stat_lognorm), **opts).rename_axis("# SMP") + >>> print(df) + statistic_norm pvalue_norm statistic_lognorm pvalue_lognorm + # SMP + 10 6.97781e-01 4.38032e-04 9.99319e-01 5.41511e-02 + 50 8.19990e-01 2.17409e-06 9.99319e-01 5.41511e-02 + 100 7.90146e-01 1.08222e-10 9.99319e-01 5.41511e-02 + 500 8.99920e-01 1.35794e-17 9.99319e-01 5.41511e-02 + 1000 9.14015e-01 2.26424e-23 9.99319e-01 5.41511e-02 + 5000 9.02778e-01 0.00000e+00 9.99319e-01 5.41511e-02 """ - df = pd.read_csv(file, **kwargs) - return cls(df) + size_ = size or self.data.shape[1] + names = ["statistic", "pvalue"] + + data = self.data.loc[:, :size_] + if pdf.lower() == "lognormal": + data = np.log(self.data) + + df = pd.DataFrame({idx: scipy.stats.shapiro(row) for idx, row in data.iterrows()}, index=names).T + return df.rename_axis(data.index.names) diff --git a/sandy/core/xs.py b/sandy/core/xs.py index 18a35c86..8d25cbd4 100644 --- a/sandy/core/xs.py +++ b/sandy/core/xs.py @@ -624,5 +624,5 @@ def _from_errorr(cls, errorr): def xs_perturb_worker(xs, n, s, verbose=False): if verbose: - print(f"Processing xs sample {n} on PID={os.getpid()}...") + print(f"Processing xs sample {n}...") return xs._perturb(s) diff --git a/sandy/njoy.py b/sandy/njoy.py index 60af7d43..50382713 100644 --- a/sandy/njoy.py +++ b/sandy/njoy.py @@ -218,7 +218,7 @@ def get_temperature_suffix(temperature, meta=False): mask = suffix.index.contains(temperature) if suffix[mask].empty: suff = "00" - msg = f"extension '{suffix}' will be used for temperature '{temperature}'" + msg = f"extension '{suff}' will be used for temperature '{temperature}'" logging.warning(msg) else: if meta: diff --git a/sandy/sampling.py b/sandy/sampling.py index bdb38d49..c9d96946 100755 --- a/sandy/sampling.py +++ b/sandy/sampling.py @@ -1,515 +1,16 @@ -# -*- coding: utf-8 -*- -""" -Created on Mon Mar 19 22:51:03 2018 - -@author: Luca Fiorito -""" - import os import time -import pdb -import shutil -import sys -import argparse import logging -import tempfile -import multiprocessing as mp -import platform +import argparse +import filecmp import pytest -import numpy as np -import pandas as pd - import sandy -from sandy.settings import SandyError -from sandy.formats import read_formatted_file, get_file_format -from sandy.formats.endf6 import Endf6 -from sandy.formats.utils import FySamples, XsCov -from sandy import pfns from sandy.tools import is_valid_dir, is_valid_file -from sandy import njoy - -__author__ = "Luca Fiorito" -__all__ = [ - "SamplingManager", - "sampling", - ] - - -def get_parser(): - description = """Produce perturbed files containing sampled parameters - that represent the information\nstored in the evaluated nuclear data - covariances""" - parser = argparse.ArgumentParser( - prog="sandy", - description=description, - formatter_class=argparse.RawTextHelpFormatter, - ) - SamplingManager.add_file_argument(parser) - SamplingManager.add_covfile_argument(parser) - SamplingManager.add_mat_argument(parser) - SamplingManager.add_mf_argument(parser) - SamplingManager.add_mt_argument(parser) - SamplingManager.add_processes_argument(parser) - SamplingManager.add_samples_argument(parser) - SamplingManager.add_version_argument(parser) - return parser - - -class SamplingManager(): - """ - Attributes - ---------- - file : `str` - ENDF-6 or PENDF format file - covfile : `str` - ENDF-6 file containing covariances - mat : `list` of `int` - draw samples only from the selected MAT sections - mf : `list` of `int` - draw samples only from the selected MF sections - mt : `list` of `int` - draw samples only from the selected MT sections - processes : `int` - number of worker processes (default is 1) - samples : `int` - number of samples (default is 100) - """ - - def __repr__(self): - return self.__dict__.__repr__() - - def __init__(self, file): - self.file = file - - @property - def file(self): - """ - Examples - -------- - >>> with pytest.raises(Exception): sandy.SamplingManager("random_file") - """ - return self._file - - @file.setter - def file(self, file): - if not os.path.isfile(file): - raise ValueError(f"File '{file}' does not exist") - self._file = file - - @staticmethod - def add_file_argument(parser): - parser.add_argument( - 'file', - help="ENDF-6 or PENDF format file", - ) - - @property - def covfile(self): - """ - """ - if hasattr(self, "_covfile"): - return self._covfile - else: - return None - - @covfile.setter - def covfile(self, covfile): - if not covfile: - self._covfile = None - else: - if not os.path.isfile(covfile): - raise ValueError(f"File '{covfile}' does not exist") - self._covfile = covfile - - @staticmethod - def add_covfile_argument(parser): - parser.add_argument( - '--covfile', '-C', - help="ENDF-6 file containing covariances", - ) - - @property - def mat(self): - if hasattr(self, "_mat"): - return self._mat - else: - return list(range(1, 10000)) - - @mat.setter - def mat(self, mat): - self._mat = np.array(mat).astype(int).tolist() - - @staticmethod - def add_mat_argument(parser): - parser.add_argument( - '--mat', - type=int, - default=list(range(1, 10000)), - action='store', - nargs="+", - metavar="{1,..,9999}", - help="draw samples only from the selected MAT sections " - "(default is keep all)", - ) - - @property - def mf(self): - if hasattr(self, "_mf"): - return self._mf - else: - return [31, 33, 34, 35] - - @mf.setter - def mf(self, mf): - self._mf = np.array(mf).astype(int).tolist() - - @staticmethod - def add_mf_argument(parser): - parser.add_argument( - '--mf', - type=int, - default=[31, 33, 34, 35], - action='store', - nargs="+", - metavar="{31,33,34,35}", - help="draw samples only from the selected MF sections " - "(default is keep all)", - ) - - @property - def mt(self): - if hasattr(self, "_mt"): - return self._mt - else: - return list(range(1, 1000)) - - @mt.setter - def mt(self, mt): - self._mt = np.array(mt).astype(int).tolist() - - @staticmethod - def add_mt_argument(parser): - parser.add_argument( - '--mt', - type=int, - default=list(range(1, 1000)), - action='store', - nargs="+", - metavar="{1,..,999}", - help="draw samples only from the selected MT sections " - "(default = keep all)", - ) - - @property - def processes(self): - if hasattr(self, "_processes"): - return 1 - else: - return self._processes - - @processes.setter - def processes(self, processes): - if platform.system() == "Windows": - self._processes = 1 - logging.info("Running on Windows does not allow parallel " - "processing") - else: - self._processes = int(processes) - - @staticmethod - def add_processes_argument(parser): - parser.add_argument( - '--processes', '-N', - type=int, - default=1, - help="number of worker processes (default is 1)", - ) - - @property - def samples(self): - if hasattr(self, "_samples"): - return 100 - else: - return self._samples - - @samples.setter - def samples(self, samples): - self._samples = int(samples) - - @staticmethod - def add_samples_argument(parser): - parser.add_argument( - '--samples', '-S', - type=int, - default=100, - help="number of samples (default is 100)", - ) - - @staticmethod - def add_version_argument(parser): - parser.add_argument( - "--version", "-v", - action='version', - version=f'%(prog)s {sandy.__version__}', - help="code version", - ) - - @classmethod - def from_cli(cls, iargs=None): - """ - Parse command line arguments for sampling option. - - Parameters - ---------- - iargs : `list` of `str`, optional, default is `None` - list of strings to parse. - The default is taken from `sys.argv`. - - Returns - ------- - `sandy.SamplingManager` - object to draw samples from endf6 file - - Examples - -------- - >>> file = os.path.join(sandy.data.__path__[0], "h1.endf") - >>> sm = sandy.SamplingManager.from_cli([file]) - """ - arguments, skip = get_parser().parse_known_args(args=iargs) - sm = cls(arguments.file) - for k, v in arguments._get_kwargs(): - sm.__setattr__(k, v) - return sm - - @classmethod - def from_cli2(cls, iargs=None): - """ - Parse command line arguments for sampling option. - - Parameters - ---------- - iargs : `list` of `str`, optional, default is `None` - list of strings to parse. - The default is taken from `sys.argv`. - - Returns - ------- - `argparse.Namespace` - namespace object containing processed given arguments and/or - default options. - """ - description = """Produce perturbed files containing sampled parameters - that represent the information\nstored in the evaluated nuclear data - covariances""" - parser = argparse.ArgumentParser( - prog="sandy", - description=description, - formatter_class=argparse.RawTextHelpFormatter, - ) - parser.add_argument('--acer', - default=False, - action="store_true", - help="for each perturbed file, produce ACE files\n" - "(argument file must be in ENDF-6 format, not PENDF)\n(argument temperature is required)\n(default = False)") - parser.add_argument('--cov33csv', - type=lambda x: is_valid_file(parser, x), - help="file containing xs/nubar covariances in csv " - "format") - parser.add_argument('--debug', - default=False, - action="store_true", - help="turn on debug mode") - parser.add_argument('--eig', - type=int, - default=10, - metavar="N", - help="print the first N eigenvalues of the evaluated covariance matrices\n(default = do not print)") - parser.add_argument('--energy-sequence', '-E', - type=int, - metavar="EL", - default=49, - help=argparse.SUPPRESS) - parser.add_argument('--errorr', - default=False, - action="store_true", - help="run NJOY module ERRORR to produce covariance " - "matrix for xs data (default = False)") - parser.add_argument('--fission-yields', '-F', - default=False, - action="store_true", - help="input contains fission yields") - parser.add_argument('--max-polynomial', '-P', - type=int, - help="Maximum order of Legendre polynomial coefficients considered for sampling (default = all)") - parser.add_argument('--njoy', - type=lambda x: is_valid_file(parser, x), - default=None, - help="NJOY executable " - "(default search PATH, and env variable NJOY)") - parser.add_argument('--outdir', '-D', - metavar="DIR", - default=os.getcwd(), - type=lambda x: is_valid_dir(parser, x, mkdir=True), - help="target directory where outputs are stored\n(default = current working directory)\nif it does not exist it will be created") - parser.add_argument('--outname', '-O', - type=str, - help="basename for the output files " - "(default is the the basename of .)") - parser.add_argument('--seed31', - type=int, - default=None, - metavar="S31", - help="seed for random sampling of MF31 covariance " - "matrix (default = random)") - parser.add_argument('--seed33', - type=int, - default=None, - metavar="S33", - help="seed for random sampling of MF33 covariance " - "matrix (default = random)") - parser.add_argument('--seed34', - type=int, - default=None, - metavar="S34", - help="seed for random sampling of MF34 covariance " - "matrix (default = random)") - parser.add_argument('--seed35', - type=int, - default=None, - metavar="S35", - help="seed for random sampling of MF35 covariance " - "matrix (default = random)") - parser.add_argument('--temperatures', '-T', - default=[], - type=float, - action='store', - nargs="+", - metavar="T", - help="for each perturbed file, produce ACE files at " - "given temperatures") - init = parser.parse_known_args(args=iargs)[0] - if init.acer and not init.temperatures: - parser.error("--acer requires --temperatures") - if init.acer and sandy.formats.get_file_format(init.file) != "endf6": - parser.error("--acer requires file in 'endf6' format") - return init - - @property - def tape(self): - if not hasattr(self, "_tape"): - self._tape = sandy.Endf6.from_file(self.file) - return self._tape - - @tape.setter - def tape(self, tape): - self._tape = tape - - @property - def covtape(self): - if not self.covfile or self.covfile == self.file: - self._covtape = self.tape - if not hasattr(self, "_covtape"): - self._covtape = sandy.Endf6.from_file(self.covfile) - return self._covtape - - @covtape.setter - def covtape(self, covtape): - self._covtape = covtape - - def get_xs_samples(self): - """ - Draw samples using all covariance sections in the given tape. - """ - mf = 33 - pertxs = None - if mf in self.mf and mf in self.covtape.mf: - covtape = self.covtape.filter_by( - listmat=self.mat, - listmf=[33], - listmt=self.mt, - ) - xscov = sandy.XsCov.from_endf6(covtape) - if not xscov.empty: - pertxs = xscov.get_samples(self.samples)#, eig=init.eig, seed=init.seed33) - return pertxs - - -def _process_into_ace(ismp): - global init - outname = init.outname if init.outname else os.path.basename(init.file) - smpfile = os.path.join(init.outdir, f'{outname}-{ismp}') - print(ismp) - kwargs = dict( - purr=False, - wdir=init.outdir, - keep_pendf=False, - pendftape=smpfile, - tag=f"_{ismp}", - temperatures=init.temperatures, - err=0.005, - addpath="", - ) - fmt = sandy.formats.get_file_format(smpfile) - if fmt == "pendf": - kwargs["pendftape"] = smpfile - inp = init.file - elif fmt == "endf6": - inp = smpfile - input, inputs, outputs = njoy.process(inp, **kwargs) - - -def _sampling_mp(ismp, skip_title=False, skip_fend=False): - global init, pnu, pxs, plpc, pchi, pfy, tape - t0 = time.time() - mat = tape.mat[0] - newtape = Endf6(tape.copy()) - extra_points = np.logspace(-5, 7, init.energy_sequence) - if not pxs.empty: - xs = newtape.get_xs() - if not xs.empty: - xspert = xs.perturb(pxs[ismp]) - newtape = newtape.update_xs(xspert) - if not pnu.empty: - nubar = newtape.get_nubar() - if not nubar.empty: - nubarpert = nubar.perturb(pnu[ismp]) - newtape = newtape.update_nubar(nubarpert) - if not pchi.empty: - # use new format tape for energy distribution - endfnew = sandy.Endf6._from_old_format(newtape) - edistr = sandy.Edistr.from_endf6(endfnew).add_points(extra_points) - if not edistr.empty: - edistrpert = edistr.perturb(pchi[ismp]) - newtape = newtape.update_edistr(edistrpert) - if not plpc.empty: - lpc = newtape.get_lpc().add_points(extra_points) - if not lpc.empty: - lpcpert = lpc.perturb(plpc[ismp]) - newtape = newtape.update_lpc(lpcpert) - if not pfy.empty: - fy = newtape.get_fy() - if not fy.empty: - fypert = fy.perturb(pfy[ismp]) - newtape = newtape.update_fy(fypert) - print("Created sample {} for MAT {} in {:.2f} sec".format(ismp, mat, time.time()-t0,)) - descr = ["perturbed file No.{} created by SANDY".format(ismp)] - return newtape.delete_cov().update_info(descr=descr).write_string(skip_title=skip_title, skip_fend=skip_fend) - -# def _sampling_fy_mp(ismp, skip_title=False, skip_fend=False): - # global tape, PertFY, init - # t0 = time.time() - # mat = tape.mat[0] - # newtape = Endf6(tape.copy()) - # fy = newtape.get_fy() - # fynew = fy.perturb(PertFy[ismp]) - # newtape = newtape.update_fy(fynew) - # print("Created sample {} for MAT {} in {:.2f} sec".format(ismp, mat, time.time()-t0,)) - # descr = ["perturbed file No.{} created by SANDY".format(ismp)] - # return newtape.delete_cov().update_info(descr=descr).write_string(skip_title=skip_title, skip_fend=skip_fend) - +__author__ = "Luca Fiorito" +__all__ = [] def parse(iargs=None): @@ -517,8 +18,9 @@ def parse(iargs=None): Parameters ---------- - iargs : `list` of `str` - list of strings to parse. The default is taken from `sys.argv`. + iargs : `list` of `str` or `None`, default is `None`, + list of strings to parse. + The default is taken from `sys.argv`. Returns ------- @@ -526,52 +28,24 @@ def parse(iargs=None): namespace object containing processed given arguments and/or default options. """ - description = "Produce perturbed files containing sampled parameters that " - "represent the information\nstored in the evaluated nuclear " - "data covariances" + description = "Produce perturbed files containing sampled parameters that represent the information stored in the evaluated nuclear data covariances.""" parser = argparse.ArgumentParser( prog="sandy", description=description, formatter_class=argparse.RawTextHelpFormatter, ) + parser.add_argument('file', type=lambda x: is_valid_file(parser, x), - help="ENDF-6 or PENDF format file") + help="ENDF-6 file") + parser.add_argument('--acer', default=False, action="store_true", - help="for each perturbed file, produce ACE files\n" - "(argument file must be in ENDF-6 format, not PENDF)\n(argument temperature is required)\n(default = False)") - parser.add_argument('--cov', '-C', - type=lambda x: is_valid_file(parser, x), - help="file containing covariances") - parser.add_argument('--cov33csv', - type=lambda x: is_valid_file(parser, x), - help="file containing xs/nubar covariances in csv " - "format") - parser.add_argument('--debug', - default=False, - action="store_true", - help="turn on debug mode") - parser.add_argument('--eig', - type=int, - default=10, - metavar="N", - help="print the first N eigenvalues of the evaluated covariance matrices\n(default = do not print)") - parser.add_argument('--energy-sequence', '-E', - type=int, - metavar="EL", - default=49, - help=argparse.SUPPRESS) - parser.add_argument('--errorr', - default=False, - action="store_true", - help="run NJOY module ERRORR to produce covariance " - "matrix for xs data (default = False)") - parser.add_argument('--fission-yields', '-F', - default=False, - action="store_true", - help="input contains fission yields") + help="Process each perturbed file into ACE format " + "(default = False)\n" + "(--temperatures is required)") + parser.add_argument('--mat', type=int, default=list(range(1, 10000)), @@ -580,9 +54,7 @@ def parse(iargs=None): metavar="{1,..,9999}", help="draw samples only from the selected MAT " "sections (default = keep all)") - parser.add_argument('--max-polynomial', '-P', - type=int, - help="Maximum order of Legendre polynomial coefficients considered for sampling (default = all)") + parser.add_argument('--mf', type=int, default=[31, 33, 34, 35], @@ -591,434 +63,181 @@ def parse(iargs=None): metavar="{31,33,34,35}", help="draw samples only from the selected MF sections " "(default = keep all)") - parser.add_argument('--mt', + + parser.add_argument('--mt33', type=int, - default=list(range(1, 1000)), + default=None, action='store', nargs="+", metavar="{1,..,999}", help="draw samples only from the selected MT sections " "(default = keep all)") - parser.add_argument('--pdf', - type=str.lower, - choices=['normal', 'lognormal', 'uniform'], - default='normal', - help="draw samples according to the chosen distribution. " - "Available options are 'normal', 'lognormal' or 'uniform' " - "(default = 'normal')") + parser.add_argument('--njoy', type=lambda x: is_valid_file(parser, x), default=None, help="NJOY executable " "(default search PATH, and env variable NJOY)") - parser.add_argument('--outdir', '-D', - metavar="DIR", - default=os.getcwd(), - type=lambda x: is_valid_dir(parser, x, mkdir=True), - help="target directory where outputs are stored\n(default = current working directory)\nif it does not exist it will be created") + parser.add_argument('--outname', '-O', type=str, - help="basename for the output files " - "(default is the the basename of .)") + default="{ZA}_{SMP}", + help="name template for the output files\n" + "(use formatting options in https://pyformat.info/ ,\n" + "available keywords are MAT, ZAM, ZA, META, SMP)") + parser.add_argument('--processes', '-N', type=int, default=1, help="number of worker processes (default = 1)") + parser.add_argument('--samples', '-S', type=int, default=200, help="number of samples (default = 200)") + parser.add_argument('--seed31', type=int, default=None, metavar="S31", help="seed for random sampling of MF31 covariance " "matrix (default = random)") + parser.add_argument('--seed33', type=int, default=None, metavar="S33", help="seed for random sampling of MF33 covariance " "matrix (default = random)") + parser.add_argument('--seed34', type=int, default=None, metavar="S34", help="seed for random sampling of MF34 covariance " "matrix (default = random)") + parser.add_argument('--seed35', type=int, default=None, metavar="S35", help="seed for random sampling of MF35 covariance " "matrix (default = random)") + parser.add_argument('--temperatures', '-T', - default=[], + default=None, type=float, action='store', nargs="+", metavar="T", help="for each perturbed file, produce ACE files at " "given temperatures") + parser.add_argument("--version", "-v", action='version', version='%(prog)s {}'.format(sandy.__version__), help="SANDY's version.") + + parser.add_argument('--verbose', + default=False, + action="store_true", + help="print additional details to screen during execution") + init = parser.parse_known_args(args=iargs)[0] if init.acer and not init.temperatures: parser.error("--acer requires --temperatures") - if init.acer and sandy.formats.get_file_format(init.file) != "endf6": - parser.error("--acer requires file in 'endf6' format") return init -def extract_samples(ftape, covtape): - """ - Draw samples using all covariance sections in the given tape. +def run(cli): """ - global init - # EXTRACT FY PERTURBATIONS FROM COV FILE - PertFy = pd.DataFrame() - if 8 in covtape.mf and 454 in ftape.mt: - fy = ftape.get_fy(listmat=init.mat, listmt=init.mt) - if not fy.empty: - index = fy.index.to_frame(index=False) - dfperts = [] - for mat,dfmat in index.groupby("MAT"): - for mt,dfmt in dfmat.groupby("MT"): - for e,dfe in dfmt.groupby("E"): - fycov = fy.get_cov(mat, mt, e) - pert = fycov.get_samples(init.samples, eig=0) - dfperts.append(pert) - PertFy = FySamples(pd.concat(dfperts)) - if init.debug: - PertFy.to_csv("perts_mf8.csv") - # EXTRACT NUBAR PERTURBATIONS FROM ENDF6 FILE - PertNubar = pd.DataFrame() - if 31 in init.mf and 31 in ftape.mf: - nubarcov = XsCov.from_endf6(covtape.filter_by(listmat=init.mat, listmf=[31], listmt=init.mt)) - if not nubarcov.empty: - PertNubar = nubarcov.get_samples(init.samples, eig=init.eig) - if init.debug: - PertNubar.to_csv("perts_mf31.csv") - # EXTRACT PERTURBATIONS FROM EDISTR COV FILE - PertEdistr = pd.DataFrame() - if 35 in init.mf and 35 in ftape.mf: - edistrcov = ftape.get_edistr_cov() - if not edistrcov.empty: - PertEdistr = edistrcov.get_samples(init.samples, eig=init.eig) - if init.debug: - PertEdistr.to_csv("perts_mf35.csv") - # EXTRACT PERTURBATIONS FROM LPC COV FILE - PertLpc = pd.DataFrame() - if 34 in init.mf and 34 in covtape.mf: - lpccov = ftape.get_lpc_cov() - if not lpccov.empty: - if init.max_polynomial: - lpccov = lpccov.filter_p(init.max_polynomial) - PertLpc = lpccov.get_samples(init.samples, eig=init.eig) - if init.debug: - PertLpc.to_csv("perts_mf34.csv") - # EXTRACT XS PERTURBATIONS FROM COV FILE - PertXs = pd.DataFrame() - if 33 in init.mf and 33 in covtape.mf: - # This part is to get the pendf file - if ftape.get_file_format() == "endf6": - endf6 = sandy.Endf6.from_file(init.file) - pendf = endf6.get_pendf(njoy=init.njoy) - with tempfile.TemporaryDirectory() as td: - dst = os.path.join(td, "merged") - endf6.merge_pendf(pendf).to_file(dst) - ftape = read_formatted_file(dst) - if init.errorr: - if len(ftape.mat) > 1: - # Limit imposed by running ERRORR to get covariance matrices - raise sandy.Error("More than one MAT number was found") - endf6 = sandy.Endf6.from_file(init.file) - covtape = endf6.get_errorr(njoy=init.njoy) - - - - -# with tempfile.TemporaryDirectory() as td: -# outputs = njoy.process(init.file, broadr=False, thermr=False, -# unresr=False, heatr=False, gaspr=False, -# purr=False, errorr=init.errorr, acer=False, -# wdir=td, keep_pendf=True, exe=init.njoy, -# temperatures=[0], suffixes=[0], err=0.005)[2] -# ptape = read_formatted_file(outputs["tape30"]) -# if init.debug: shutil.move(outputs["tape30"], os.path.join(init.outdir, "tape30")) -# if init.errorr: -# covtape = read_formatted_file(outputs["tape33"]) # WARNING: by doing this we delete the original covtape -# if init.debug: shutil.move(outputs["tape33"], os.path.join(init.outdir, "tape33")) -# ftape = ftape.delete_sections((None, 3, None)). \ -# add_sections(ptape.filter_by(listmf=[3])). \ -# add_sections(ptape.filter_by(listmf=[1], listmt=[451])) - - listmt = sorted(set(init.mt + [451])) # ERRORR needs MF1/MT451 to get the energy grid - covtape = covtape.filter_by(listmat=init.mat, listmf=[1,33], listmt=listmt) - xscov = XsCov(covtape.get_cov(multigroup=False).data) if isinstance(covtape, sandy.errorr.Errorr) else XsCov.from_endf6(covtape) - if not xscov.empty: - PertXs = sandy.CategoryCov(xscov).sampling(init.samples, tolerance=0, seed=init.seed33, pdf=init.pdf).data.T - idx = PertXs.index - PertXs = pd.DataFrame(PertXs.values, index=idx, columns=range(1, init.samples + 1)) - PertXs.columns.name = "SMP" - if init.debug: - PertXs.to_csv(os.path.join(init.outdir, "perts_mf33.csv")) - return ftape, covtape, PertNubar, PertXs, PertLpc, PertEdistr, PertFy - - -def sampling_csv33(ftape, csv): - cov = sandy.CategoryCov.from_csv(csv) - return sandy.XsCov(cov).get_samples( - init.samples, - eig=init.eig, - seed=init.seed33 - ) + + Parameters + ---------- + cli : TYPE + DESCRIPTION. -def sampling(iargs=None): - """ - Construct multivariate normal distributions with a unit vector for - mean and with relative covariances taken from the evaluated files. - Perturbation factors are sampled with the same multigroup structure of - the covariance matrix, and are applied to the pointwise data to produce - the perturbed files. + Returns + ------- + None. + + Examples + -------- + Retrieve ENDF-6 tape and write it to file. + >>> sandy.get_endf6_file("jeff_33", "xs", 10010).to_file("H1.jeff33") + + Produce perturbed ACE file. + >>> cli = "H1.jeff33 --acer True --samples 2 --processes 2 --temperatures 900 --seed33 5" + >>> sandy.sampling.run(cli) + + Check if ACE and XSDIR files have the right content. + >>> assert "1001.09c" in open("1001_0.09c").read() + >>> assert "1001.09c" in open("1001_0.09c.xsd").read() + >>> assert "1001.09c" in open("1001_1.09c").read() + >>> assert "1001.09c" in open("1001_1.09c.xsd").read() + >>> assert not filecmp.cmp("1001_0.09c", "1001_1.09c") + + Run the same on a single process. + >>> cli = "H1.jeff33 --acer True --samples 2 --processes 2 --temperatures 900 --seed33 5 --outname={ZAM}_{SMP}_SP" + >>> sandy.sampling.run(cli) + + The identical seed ensures consistent results with the previous run. + >>> assert filecmp.cmp("1001_0.09c", "10010_0_SP.09c") + >>> assert filecmp.cmp("1001_1.09c", "10010_1_SP.09c") + >>> assert filecmp.cmp("1001_0.09c.xsd", "10010_0_SP.09c.xsd") + >>> assert filecmp.cmp("1001_1.09c.xsd", "10010_1_SP.09c.xsd") + + Produce perturbed ENDF6 and PENDF files. + >>> cli = "H1.jeff33 --samples 2 --processes 2 --outname=H1_{MAT}_{SMP} --mt 102" + >>> sandy.sampling.run(cli) + + >>> assert filecmp.cmp("H1_125_0.endf6", "H1_125_1.endf6") + >>> assert filecmp.cmp("H1_125_0.endf6", "H1.jeff33") + >>> assert not filecmp.cmp("H1_125_0.pendf", "H1_125_1.pendf") """ - global init, pnu, pxs, plpc, pchi, pfy, tape - init = parse(iargs) - ftape = read_formatted_file(init.file) - if init.cov33csv: - logging.warning("found argument '--cov33csv', will skip any other" - " covariance") - catcov = sandy.CategoryCov.from_csv( - init.cov33csv, - index_col=[0, 1, 2], - header=[0, 1, 2], - ) - covtape = xscov = sandy.CategoryCov(catcov.data) - # This part is to get the pendf file - if ftape.get_file_format() == "endf6": - endf6 = sandy.Endf6.from_file(init.file) - pendf = endf6.get_pendf(njoy=init.njoy) - with tempfile.TemporaryDirectory() as td: - dst = os.path.join(td, "merged") - endf6.merge_pendf(pendf).to_file(dst) - ftape = read_formatted_file(dst) -# if ftape.get_file_format() == "endf6": -# with tempfile.TemporaryDirectory() as td: -# outputs = njoy.process(init.file, broadr=False, thermr=False, -# unresr=False, heatr=False, gaspr=False, -# purr=False, errorr=init.errorr, acer=False, -# wdir=td, keep_pendf=True, exe=init.njoy, -# temperatures=[0], suffixes=[0], err=0.005)[2] -# ptape = read_formatted_file(outputs["tape30"]) -# if init.debug: -# shutil.move(outputs["tape30"], os.path.join(init.outdir, "tape30")) -# ftape = ftape.delete_sections((None, 3, None)). \ -# add_sections(ptape.filter_by(listmf=[3])). \ -# add_sections(ptape.filter_by(listmf=[1], listmt=[451])) - pxs = xscov.sampling(init.samples, pdf=init.pdf, seed=init.seed33, tolerance=0) - cn = pxs.condition_number - print(f"Condition number : {cn:>15}") - pxs = pxs.data.T - idx = pxs.index - pxs = pd.DataFrame(pxs.values, index=idx, columns=range(1, init.samples + 1)) - pxs.columns.name = "SMP" - pnu = plpc = pchi = pfy = pd.DataFrame() - if init.debug: - pxs.to_csv(os.path.join(init.outdir, "perts_mf33.csv")) - else: - covtape = read_formatted_file(init.cov) if init.cov else ftape - ftape, covtape, pnu, pxs, plpc, pchi, pfy = extract_samples(ftape, covtape) - df = {} - if pnu.empty and pxs.empty and plpc.empty and pchi.empty and pfy.empty: - logging.warn("no covariance section was selected/found") - return ftape, covtape, df - # APPLY PERTURBATIONS BY MAT - for imat, (mat, tape) in enumerate(sorted(ftape.groupby('MAT'))): - skip_title = False if imat == 0 else True - skip_fend = False if imat == len(ftape.mat) - 1 else True - tape = Endf6(tape) - kw = dict(skip_title=skip_title, skip_fend=skip_fend) - if platform.system() == "Windows": - proc = 1 - logging.info("Running on Windows does not allow parallel " - "processing") - else: - proc = init.processes - seq = range(1, init.samples + 1) - if proc == 1: - outs = {i: _sampling_mp(i, **kw) for i in seq} - else: - pool = mp.Pool(processes=proc) - outs = {i: pool.apply_async(_sampling_mp, (i,), kw) for i in seq} - outs = {i: out.get() for i, out in outs.items()} - pool.close() - pool.join() - df.update({mat: outs}) - # DUMP TO FILES - frame = pd.DataFrame(df) - frame.index.name = "SMP" - frame.columns.name = "MAT" - frame = frame.stack() - outname = init.outname if init.outname else os.path.split(init.file)[1] - for ismp,dfsmp in frame.groupby("SMP"): - output = os.path.join(init.outdir, '{}-{}'.format(outname, ismp)) - with open(output, 'w') as f: - for mat,dfmat in dfsmp.groupby("MAT"): - f.write(frame[ismp,mat]) - # PRODUCE ACE FILES - if init.acer: - seq = range(1, init.samples + 1) - if init.processes == 1: - for i in seq: - _process_into_ace(i) - else: - pool = mp.Pool(processes=init.processes) - outs = {i: pool.apply_async(_process_into_ace, (i,)) for i in seq} - pool.close() - pool.join() - return ftape, covtape, df - - - - - pdb.set_trace() - df = {} - if init.fission_yields: - # EXTRACT FY PERTURBATIONS FROM COV FILE - fy = ftape.get_fy(listmat=init.mat, listmt=init.mt) - if fy.empty: - logging.warn("no fission yield section was selected/found") - return - index = fy.index.to_frame(index=False) - dfperts = [] - for mat,dfmat in index.groupby("MAT"): - for mt,dfmt in dfmat.groupby("MT"): - for e,dfe in dfmt.groupby("E"): - fycov = fy.get_cov(mat, mt, e) - pert = fycov.get_samples(init.samples, eig=0) - dfperts.append(pert) - PertFy = FySamples(pd.concat(dfperts)) - if init.debug: PertFy.to_csv("perts_mf8.csv") - # DELETE LOCAL VARIABLES - for k in locals().keys(): - del locals()[k] - # APPLY PERTURBATIONS BY MAT - for imat,(mat, tape) in enumerate(sorted(ftape.groupby('MAT'))): - skip_title = False if imat == 0 else True - skip_fend = False if imat == ftape.index.get_level_values("MAT").unique().size -1 else True - tape = Endf6(tape) - kw = dict(skip_title=skip_title, skip_fend=skip_fend) - if mat not in init.mat: - out = tape.write_string(**kw) - outs = {i : out for i in range(1,init.samples+1)} - else: - if init.processes == 1: - outs = {i : _sampling_fy_mp(i, **kw) for i in range(1,init.samples+1)} - else: - pool = mp.Pool(processes=init.processes) - outs = {i : pool.apply_async(_sampling_fy_mp, (i,), kw) for i in range(1,init.samples+1)} - outs = {i : out.get() for i,out in outs.items()} - pool.close() - pool.join() - df.update({ mat : outs }) - else: - # EXTRACT NUBAR PERTURBATIONS FROM ENDF6 FILE - PertNubar = pd.DataFrame() - if 31 in init.mf and 31 in ftape.mf: - nubarcov = XsCov.from_endf6(covtape.filter_by(listmat=init.mat, listmf=[31], listmt=listmt)) - if not nubarcov.empty: - PertNubar = nubarcov.get_samples(init.samples, eig=init.eig) - if init.debug: - PertNubar.to_csv("perts_mf31.csv") - # EXTRACT PERTURBATIONS FROM EDISTR COV FILE - PertEdistr = pd.DataFrame() - if 35 in init.mf and 35 in ftape.mf: - edistrcov = ftape.get_edistr_cov() - if not edistrcov.empty: - PertEdistr = edistrcov.get_samples(init.samples, eig=init.eig) - if init.debug: - PertEdistr.to_csv("perts_mf35.csv") - # EXTRACT PERTURBATIONS FROM LPC COV FILE - PertLpc = pd.DataFrame() - if 34 in init.mf and 34 in covtape.mf: - lpccov = ftape.get_lpc_cov() - if not lpccov.empty: - if init.max_polynomial: - lpccov = lpccov.filter_p(init.max_polynomial) - PertLpc = lpccov.get_samples(init.samples, eig=init.eig) - if init.debug: - PertLpc.to_csv("perts_mf34.csv") - # EXTRACT XS PERTURBATIONS FROM COV FILE - PertXs = pd.DataFrame() - if 33 in init.mf and 33 in covtape.mf: - if init.errorr and len(ftape.mat) > 1: # Limit imposed by running ERRORR to get covariance matrices - raise SandyError("More than one MAT number was found") - if ftape.get_file_format() == "endf6": - with tempfile.TemporaryDirectory() as td: - outputs = njoy.process(init.file, broadr=False, thermr=False, - unresr=False, heatr=False, gaspr=False, - purr=False, errorr=init.errorr, acer=False, - wdir=td, keep_pendf=True, - temperatures=[0], suffixes=[0], err=0.005)[2] - ptape = read_formatted_file(outputs["tape30"]) - if init.errorr: - covtape = read_formatted_file(outputs["tape33"]) # WARNING: by doing this we delete the original covtape - ftape = ftape.delete_sections((None, 3, None)). \ - add_sections(ptape.filter_by(listmf=[3])). \ - add_sections(ptape.filter_by(listmf=[1], listmt=[451])) - listmterr = init.mt if init.mt is None else [451].extend(init.mt) # ERRORR needs MF1/MT451 to get the energy grid - covtape = covtape.filter_by(listmat=init.mat, listmf=[1,33], listmt=listmterr) - covtype = covtape.get_file_format() - xscov = XsCov.from_errorr(covtape) if covtype == "errorr" else XsCov.from_endf6(covtape) - if not xscov.empty: - PertXs = xscov.get_samples(init.samples, eig=init.eig, seed=init.seed33) - if init.debug: - PertXs.to_csv(os.path.join(init.outdir, "perts_mf33.csv")) - if PertLpc.empty and PertEdistr.empty and PertXs.empty and PertNubar.empty: - sys.exit("no covariance section was selected/found") - return - pdb.set_trace() - # DELETE LOCAL VARIABLES - for k in locals().keys(): - del locals()[k] - # APPLY PERTURBATIONS BY MAT - for imat,(mat, tape) in enumerate(sorted(ftape.groupby('MAT'))): - skip_title = False if imat == 0 else True - skip_fend = False if imat == ftape.index.get_level_values("MAT").unique().size -1 else True - tape = Endf6(tape) - kw = dict(skip_title=skip_title, skip_fend=skip_fend) - if init.processes == 1: - outs = {i : _sampling_mp(i, **kw) for i in range(1,init.samples+1)} - else: - pool = mp.Pool(processes=init.processes) - outs = {i : pool.apply_async(_sampling_mp, (i,), kw) for i in range(1,init.samples+1)} - outs = {i : out.get() for i,out in outs.items()} - pool.close() - pool.join() - df.update({ mat : outs }) - # DUMP TO FILES - frame = pd.DataFrame(df) - frame.index.name = "SMP" - frame.columns.name = "MAT" - frame = frame.stack() - outname = init.outname if init.outname else os.path.split(init.file)[1] - for ismp,dfsmp in frame.groupby("SMP"): - output = os.path.join(init.outdir, '{}-{}'.format(outname, ismp)) - with open(output, 'w') as f: - for mat,dfmat in dfsmp.groupby("MAT"): - f.write(frame[ismp,mat]) - - -def run(): + # >>> cli = "H1.jeff33 --samples 2 --processes 2 --seed33 5 --outname=H1_{SMP}" + # >>> sandy.sampling.run(cli) t0 = time.time() - try: - sampling() - except SandyError as exc: - logging.error(exc.args[0]) - print("Total running time: {:.2f} sec".format(time.time() - t0)) + + iargs = parse(cli.split()) + + endf6 = sandy.Endf6.from_file(iargs.file) + + njoy_kws = dict( + err=0.01, + temperature=0, + ) + if iargs.mt33: + njoy_kws["errorr33_kws"] = dict(mt=iargs.mt33) + + smp_kws = {} + if iargs.seed31: + smp_kws["seed31"] = iargs.seed31 + if iargs.seed33: + smp_kws["seed33"] = iargs.seed33 + if iargs.seed34: + smp_kws["seed34"] = iargs.seed34 + if iargs.seed34: + smp_kws["seed35"] = iargs.seed35 + + smps = endf6.get_perturbations(iargs.samples, njoy_kws=njoy_kws, smp_kws=smp_kws) + + ace_kws = dict( + temperature=iargs.temperatures[0] if hasattr(iargs.temperatures, "__len__") else iargs.temperatures + ) + endf6._mp_apply_perturbations( + smps, + processes=iargs.processes, + to_file=True, + to_ace=iargs.acer, + filename=iargs.outname, + ace_kws=ace_kws, + verbose=iargs.verbose, + ) + + dt = time.time() - t0 + logging.info(f"Total running time: {dt:.2f} sec") if __name__ == "__main__": diff --git a/sandy/tools.py b/sandy/tools.py index ed2c88a7..27435a14 100755 --- a/sandy/tools.py +++ b/sandy/tools.py @@ -95,15 +95,6 @@ def recursively_load_dict_contents_from_group(h5file, path): return ans -def str2bool(v): - if v.lower() in ('yes', 'true', 't', 'y', '1'): - return True - elif v.lower() in ('no', 'false', 'f', 'n', '0'): - return False - else: - raise argparse.ArgumentTypeError('Boolean value expected.') - - def is_valid_file(parser, arg, r=True, w=False, x=False): if not os.path.isfile(arg): parser.error("File {} does not exist".format(arg)) @@ -176,48 +167,3 @@ def mkl_get_max_threads(): def mkl_set_num_threads(cores): mkl_rt = ctypes.CDLL('libmkl_rt.so') return mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(cores))) - - -def query_yes_no(question, default="yes"): - """ - Ask a yes/no question via `input()` and return their answer. - - Parameters - ---------- - question : `srt` - string that is presented to the user. - default : `str`, optional, default is `"yes"` - it is the presumed answer if the user just hits . - It must be "yes" (the default), "no" or None (meaning - an answer is required of the user). - - Returns - ------- - `bool` - The "answer" return value is `True` for `"yes"` or `False` for `"no"`. - - Raises - ------ - `ValueError` - if `default` is not a valid option - """ - valid = {"yes": True, "y": True, "ye": True, - "no": False, "n": False} - if default is None: - prompt = " [y/n] " - elif default == "yes": - prompt = " [Y/n] " - elif default == "no": - prompt = " [y/N] " - else: - raise ValueError("invalid default answer: '%s'" % default) - while True: - sys.stdout.write(question + prompt) - choice = input().lower() - if default is not None and choice == '': - return valid[default] - elif choice in valid: - return valid[choice] - else: - sys.stdout.write("Please respond with 'yes' or 'no' " - "(or 'y' or 'n').\n") \ No newline at end of file From 45310f6ed3b92418b815b7d932c7a7a9176203c4 Mon Sep 17 00:00:00 2001 From: Luca Fiorito Date: Thu, 2 Feb 2023 15:17:48 +0100 Subject: [PATCH 06/17] read MCNP table 126 (#250) Co-authored-by: Luca Fiorito --- sandy/mcnp/output_file.py | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/sandy/mcnp/output_file.py b/sandy/mcnp/output_file.py index 4c00c81e..8526c63c 100644 --- a/sandy/mcnp/output_file.py +++ b/sandy/mcnp/output_file.py @@ -8,6 +8,7 @@ __all__ = [ "get_keff", + "get_table126", "get_table140", ] @@ -22,14 +23,45 @@ def get_keff(file): return {"KEFF": keff, "ERR": std} +def get_table126(file): + print(f"reading file '{file}'...") + with open(file, 'r') as f: + text = f.read() + + PATTERN = "(?:^1neutron.*table 126\n)(?P(?:.*\n)+?)(?P^\s{11}total\s{2})" + match = re.search(PATTERN, text, re.MULTILINE).group("table") + widths=[9, 10, 12, 14, 13, 14, 13, 13, 13, 13] + dtypes = [int] * 5 + [float] * 5 + + names = pd.read_fwf( + StringIO(match), + widths=widths, + skip_blank_lines=True, + nrows=3, + header=None, + ).fillna("").apply(lambda col: " ".join(col).strip()) + names[0] = "cell index" + + df = pd.read_fwf( + StringIO(match), + widths=widths, + skip_blank_lines=True, + skiprows=4, + names=names, + ).ffill() + return df.astype(dict(zip(names, dtypes))) + + def get_table140(file): print(f"reading file '{file}'...") with open(file, 'r') as f: text = f.read() + PATTERN = "(?:^1neutron.*table 140\n)(?P
(?:.*\n)+?)(?P^\s+total\s{20})" match = re.search(PATTERN, text, re.MULTILINE).group("table") widths=[10, 9, 11, 9,] + [12] * 6 dtypes = [int, int, str, float, int, float, float, float, float, int] + names = pd.read_fwf( StringIO(match), widths=widths, @@ -37,6 +69,7 @@ def get_table140(file): nrows=2, header=None, ).fillna("").apply(lambda col: " ".join(col).strip()) + df = pd.read_fwf( StringIO(match), widths=widths, From 79f37272e9d8683e06d12b2d2ba24b068a4a66fb Mon Sep 17 00:00:00 2001 From: Luca Fiorito Date: Mon, 13 Feb 2023 10:34:01 +0100 Subject: [PATCH 07/17] Update unit_test.yml --- .github/workflows/unit_test.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/unit_test.yml b/.github/workflows/unit_test.yml index da8d1f79..7d68d51c 100644 --- a/.github/workflows/unit_test.yml +++ b/.github/workflows/unit_test.yml @@ -6,9 +6,9 @@ name: CI on: # Triggers the workflow on push or pull request events but only for the develop branch push: - branches: [ develop ] + branches: [ develop, v1.0 ] pull_request: - branches: [ develop ] + branches: [ develop, v1.0 ] # Allows you to run this workflow manually from the Actions tab workflow_dispatch: From 8cfb432671c03e26c966e47cb0517fa41f6181aa Mon Sep 17 00:00:00 2001 From: Luca Fiorito Date: Mon, 13 Feb 2023 16:49:59 +0100 Subject: [PATCH 08/17] update --- sandy/core/cov.py | 986 +++++++++++++++----------------------------- sandy/core/endf6.py | 1 + 2 files changed, 332 insertions(+), 655 deletions(-) diff --git a/sandy/core/cov.py b/sandy/core/cov.py index a099e1c1..633accd2 100644 --- a/sandy/core/cov.py +++ b/sandy/core/cov.py @@ -24,7 +24,6 @@ "corr2cov", "random_corr", "random_cov", - "sample_distribution", ] S = np.array([[1, 1, 1], @@ -245,8 +244,6 @@ class CategoryCov(): deviation vector from_stack create a covariance matrix from a stacked `pd.DataFrame` - from_stdev - construct a covariance matrix from a stdev vector from_var construct a covariance matrix from a variance vector get_corr @@ -305,10 +302,13 @@ def data(self): @data.setter def data(self, data): self._data = data + if not len(data.shape) == 2 and data.shape[0] == data.shape[1]: raise TypeError("Covariance matrix must have two dimensions") + if not (np.diag(data) >= 0).all(): raise TypeError("Covariance matrix must have positive variance") + sym_limit = 10 # Round to avoid numerical fluctuations if not (data.values.round(sym_limit) == data.values.T.round(sym_limit)).all(): @@ -318,6 +318,203 @@ def data(self, data): def size(self): return self.data.values.shape[0] + @classmethod + def random_corr(cls, size, correlations=True, seed=None, **kwargs): + """ + >>> sandy.CategoryCov.random_corr(2, seed=1) + 0 1 + 0 1.00000e+00 4.40649e-01 + 1 4.40649e-01 1.00000e+00 + + >>> sandy.CategoryCov.random_corr(2, correlations=False, seed=1) + 0 1 + 0 1.00000e+00 0.00000e+00 + 1 0.00000e+00 1.00000e+00 + """ + np.random.seed(seed=seed) + corr = np.eye(size) + if correlations: + offdiag = np.random.uniform(-1, 1, size**2).reshape(size, size) + up = np.triu(offdiag, 1) + else: + up = np.zeros([size, size]) + corr += up + up.T + return cls(corr, **kwargs) + + @classmethod + def random_cov(cls, size, stdmin=0.0, stdmax=1.0, correlations=True, + seed=None, **kwargs): + """ + Construct a covariance matrix with random values + + Parameters + ---------- + size : `int` + Dimension of the original matrix + stdmin : `float`, default is 0 + minimum value of the uniform standard deviation vector + stdmax : `float`, default is 1 + maximum value of the uniform standard deviation vector + correlation : `bool`, default is True + flag to insert the random correlations in the covariance matrix + seed : `int`, optional, default is `None` + seed for the random number generator (by default use `numpy` + dafault pseudo-random number generator) + + Returns + ------- + `CategoryCov` + object containing covariance matrix + + Examples + -------- + >>> sandy.CategoryCov.random_cov(2, seed=1) + 0 1 + 0 2.15373e-02 5.97134e-03 + 1 5.97134e-03 8.52642e-03 + """ + corr = random_corr(size, correlations=correlations, seed=seed) + std = np.random.uniform(stdmin, stdmax, size) + return CategoryCov(corr).corr2cov(std) + + @classmethod + def from_var(cls, var): + """ + Construct the covariance matrix from the variance vector. + + Parameters + ---------- + var : 1D iterable + Variance vector. + + Returns + ------- + `CategoryCov` + Object containing the covariance matrix. + + Example + ------- + Create covariance from variance in `pd.Series`. + >>> var = pd.Series(np.array([0, 2, 3]), index=pd.Index(["A", "B", "C"])) + >>> cov = sandy.CategoryCov.from_var(var) + >>> cov + A B C + A 0.00000e+00 0.00000e+00 0.00000e+00 + B 0.00000e+00 2.00000e+00 0.00000e+00 + C 0.00000e+00 0.00000e+00 3.00000e+00 + + Create covariance from variance in list. + >>> sandy.CategoryCov.from_var([1, 2, 3]) + 0 1 2 + 0 1.00000e+00 0.00000e+00 0.00000e+00 + 1 0.00000e+00 2.00000e+00 0.00000e+00 + 2 0.00000e+00 0.00000e+00 3.00000e+00 + """ + var_ = pd.Series(var) + values = np.diag(var_) + cov = pd.DataFrame(values, index=var_.index, columns=var_.index) + return cls(cov) + + @classmethod + def from_stack(cls, data_stack, index, columns, values, rows=10000000, + kind='upper'): + """ + Create a covariance matrix from a stacked dataframe. + + Parameters + ---------- + data_stack : `pd.Dataframe` + Stacked dataframe. + index : 1D iterable, optional + Index of the final covariance matrix. + columns : 1D iterable, optional + Columns of the final covariance matrix. + values : `str`, optional + Name of the column where the values are located. + rows : `int`, optional + Number of rows to take into account into each loop. The default + is 10000000. + kind : `str`, optional + Select if the stack data represents upper or lower triangular + matrix. The default is 'upper. + + Returns + ------- + `sandy.CategoryCov` + Covarinace matrix. + + Examples + -------- + If the stack data represents the covariance matrix: + >>> S = pd.DataFrame(np.array([[1, 1, 1], [1, 2, 1], [1, 1, 1]])) + >>> S = S.stack().reset_index().rename(columns = {'level_0': 'dim1', 'level_1': 'dim2', 0: 'cov'}) + >>> S = S[S['cov'] != 0] + >>> sandy.CategoryCov.from_stack(S, index=['dim1'], columns=['dim2'], values='cov', kind='all') + dim2 0 1 2 + dim1 + 0 1.00000e+00 1.00000e+00 1.00000e+00 + 1 1.00000e+00 2.00000e+00 1.00000e+00 + 2 1.00000e+00 1.00000e+00 1.00000e+00 + + If the stack data represents only the upper triangular part of the + covariance matrix: + >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL').data + >>> test_1 + MAT1 9437 + MT1 2 102 + E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 + MAT MT E + 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 + 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 + 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 + 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 + + >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL', rows=1).data + >>> test_2 + MAT1 9437 + MT1 2 102 + E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 + MAT MT E + 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 + 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 + 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 + 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 + + >>> assert (test_1 == test_2).all().all() + + If the stack data represents only the lower triangular part of the + covariance matrix: + >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower").data + >>> test_1 + MAT 9437 + MT 2 102 + E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 + MAT1 MT1 E1 + 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 + 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 + 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 + 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 + + >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower", rows=1).data + >>> test_2 + MAT 9437 + MT 2 102 + E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 + MAT1 MT1 E1 + 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 + 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 + 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 + 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 + + >>> assert (test_1 == test_2).all().all() + """ + cov = segmented_pivot_table(data_stack, rows=rows, index=index, + columns=columns, values=values) + if kind == 'all': + return cls(cov) + else: + return triu_matrix(cov, kind=kind) + def get_std(self): """ Extract standard deviations. @@ -548,114 +745,7 @@ def _double_invert(self): columns=self.data.columns, ) - def log2norm_cov(self, mu): - """ - Transform covariance matrix to the one of the underlying normal - distribution. - - Parameters - ---------- - mu : iterable - The desired mean values of the target lognormal distribution. - - Returns - ------- - `CategoryCov` of the underlying normal covariance matrix - - Examples - -------- - >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) - >>> cov.log2norm_cov(pd.Series(np.ones(cov.data.shape[0]), index=cov.data.index)) - A B C - A 2.19722e+00 1.09861e+00 1.38629e+00 - B 1.09861e+00 2.39790e+00 1.60944e+00 - C 1.38629e+00 1.60944e+00 2.07944e+00 - - >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) - >>> mu = pd.Series([1, 2, .5], index=["A", "B", "C"]) - >>> cov.log2norm_cov(mu) - A B C - A 2.19722e+00 6.93147e-01 1.94591e+00 - B 6.93147e-01 1.25276e+00 1.60944e+00 - C 1.94591e+00 1.60944e+00 3.36730e+00 - - >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) - >>> mu = [1, 2, .5] - >>> cov.log2norm_cov(mu) - A B C - A 2.19722e+00 6.93147e-01 1.94591e+00 - B 6.93147e-01 1.25276e+00 1.60944e+00 - C 1.94591e+00 1.60944e+00 3.36730e+00 - - >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) - >>> mu = np.array([1, 2, .5]) - >>> cov.log2norm_cov(mu) - A B C - A 2.19722e+00 6.93147e-01 1.94591e+00 - B 6.93147e-01 1.25276e+00 1.60944e+00 - C 1.94591e+00 1.60944e+00 3.36730e+00 - - Notes - ----- - ..notes:: Reference for the equation is 10.1016/j.nima.2012.06.036 - .. math:: - $$ - cov(lnx_i, lnx_j) = \ln\left(\frac{cov(x_i,x_j)}{\cdot}+1\right) - $$ - """ - mu_ = np.diag(1 / pd.Series(mu)) - mu_ = pd.DataFrame(mu_, index=self.data.index, columns=self.data.index) - return self.__class__(np.log(self.sandwich(mu_).data + 1)) - - - def log2norm_mean(self, mu): - """ - Transform mean values to the mean values of the undelying normal - distribution. - - Parameters - ---------- - mu : iterable - The target mean values. - - Returns - ------- - `pd.Series` of the underlyig normal distribution mean values - - Examples - -------- - >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) - >>> mu = pd.Series(np.ones(cov.data.shape[0]), index=cov.data.index) - >>> cov.log2norm_mean(mu) - A -1.09861e+00 - B -1.19895e+00 - C -1.03972e+00 - dtype: float64 - - >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) - >>> cov.log2norm_mean([1, 1, 1]) - A -1.09861e+00 - B -1.19895e+00 - C -1.03972e+00 - dtype: float64 - - >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) - >>> mu = np.ones(cov.data.shape[0]) - >>> cov.log2norm_mean(mu) - A -1.09861e+00 - B -1.19895e+00 - C -1.03972e+00 - dtype: float64 - - Reindexing example - - """ - mu_ = pd.Series(mu) - mu_.index = self.data.index - return np.log(mu_**2 / np.sqrt(np.diag(self.data) + mu_**2)) - - def sampling(self, nsmp, seed=None, rows=None, pdf='normal', - tolerance=0, relative=True, **kwargs): + def sampling(self, nsmp, seed=None, pdf='normal', tolerance=0, relative=True, **kwargs): """ Extract perturbation coefficients according to chosen distribution with covariance from given covariance matrix. See note for non-normal @@ -669,9 +759,6 @@ def sampling(self, nsmp, seed=None, rows=None, pdf='normal', seed : `int`, optional, default is `None` seed for the random number generator (by default use `numpy` dafault pseudo-random number generator). - rows : `int`, optional, default is `None` - option to use row calculation for matrix calculations. This option - defines the number of lines to be taken into account in each loop. pdf : `str`, optional, default is 'normal' random numbers distribution. Available distributions are: @@ -698,343 +785,158 @@ def sampling(self, nsmp, seed=None, rows=None, pdf='normal', .. note:: sampling with relative covariance matrix is performed setting all the negative perturbation coefficients equal to 0 - and the ones larger than 2 equal to 2 for normal distribution, or - adjusting the standard deviations in such a way that negative - samples are avoided for uniform distribution. - - .. note:: sampling with lognormal distribution gives a set of samples - with mean=1 as lognormal distribution can not have mean=0. - Therefore, `relative` parameter does not apply to it. - - Examples - -------- - Draw 3 sets of samples using custom seed. - >>> index = columns = ["A", "B"] - >>> c = pd.DataFrame([[1, 0.4],[0.4, 1]], index=index, columns=index) - >>> cov = sandy.CategoryCov(c) - >>> cov.sampling(3, seed=11, relative=False).data.T + 1 - A B - SMP - 0 -7.49455e-01 -2.13159e+00 - 1 1.28607e+00 1.10684e+00 - 2 1.48457e+00 9.00879e-01 - - >>> cov.sampling(3, seed=11, rows=1, relative=False).data.T + 1 - A B - SMP - 0 -7.49455e-01 -2.13159e+00 - 1 1.28607e+00 1.10684e+00 - 2 1.48457e+00 9.00879e-01 - - >>> cov.sampling(3, seed=11, pdf='normal', relative=True).data.T - A B - SMP - 0 0.00000e+00 0.00000e+00 - 1 1.28607e+00 1.10684e+00 - 2 1.48457e+00 9.00879e-01 - - >>> cov.sampling(3, seed=11, pdf='uniform', relative=True).data.T - A B - SMP - 0 3.60539e-01 1.44987e+00 - 1 3.89505e-02 8.40407e-01 - 2 9.26437e-01 9.70854e-01 - - For a large number of samples, the sample covariance will converge to - the original covariance matrix within a certain tolerance (if the cov - is positive definite). - >>> smp = cov.sampling(10000, seed=11, relative=False) - >>> np.testing.assert_array_almost_equal(c, smp.get_cov(), decimal=2) - - - These tests are for a covariance matrix with small negative eigenvalues. - >>> c = pd.DataFrame([[1, -.2],[-.2, 3]], index=index, columns=columns) - >>> cov = sandy.CategoryCov(c) - >>> smp = cov.sampling(1000000, seed=11, tolerance=0, relative=False) - >>> smp.get_cov() - A B - A 9.98662e-01 -1.99822e-01 - B -1.99822e-01 2.99437e+00 - - Sampling with different `pdf`: - >>> cov.sampling(3, seed=11, pdf='uniform', tolerance=0, relative=False).data.T + 1 - A B - SMP - 0 -1.07578e-01 2.34960e+00 - 1 -6.64587e-01 5.21222e-01 - 2 8.72585e-01 9.12563e-01 - - Issue with this test. - # cov.sampling(3, seed=11, pdf='lognormal', tolerance=0).data.T - # A B - # SMP - # 0 3.03419e+00 1.57919e+01 - # 1 5.57248e-01 4.74160e-01 - # 2 4.72366e-01 6.50840e-01 - - >>> cov.sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).get_cov() - A B - A 1.00042e+00 -1.58806e-03 - B -1.58806e-03 3.00327e+00 - - Issue with this test. - # cov.sampling(1000000, seed=11, pdf='lognormal', tolerance=0).get_cov() - # A B - # A 1.00219e+00 1.99199e-01 - # B 1.99199e-01 3.02605e+00 - - How to use keyword argument `relative`. - >>> cov.sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=False).get_mean() + 1 - A 1.00014e+00 - B 9.99350e-01 - Name: MEAN, dtype: float64 - - >>> cov.sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).get_mean() + 1 - A 9.98106e-01 - B 9.99284e-01 - Name: MEAN, dtype: float64 - - Issue with this test. - Lognormal distribution sampling independency from `relative` kwarg - # cov.sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=True).data.mean(axis=0) - # 0 9.99902e-01 - # 1 9.99284e-01 - # dtype: float64 - - >>> cov.sampling(3, seed=11, tolerance=0, relative=True).data.T - A B - SMP - 0 2.00000e+00 2.00000e+00 - 1 7.13927e-01 1.07147e+00 - 2 5.15435e-01 1.64683e+00 - """ - dim = self.data.shape[0] - pdf_ = pdf if pdf != 'lognormal' else 'normal' - y = sample_distribution(dim, nsmp, seed=seed, pdf=pdf_) - 1 - y = sps.csc_matrix(y) - - # the covariance matrix to decompose is created depending on the chosen - # pdf - if pdf == 'uniform': - to_decompose = self.__class__(np.diag(np.diag(self.data))) - if relative: - a = np.sqrt(12) / 2 # upper bound of the distribution y - std = np.sqrt(np.diag(to_decompose.data)) - std_modified = np.where(std < 1 / a, std, 1 / a) - cov = np.diag(std_modified**2) - to_decompose = self.__class__(cov, index=to_decompose.data.index, - columns=to_decompose.data.columns) - elif pdf == 'lognormal': - ones = np.ones(self.data.shape[0]) - to_decompose = self.log2norm_cov(ones) - else: - to_decompose = self - - L = sps.csr_matrix(to_decompose.get_L(rows=rows, - tolerance=tolerance)) - samples = pd.DataFrame( - L.dot(y).toarray(), - index=self.data.index, - columns=list(range(nsmp)), - ) - - if pdf == 'lognormal': - # mean value of lognormally sampled distributions will be one by - # defaul - samples = np.exp(samples.add(self.log2norm_mean(ones), axis=0)) - - elif relative: - samples += 1 - lower_bound = samples > 0 - upper_bound = samples < 2 - samples = samples.where(lower_bound, 0) - samples = samples.where(upper_bound, 2) - - return sandy.Samples(samples) - - @classmethod - def from_var(cls, var): - """ - Construct the covariance matrix from the variance vector. - - Parameters - ---------- - var : 1D iterable - Variance vector. - - Returns - ------- - `CategoryCov` - Object containing the covariance matrix. + and the ones larger than 2 equal to 2 for normal distribution, or + adjusting the standard deviations in such a way that negative + samples are avoided for uniform distribution. - Example - ------- - >>> S = pd.Series(np.array([0, 2, 3]), index=pd.Index([1, 2, 3])) - >>> cov = sandy.CategoryCov.from_var(S) - >>> cov - 1 2 3 - 1 0.00000e+00 0.00000e+00 0.00000e+00 - 2 0.00000e+00 2.00000e+00 0.00000e+00 - 3 0.00000e+00 0.00000e+00 3.00000e+00 + .. note:: sampling with lognormal distribution gives a set of samples + with mean=1 since a lognormal distribution cannot have mean=0. + In this case the `relative` parameter does not apply to it. - >>> assert type(cov) is sandy.CategoryCov + Examples + -------- + Common parameters. + >>> seed = 11 + >>> nsmp = 1e5 + + Create Positive-Definite covariance matrix with small stdev. + >>> index = columns = ["A", "B"] + >>> c = pd.DataFrame([[1, 0.4],[0.4, 1]], index=index, columns=index) / 10 + >>> cov = sandy.CategoryCov(c) - >>> S = sandy.CategoryCov.from_var((1, 2, 3)) - >>> S - 0 1 2 - 0 1.00000e+00 0.00000e+00 0.00000e+00 - 1 0.00000e+00 2.00000e+00 0.00000e+00 - 2 0.00000e+00 0.00000e+00 3.00000e+00 + Draw relative samples using different distributions. + >>> smp_n = cov.sampling(nsmp, seed=seed, pdf='normal') + >>> smp_ln = cov.sampling(nsmp, seed=seed, pdf='lognormal') + >>> smp_u = cov.sampling(nsmp, seed=seed, pdf='uniform') - >>> assert type(S) is sandy.CategoryCov - >>> assert type(sandy.CategoryCov.from_var([1, 2, 3])) is sandy.CategoryCov - """ - var_ = pd.Series(var) - cov_values = sps.diags(var_.values).toarray() - cov = pd.DataFrame(cov_values, - index=var_.index, columns=var_.index) - return cls(cov) + The sample mean converges to a unit vector. + >>> np.testing.assert_array_almost_equal(smp_n.get_mean(), [1, 1], decimal=2) + >>> np.testing.assert_array_almost_equal(smp_ln.get_mean(), [1, 1], decimal=2) + >>> np.testing.assert_array_almost_equal(smp_u.get_mean(), [1, 1], decimal=2) - @classmethod - def from_stdev(cls, std): - """ - Construct the covariance matrix from the standard deviation vector. + The sample covariance converges to the original one. + >>> np.testing.assert_array_almost_equal(smp_n.get_cov(), c, decimal=3) + >>> np.testing.assert_array_almost_equal(smp_ln.get_cov(), c, decimal=3) + >>> np.testing.assert_array_almost_equal(np.diag(smp_u.get_cov()), np.diag(c), decimal=3) - Parameters - ---------- - std : `pandas.Series` - Standard deviations vector. + Samples are reproducible by setting a seed. + assert cov.sampling(nsmp, seed=seed, pdf='normal').data.equals(smp_n.data) - Returns - ------- - `CategoryCov` - Object containing the covariance matrix. - Example - ------- - >>> S = pd.Series(np.array([0, 2, 3]), index=pd.Index([1, 2, 3])) - >>> cov = sandy.CategoryCov.from_stdev(S) - >>> cov - 1 2 3 - 1 0.00000e+00 0.00000e+00 0.00000e+00 - 2 0.00000e+00 4.00000e+00 0.00000e+00 - 3 0.00000e+00 0.00000e+00 9.00000e+00 - >>> assert type(cov) is sandy.CategoryCov + Create Positive-Definite covariance matrix with small stdev (small negative eig). + >>> c = pd.DataFrame([[1, 1.2],[1.2, 1]], index=index, columns=index) / 10 + >>> cov = sandy.CategoryCov(c) - >>> S = sandy.CategoryCov.from_stdev((1, 2, 3)) - >>> S - 0 1 2 - 0 1.00000e+00 0.00000e+00 0.00000e+00 - 1 0.00000e+00 4.00000e+00 0.00000e+00 - 2 0.00000e+00 0.00000e+00 9.00000e+00 + >>> smp_0 = cov.sampling(nsmp, seed=seed, pdf='normal', tolerance=0) + >>> np.testing.assert_array_almost_equal(np.diag(smp_0.get_cov()), np.diag(c), decimal=2) + >>> smp_inf = cov.sampling(nsmp, seed=seed, pdf='normal', tolerance=np.inf) + >>> with pytest.raises(Exception): + ... raise np.testing.assert_array_almost_equal(np.diag(smp_0.get_cov()), np.diag(c), decimal=1) - >>> assert type(S) is sandy.CategoryCov - >>> assert type(sandy.CategoryCov.from_stdev([1, 2, 3])) is sandy.CategoryCov - """ - std_ = pd.Series(std) - var = std_ * std_ - return cls.from_var(var) - @classmethod - def from_stack(cls, data_stack, index, columns, values, rows=10000000, - kind='upper'): - """ - Create a covariance matrix from a stacked dataframe. - Parameters - ---------- - data_stack : `pd.Dataframe` - Stacked dataframe. - index : 1D iterable, optional - Index of the final covariance matrix. - columns : 1D iterable, optional - Columns of the final covariance matrix. - values : `str`, optional - Name of the column where the values are located. - rows : `int`, optional - Number of rows to take into account into each loop. The default - is 10000000. - kind : `str`, optional - Select if the stack data represents upper or lower triangular - matrix. The default is 'upper. + Create Positive-Definite covariance matrix with small stdev (large negative eig). + >>> c = pd.DataFrame([[1, 4],[4, 1]], index=index, columns=index) / 10 + >>> cov = sandy.CategoryCov(c) + + Samples kind of converge only if we set a low tolerance + >>> smp_0 = cov.sampling(nsmp, seed=seed, pdf='normal', tolerance=0) + >>> with pytest.raises(Exception): + ... raise np.testing.assert_array_almost_equal(np.diag(smp_0.get_cov()), np.diag(c), decimal=1) + >>> smp_inf = cov.sampling(nsmp, seed=seed, pdf='normal', tolerance=np.inf) + >>> with pytest.raises(Exception): + ... raise np.testing.assert_array_almost_equal(np.diag(smp_0.get_cov()), np.diag(c), decimal=1) - Returns - ------- - `sandy.CategoryCov` - Covarinace matrix. - Examples - -------- - If the stack data represents the covariance matrix: - >>> S = pd.DataFrame(np.array([[1, 1, 1], [1, 2, 1], [1, 1, 1]])) - >>> S = S.stack().reset_index().rename(columns = {'level_0': 'dim1', 'level_1': 'dim2', 0: 'cov'}) - >>> S = S[S['cov'] != 0] - >>> sandy.CategoryCov.from_stack(S, index=['dim1'], columns=['dim2'], values='cov', kind='all') - dim2 0 1 2 - dim1 - 0 1.00000e+00 1.00000e+00 1.00000e+00 - 1 1.00000e+00 2.00000e+00 1.00000e+00 - 2 1.00000e+00 1.00000e+00 1.00000e+00 - If the stack data represents only the upper triangular part of the - covariance matrix: - >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL').data - >>> test_1 - MAT1 9437 - MT1 2 102 - E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 - MAT MT E - 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 - 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 - 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 - 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 + Create Positive-Definite covariance matrix with large stdev. + >>> index = columns = ["A", "B"] + >>> c = pd.DataFrame([[1, 0.4],[0.4, 1]], index=index, columns=index) / 10 + >>> cov = sandy.CategoryCov(c) - >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL', rows=1).data - >>> test_2 - MAT1 9437 - MT1 2 102 - E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 - MAT MT E - 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 - 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 - 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 - 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 + Need to increase the amount of samples + >>> nsmp = 1e6 + + The sample mean still converges to a unit vector. + >>> np.testing.assert_array_almost_equal(smp_n.get_mean(), [1, 1], decimal=2) + >>> np.testing.assert_array_almost_equal(smp_ln.get_mean(), [1, 1], decimal=2) + >>> np.testing.assert_array_almost_equal(smp_u.get_mean(), [1, 1], decimal=2) + + Only the lognormal covariance still converges. + >>> with pytest.raises(Exception): + ... raise np.testing.assert_array_almost_equal(smp_n.get_cov(), c, decimal=1) + >>> np.testing.assert_array_almost_equal(smp_ln.get_cov(), c, decimal=2) + >>> with pytest.raises(Exception): + ... raise np.testing.assert_array_almost_equal(np.diag(smp_u.get_cov()), np.diag(c), decimal=1) + """ + allowed_pdf = [ + "normal", + "lognormal", + "uniform", + ] + if pdf not in allowed_pdf: + raise ValueError("`pdf='lognormal'` not allowed") + + if not relative and pdf=='lognormal': + raise ValueError("`pdf='lognormal'` and `relative=False` is not a valid combination") + + nsmp_ = int(nsmp) - >>> assert (test_1 == test_2).all().all() + # -- Draw IID samples with mu=0 and std=1 + np.random.seed(seed=seed) + if pdf == 'uniform': + a = np.sqrt(12) / 2 + y = np.random.uniform(-a, a, (self.size, nsmp_)) + else: + y = np.random.randn(self.size, nsmp_) - If the stack data represents only the lower triangular part of the - covariance matrix: - >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower").data - >>> test_1 - MAT 9437 - MT 2 102 - E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 - MAT1 MT1 E1 - 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 - 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 - 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 - 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 + # -- Fix covariance matrix according to distribution + if pdf == 'uniform': + # no cross-correlation term is considered + if relative: + a = np.sqrt(12) / 2 # upper bound of the distribution y + std = np.sqrt(np.diag(self.data)) + std_modified = np.where(std < 1 / a, std, 1 / a) + cov = np.diag(std_modified**2) + else: + cov = np.diag(np.diag(self.data)) + to_decompose = self.__class__(cov, index=self.data.index, columns=self.data.columns) + elif pdf == 'lognormal': + ucov = np.log(self.sandwich(np.eye(self.size)).data + 1).values # covariance matrix of underlying normal distribution + to_decompose = self.__class__(ucov, index=self.data.index, columns=self.data.columns) + else: + to_decompose = self - >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower", rows=1).data - >>> test_2 - MAT 9437 - MT 2 102 - E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 - MAT1 MT1 E1 - 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 - 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 - 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 - 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 + # -- Decompose covariance into lower triangular + L = to_decompose.get_L(tolerance=tolerance) - >>> assert (test_1 == test_2).all().all() - """ - cov = segmented_pivot_table(data_stack, rows=rows, index=index, - columns=columns, values=values) - if kind == 'all': - return cls(cov) + # -- Apply covariance to samples + sparse = False # it seems to me that a sparse inner product is only marginally faster + if sparse: + y = sps.csc_matrix(y) + L = scipy.sparse.csr_matrix(L) + inner = (L @ y).toarray() else: - return triu_matrix(cov, kind=kind) + inner = L @ y + + index = self.data.index + columns = list(range(nsmp_)) + samples = pd.DataFrame(inner, index=index, columns=columns) + + # -- Fix sample (and sample mean) according to distribution + if pdf == 'lognormal': + mu = np.ones(self.size) + umu = np.log(mu**2 / np.sqrt(np.diag(self.data) + mu**2)) # mean of the underlying normal distribution + samples = np.exp(samples.add(umu, axis=0)) + elif relative: + samples += 1 + lower_bound = samples > 0 + upper_bound = samples < 2 + samples = samples.where(lower_bound, 0) + samples = samples.where(upper_bound, 2) + + return sandy.Samples(samples) def gls_cov_update(self, S, Vy_extra=None): """ @@ -1253,65 +1155,6 @@ def from_csv(cls, file, **kwargs): df = pd.read_csv(file, **kwargs) return cls(df) - @classmethod - def random_corr(cls, size, correlations=True, seed=None, **kwargs): - """ - >>> sandy.CategoryCov.random_corr(2, seed=1) - 0 1 - 0 1.00000e+00 4.40649e-01 - 1 4.40649e-01 1.00000e+00 - - >>> sandy.CategoryCov.random_corr(2, correlations=False, seed=1) - 0 1 - 0 1.00000e+00 0.00000e+00 - 1 0.00000e+00 1.00000e+00 - """ - np.random.seed(seed=seed) - corr = np.eye(size) - if correlations: - offdiag = np.random.uniform(-1, 1, size**2).reshape(size, size) - up = np.triu(offdiag, 1) - else: - up = np.zeros([size, size]) - corr += up + up.T - return cls(corr, **kwargs) - - @classmethod - def random_cov(cls, size, stdmin=0.0, stdmax=1.0, correlations=True, - seed=None, **kwargs): - """ - Construct a covariance matrix with random values - - Parameters - ---------- - size : `int` - Dimension of the original matrix - stdmin : `float`, default is 0 - minimum value of the uniform standard deviation vector - stdmax : `float`, default is 1 - maximum value of the uniform standard deviation vector - correlation : `bool`, default is True - flag to insert the random correlations in the covariance matrix - seed : `int`, optional, default is `None` - seed for the random number generator (by default use `numpy` - dafault pseudo-random number generator) - - Returns - ------- - `CategoryCov` - object containing covariance matrix - - Examples - -------- - >>> sandy.CategoryCov.random_cov(2, seed=1) - 0 1 - 0 2.15373e-02 5.97134e-03 - 1 5.97134e-03 8.52642e-03 - """ - corr = random_corr(size, correlations=correlations, seed=seed) - std = np.random.uniform(stdmin, stdmax, size) - return CategoryCov(corr).corr2cov(std) - def to_sparse(self, method='csr_matrix'): """ Method to extract `CategoryCov` values into a sparse matrix @@ -1801,62 +1644,6 @@ def from_lb6(cls, evalues_r, evalues_c, fvalues): return cls(cov, index=evalues_r, columns=evalues_c) -class GlobalCov(CategoryCov): - - @classmethod - def from_list(cls, iterable): - """ - Extract global cross section/nubar covariance matrix from iterables - of `EnergyCovs`. - - Parameters - ---------- - iterable : iterable - list of tuples/lists/iterables with content `[mat, mt, mat1, mt1, EnergyCov]` - - Returns - ------- - `XsCov` or `pandas.DataFrame` - global cross section/nubar covariance matrix (empty dataframe if no covariance matrix was found) - """ - columns = ["KEYS_ROWS", "KEYS_COLS", "COV"] - # Reindex the cross-reaction matrices - covs = pd.DataFrame.from_records(iterable).set_axis(columns, axis=1).set_index(columns[:-1]).COV - for (keys_rows,keys_cols), cov in covs.iteritems(): - if keys_rows == keys_cols: # diagonal terms - if cov.data.shape[0] != cov.data.shape[1]: - raise SandyError("non-symmetric covariance matrix for ({}, {})".format(keys_rows, keys_cols)) - if not np.allclose(cov.data, cov.data.T): - raise SandyError("non-symmetric covariance matrix for ({}, {})".format(keys_rows, keys_cols)) - else: # off-diagonal terms - condition1 = (keys_rows,keys_rows) in covs.index - condition2 = (keys_cols,keys_cols) in covs.index - if not (condition1 and condition2): - covs[keys_rows,keys_cols] = np.nan - logging.warn("skip covariance matrix for ({}, {})".format(keys_rows, keys_cols)) - continue - ex = covs[keys_rows,keys_rows].data.index.values - ey = covs[keys_cols,keys_cols].data.columns.values - covs[keys_rows,keys_cols] = cov.change_grid(ex, ey) - covs.dropna(inplace=True) - if covs.empty: - logging.warn("covariance matrix is empty") - return pd.DataFrame() - # Create index for global matrix - rows_levels = covs.index.levels[0] - indexlist = [(*keys,e) for keys in rows_levels for e in covs[(keys,keys)].data.index.values] - index = pd.MultiIndex.from_tuples(indexlist, names=cls.labels) - # Create global matrix - matrix = np.zeros((len(index),len(index))) - for (keys_rows,keys_cols), cov in covs.iteritems(): - ix = index.get_loc(keys_rows) - ix1 = index.get_loc(keys_cols) - matrix[ix.start:ix.stop,ix1.start:ix1.stop] = cov.data - if keys_rows != keys_cols: - matrix[ix1.start:ix1.stop,ix.start:ix.stop] = cov.data.T - return cls(matrix, index=index, columns=index) - - def corr2cov(corr, s): """ Produce covariance matrix given correlation matrix and standard @@ -2168,104 +1955,6 @@ def restore_size(nonzero_idxs, mat_reduced, dim): return pd.DataFrame(mat) -def sample_distribution(dim, nsmp, seed=None, pdf='normal'): - """ - Extract random independent and identically distributed samples according to - the chosen distribution with standard deviation=1 and mean=1. - - Parameters - ---------- - dim : `int` - Dimension of the matrix from where we obtain the samples. - nsmp : `int` - number of samples. - seed : `int`, optional, default is `None` - seed for the random number generator (by default use `numpy` - dafault pseudo-random number generator). - pdf : `str`, optional - Random numbers distribution. The default is 'normal' - Available distributions are: - * `'normal'` - * `'uniform'` - * `'lognormal'` - - Returns - ------- - y : `np.array` - Numpy array with the random numbers. - - Notes - ----- - .. note:: the implementation of the lognormal distribution sampling is - performed with the following equations: - ..math:: - $$ - \mu_{LN} = \exp(\mu_N + \frac{\sigma_N^2}{2})\\ - \sigma_{LN} = \sqrt{[\exp(2\mu_N + 2\sigma_N^2) - \exp(2\mu_N + \sigma_N^2)]} - $$ - More details can be found in reference: https://linkinghub.elsevier.com/retrieve/pii/S0168900213008450 - DOI: 10.1016/J.NIMA.2013.06.025 - - Examples - -------- - >>> sandy.cov.sample_distribution(2, 3, seed=11) - array([[ 2.74945474, 0.713927 , 0.51543487], - [-1.65331856, 0.99171537, 0.68036864]]) - - >>> sandy.cov.sample_distribution(2, 3, seed=11, pdf='uniform') - array([[-0.10757829, -0.66458659, 0.87258524], - [ 1.77919399, 0.72357718, 0.94951799]]) - - >>> sandy.cov.sample_distribution(2, 3, seed=11, pdf='lognormal') - array([[3.03418551, 0.55724795, 0.4723663 ], - [0.07764515, 0.70224636, 0.54189439]]) - - >>> sandy.cov.sample_distribution(2, 1000000, seed=11).mean().round(5) - 1.00025 - - >>> sandy.cov.sample_distribution(2, 1000000, seed=11, pdf='uniform').mean().round(5) - 0.99885 - - >>> sandy.cov.sample_distribution(2, 1000000, seed=11, pdf='lognormal').mean().round(5) - 0.99953 - - >>> sandy.cov.sample_distribution(2, 1000000, seed=11).std().round(5) - 0.99919 - - >>> sandy.cov.sample_distribution(2, 1000000, seed=11, pdf='uniform').std().round(5) - 1.00038 - - >>> sandy.cov.sample_distribution(2, 1000000, seed=11, pdf='lognormal').std().round(5) - 0.99756 - - >>> np.corrcoef(sandy.cov.sample_distribution(2, 1000000, seed=11)).round(5) - array([[1.e+00, 5.e-05], - [5.e-05, 1.e+00]]) - - >>> np.corrcoef(sandy.cov.sample_distribution(2, 1000000, seed=11, pdf='uniform')).round(5) - array([[ 1.0e+00, -9.2e-04], - [-9.2e-04, 1.0e+00]]) - - >>> np.corrcoef(sandy.cov.sample_distribution(2, 1000000, seed=11, pdf='lognormal')).round(5) - array([[ 1.0e+00, -2.6e-04], - [-2.6e-04, 1.0e+00]]) - """ - np.random.seed(seed=seed) - if pdf == 'normal': - y = np.random.randn(dim, nsmp) + 1 - elif pdf == 'uniform': - a = np.sqrt(12) / 2 - y = np.random.uniform(-a, a, (dim, nsmp)) + 1 - elif pdf == 'lognormal': - sl = ml = 1 # target mean and standard deviation of the lognormal distribution - mn = 2 * np.log(ml) - .5 * np.log(sl**2 + np.exp(2 * np.log(ml))) # required mean of the corresponding normal distibution (note reference in the docstring) - sn = np.sqrt(2 * (np.log(ml) - mn)) # required standard deviation of the corresponding normal distibution (note reference in the docstring) - y = np.random.lognormal(mn, sn, (dim, nsmp)) - else: - raise ValueError(f"Value '{pdf}' not allowed for kwarg 'pdf'") - return y - - def random_corr(size, correlations=True, seed=None): np.random.seed(seed=seed) corr = np.eye(size) @@ -2286,16 +1975,3 @@ def random_cov(size, stdmin=0.0, stdmax=1.0, correlations=True, seed=None): def random_ctg_cov(index, stdmin=0.0, stdmax=1.0, correlations=True, seed=None): cov = random_cov(len(index), stdmin=stdmin, stdmax=stdmax, correlations=correlations, seed=seed) return pd.DataFrame(cov, index=index, columns=index) - - -def print_matrix(size, triu_matrices): - coords = list(zip(*np.triu_indices(size))) - kwargs = {"cbar": False, "vmin": -1, "vmax": 1, "cmap": "RdBu"} - fig,ax = plt.subplots(size, size, sharex="col", sharey="row") - for (i,j), m in zip(coords, MM): - if m is None: - continue - ax[i,j] = sns.heatmap(m, ax=ax[i,j], **kwargs) - if i != j: - ax[j,i] = sns.heatmap(m.T, ax=ax[j,i], **kwargs) - return fig, ax diff --git a/sandy/core/endf6.py b/sandy/core/endf6.py index b6ea0a4b..55bd7ce9 100644 --- a/sandy/core/endf6.py +++ b/sandy/core/endf6.py @@ -2070,6 +2070,7 @@ def get_perturbations( smp[31] = outs["errorr31"].get_cov().sampling(nsmp, **smp_kws) if "errorr33" in outs: smp_kws["seed"] = smp_kws.get("seed33", None) + print(smp_kws) smp[33] = outs["errorr33"].get_cov().sampling(nsmp, **smp_kws) if to_excel and smp: with pd.ExcelWriter(to_excel) as writer: From a5d61914680ab680b756dae7345dc8de371d3c03 Mon Sep 17 00:00:00 2001 From: Luca Fiorito Date: Fri, 17 Feb 2023 10:07:16 +0100 Subject: [PATCH 09/17] Fix sampling unit tests (#252) * update * update * update * update * update * update * update * update --------- Co-authored-by: Fiorito Luca Co-authored-by: Luca Fiorito --- notebooks/notebook_shapiro.ipynb | 263 +++++++++++++++++++++++++++++++ sandy/core/cov.py | 32 ++++ sandy/core/endf6.py | 1 - sandy/core/samples.py | 148 +++++++++-------- sandy/sampling.py | 1 + 5 files changed, 380 insertions(+), 65 deletions(-) create mode 100644 notebooks/notebook_shapiro.ipynb diff --git a/notebooks/notebook_shapiro.ipynb b/notebooks/notebook_shapiro.ipynb new file mode 100644 index 00000000..563cbba1 --- /dev/null +++ b/notebooks/notebook_shapiro.ipynb @@ -0,0 +1,263 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "cfc7bba9", + "metadata": {}, + "source": [ + "# Shapiro-Wilk test for normal and lognormal distributions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8e456eaf", + "metadata": {}, + "outputs": [], + "source": [ + "import sandy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "35fae75e", + "metadata": {}, + "outputs": [], + "source": [ + "import logging\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8e08433c", + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c57f6407", + "metadata": {}, + "outputs": [], + "source": [ + "logging.getLogger().setLevel(logging.WARN)" + ] + }, + { + "cell_type": "markdown", + "id": "8d1ddd57", + "metadata": {}, + "source": [ + "Generate 5000 xs samples normally and log-normally distributed" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa73bbbc", + "metadata": {}, + "outputs": [], + "source": [ + "tape = sandy.get_endf6_file(\"jeff_33\", \"xs\", 10010)\n", + "njoy_kws = dict(err=1, errorr33_kws=dict(mt=102))\n", + "nsmp = 5000\n", + "seed = 5\n", + "\n", + "smp_norm = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=seed, pdf=\"normal\"))[33]\n", + "smp_lognorm = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=seed, pdf=\"lognormal\"))[33]\n", + "smp_uniform = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=seed, pdf=\"uniform\"))[33]" + ] + }, + { + "cell_type": "markdown", + "id": "08f12802", + "metadata": {}, + "source": [ + "## Shapiro-Wilk test normal samples and normal distribution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4cf664f6", + "metadata": {}, + "outputs": [], + "source": [ + "stat_norm = []\n", + "stat_lognorm = []\n", + "for n in [10, 50, 100, 500, 1000, 5000]:\n", + " df = smp_norm.test_shapiro(pdf=\"normal\", size=n)\n", + " idx = df.statistic.idxmin()\n", + " stat_norm.append(df.loc[idx].rename(n))\n", + "\n", + " df = smp_norm.test_shapiro(pdf=\"lognormal\", size=n)\n", + " idx = df.statistic.idxmin()\n", + " stat_lognorm.append(df.loc[idx].rename(n))\n", + "\n", + "opts = dict(left_index=True, right_index=True, suffixes=(\"_norm\", \"_lognorm\"))\n", + "pd.DataFrame(stat_norm).merge(pd.DataFrame(stat_lognorm), **opts).rename_axis(\"# SMP\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "449bdf7d", + "metadata": {}, + "outputs": [], + "source": [ + "test = smp_norm.test_shapiro(pdf=\"normal\", size=5000)\n", + "\n", + "fig, ax = plt.subplots(figsize=(7, 4), dpi=100)\n", + "\n", + "idx = test.statistic.idxmin()\n", + "w = test.loc[idx]\n", + "sns.histplot(data=smp_norm.data.loc[idx], label=f\"W:stat={w.statistic:.2e}, p-value={w.pvalue:.2e}\", color=\"dodgerblue\")\n", + "\n", + "idx = test.statistic.idxmax()\n", + "w = test.loc[idx]\n", + "sns.histplot(data=smp_norm.data.loc[idx], label=f\"W:stat={w.statistic:.2e}, p-value={w.pvalue:.2e}\", color=\"tomato\")\n", + "\n", + "ax.set(xlabel=\"W\")\n", + "ax.legend()\n", + "fig.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "78c3e97d", + "metadata": {}, + "source": [ + "## Shapiro-Wilk test for lognormal samples and lognormal distribution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "be16d4f1", + "metadata": {}, + "outputs": [], + "source": [ + "stat_norm = []\n", + "stat_lognorm = []\n", + "for n in [10, 50, 100, 500, 1000, 5000]:\n", + " df = smp_lognorm.test_shapiro(pdf=\"normal\", size=n)\n", + " idx = df.statistic.idxmin()\n", + " stat_norm.append(df.loc[idx].rename(n))\n", + "\n", + " df = smp_lognorm.test_shapiro(pdf=\"lognormal\", size=n)\n", + " idx = df.statistic.idxmin()\n", + " stat_lognorm.append(df.loc[idx].rename(n))\n", + "\n", + "opts = dict(left_index=True, right_index=True, suffixes=(\"_norm\", \"_lognorm\"))\n", + "pd.DataFrame(stat_norm).merge(pd.DataFrame(stat_lognorm), **opts).rename_axis(\"# SMP\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8fa36199", + "metadata": {}, + "outputs": [], + "source": [ + "test = smp_lognorm.test_shapiro(pdf=\"lognormal\", size=5000)\n", + "\n", + "fig, ax = plt.subplots(figsize=(7, 4), dpi=100)\n", + "\n", + "idx = test.statistic.idxmin()\n", + "w = test.loc[idx]\n", + "sns.histplot(data=smp_lognorm.data.loc[idx], label=f\"W:stat={w.statistic:.2e}, p-value={w.pvalue:.2e}\", color=\"dodgerblue\")\n", + "\n", + "idx = test.statistic.idxmax()\n", + "w = test.loc[idx]\n", + "sns.histplot(data=smp_lognorm.data.loc[idx], label=f\"W:stat={w.statistic:.2e}, p-value={w.pvalue:.2e}\", color=\"tomato\")\n", + "\n", + "ax.set(xlabel=\"W\")\n", + "ax.legend()\n", + "fig.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "975dbaa1", + "metadata": {}, + "source": [ + "## Shapiro-Wilk test for uniform samples and normal distribution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bded2114", + "metadata": {}, + "outputs": [], + "source": [ + "stat_norm = []\n", + "stat_lognorm = []\n", + "for n in [10, 50, 100, 500, 1000, 5000]:\n", + " df = smp_uniform.test_shapiro(pdf=\"normal\", size=n)\n", + " idx = df.statistic.idxmin()\n", + " stat_norm.append(df.loc[idx].rename(n))\n", + "\n", + " df = smp_uniform.test_shapiro(pdf=\"lognormal\", size=n)\n", + " idx = df.statistic.idxmin()\n", + " stat_lognorm.append(df.loc[idx].rename(n))\n", + "\n", + "opts = dict(left_index=True, right_index=True, suffixes=(\"_norm\", \"_lognorm\"))\n", + "pd.DataFrame(stat_norm).merge(pd.DataFrame(stat_lognorm), **opts).rename_axis(\"# SMP\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b6e1d4ee", + "metadata": {}, + "outputs": [], + "source": [ + "test = smp_uniform.test_shapiro(pdf=\"uniform\", size=5000)\n", + "\n", + "fig, ax = plt.subplots(figsize=(7, 4), dpi=100)\n", + "\n", + "idx = test.statistic.idxmin()\n", + "w = test.loc[idx]\n", + "sns.histplot(data=smp_uniform.data.loc[idx], label=f\"W:stat={w.statistic:.2e}, p-value={w.pvalue:.2e}\", color=\"dodgerblue\")\n", + "\n", + "idx = test.statistic.idxmax()\n", + "w = test.loc[idx]\n", + "sns.histplot(data=smp_uniform.data.loc[idx], label=f\"W:stat={w.statistic:.2e}, p-value={w.pvalue:.2e}\", color=\"tomato\")\n", + "\n", + "ax.set(xlabel=\"W\")\n", + "ax.legend()\n", + "fig.tight_layout()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python3 (sandy-devel)", + "language": "python", + "name": "sandy-devel" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/sandy/core/cov.py b/sandy/core/cov.py index 633accd2..fb1cd76b 100644 --- a/sandy/core/cov.py +++ b/sandy/core/cov.py @@ -244,6 +244,8 @@ class CategoryCov(): deviation vector from_stack create a covariance matrix from a stacked `pd.DataFrame` + from_stdev + construct a covariance matrix from a standard deviation vector from_var construct a covariance matrix from a variance vector get_corr @@ -377,6 +379,36 @@ def random_cov(cls, size, stdmin=0.0, stdmax=1.0, correlations=True, std = np.random.uniform(stdmin, stdmax, size) return CategoryCov(corr).corr2cov(std) + @classmethod + def from_stdev(cls, std): + """ + Construct the covariance matrix from the standard deviation vector. + + Parameters + ---------- + var : 1D iterable + Standar deviation vector. + + Returns + ------- + `CategoryCov` + Object containing the covariance matrix. + + Example + ------- + Create covariance from stdev in `pd.Series`. + >>> var = pd.Series(np.array([0, 2, 3]), index=pd.Index(["A", "B", "C"])) + >>> std = np.sqrt(var) + >>> cov = sandy.CategoryCov.from_stdev(std) + >>> cov + A B C + A 0.00000e+00 0.00000e+00 0.00000e+00 + B 0.00000e+00 2.00000e+00 0.00000e+00 + C 0.00000e+00 0.00000e+00 3.00000e+00 + """ + std_ = pd.Series(std) + return cls.from_var(std_ * std_) + @classmethod def from_var(cls, var): """ diff --git a/sandy/core/endf6.py b/sandy/core/endf6.py index 55bd7ce9..b6ea0a4b 100644 --- a/sandy/core/endf6.py +++ b/sandy/core/endf6.py @@ -2070,7 +2070,6 @@ def get_perturbations( smp[31] = outs["errorr31"].get_cov().sampling(nsmp, **smp_kws) if "errorr33" in outs: smp_kws["seed"] = smp_kws.get("seed33", None) - print(smp_kws) smp[33] = outs["errorr33"].get_cov().sampling(nsmp, **smp_kws) if to_excel and smp: with pd.ExcelWriter(to_excel) as writer: diff --git a/sandy/core/samples.py b/sandy/core/samples.py index 4d3211c6..654ffdce 100644 --- a/sandy/core/samples.py +++ b/sandy/core/samples.py @@ -16,17 +16,25 @@ class Samples(): Attributes ---------- - condition_number - data - + Dataframe of samples. Methods ------- - filter_by - - from_csv - + get_condition_number + Return condition number of samples. + get_cov + Return covariance matrix of samples. + get_mean + Return mean vector of samples. + get_std + Return standard deviation vector of samples. + get_rstd + Return relative standard deviation vector of samples. + iterate_xs_samples + Generator that iterates over each sample (in the form of :func:`sandy.Xs`). + test_shapiro + Perform the Shapiro-Wilk test for normality on the samples. """ _columnsname = "SMP" @@ -62,8 +70,7 @@ def data(self): def data(self, data): self._data = data.rename_axis(self.__class__._columnsname, axis=1) - @property - def condition_number(self): + def get_condition_number(self): """ Return condition number of samples. @@ -116,81 +123,94 @@ def _mean_convergence(self): def test_shapiro(self, size=None, pdf="normal"): """ + Perform the Shapiro-Wilk test for normality on the samples. + The test can be performed also for a lognormal distribution by testing + for normality the logarithm of the samples. + The Shapiro-Wilk test tests the null hypothesis that the data was + drawn from a normal distribution. Parameters ---------- - size : TYPE, optional - DESCRIPTION. The default is None. - pdf : TYPE, optional - DESCRIPTION. The default is "normal". + size : `int`, optional + number of samples (starting from the first) that need to be + considered for the test. The default is `None`, i.e., all samples. + pdf : `str`, optional + the pdf used to test the samples. Either `"normal"` or + `"lognormal"`. The default is "normal". Returns ------- - TYPE - DESCRIPTION. + pd.DataFrame + Dataframe with Shapriro-Wilk results (statistic and pvalue) for + each variable considered in the :func:`~Samples` instance. Examples -------- - Generate 5000 xs samples normally and log-normally distributed + Generate 5000 xs samples normally, log-normally and uniform distributed >>> tape = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> njoy_kws = dict(err=1, errorr33_kws=dict(mt=102)) >>> nsmp = 5000 - >>> smp_norm = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=1, pdf="normal"))[33] - >>> smp_lognorm = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=1, pdf="lognormal"))[33] - - The Shapiro-Wilks test proves right for the normal samples and the normal distribution. - >>> stat_norm = [] - >>> stat_lognorm = [] - >>> for nsmp in [10, 50, 100, 500, 1000, 5000]: - ... df = smp_norm.test_shapiro(pdf="normal", size=nsmp) - ... idx = df.statistic.idxmin() - ... stat_norm.append(df.loc[idx].rename(nsmp)) - ... - ... df = smp_norm.test_shapiro(pdf="lognormal", size=nsmp) - ... idx = df.statistic.idxmin() - ... stat_lognorm.append(df.loc[idx].rename(nsmp)) + >>> seed = 5 >>> - >>> opts = dict(left_index=True, right_index=True, suffixes=("_norm", "_lognorm")) - >>> df = pd.DataFrame(stat_norm).merge(pd.DataFrame(stat_lognorm), **opts).rename_axis("# SMP") - >>> print(df) - statistic_norm pvalue_norm statistic_lognorm pvalue_lognorm - # SMP - 10 9.19610e-01 3.15408e-01 9.40333e-01 6.43714e-41 - 50 9.44342e-01 1.84070e-02 9.40333e-01 6.43714e-41 - 100 9.78776e-01 1.03195e-01 9.40333e-01 6.43714e-41 - 500 9.85038e-01 5.02533e-05 9.40333e-01 6.43714e-41 - 1000 9.89657e-01 1.68679e-06 9.40333e-01 6.43714e-41 - 5000 9.90618e-01 1.03590e-17 9.40333e-01 6.43714e-41 + >>> smp_norm = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=seed, pdf="normal"))[33] + >>> smp_lognorm = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=seed, pdf="lognormal"))[33] + >>> smp_uniform = tape.get_perturbations(nsmp, njoy_kws=njoy_kws, smp_kws=dict(seed33=seed, pdf="uniform"))[33] + + In this example we defined the following arbitrary convergence criteria: + - if the p value is larger than 0.05 we fail to reject the null-hypothesis and we accept the results + - if the first condition is accepted, we confirm the pdf if the statistics is larger than 0.95 + >>> threshold = 0.95 + >>> pthreshold = 0.05 + >>> def test(smps): + ... data = [] + ... for n in [10, 50, 100, 500, 1000, 5000]: + ... for pdf in ("normal", "lognormal"): + ... df = smps.test_shapiro(pdf=pdf, size=n) + ... idx = df.statistic.idxmin() + ... w = df.loc[idx] + ... t = "reject" if w.pvalue < pthreshold else (pdf if w.statistic > threshold else "reject") + ... data.append({"PDF": pdf, "test":t, "# SMP": n}) + ... df = pd.DataFrame(data).pivot_table(index="# SMP", columns="PDF", values="test", aggfunc=lambda x: ' '.join(x)) + ... return df + + The Shapiro-Wilks test proves wrong the normal samples because of the tail truncation. + >>> print(test(smp_norm)) + PDF lognormal normal + # SMP + 10 reject reject + 50 reject reject + 100 reject reject + 500 reject reject + 1000 reject reject + 5000 reject reject The Shapiro-Wilks test proves right for the lognormal samples and the lognormal distribution. - >>> stat_norm = [] - >>> stat_lognorm = [] - >>> for nsmp in [10, 50, 100, 500, 1000, 5000]: - ... df = smp_lognorm.test_shapiro(pdf="normal", size=nsmp) - ... idx = df.statistic.idxmin() - ... stat_norm.append(df.loc[idx].rename(nsmp)) - ... - ... df = smp_lognorm.test_shapiro(pdf="lognormal", size=nsmp) - ... idx = df.statistic.idxmin() - ... stat_lognorm.append(df.loc[idx].rename(nsmp)) - >>> - >>> opts = dict(left_index=True, right_index=True, suffixes=("_norm", "_lognorm")) - >>> df = pd.DataFrame(stat_norm).merge(pd.DataFrame(stat_lognorm), **opts).rename_axis("# SMP") - >>> print(df) - statistic_norm pvalue_norm statistic_lognorm pvalue_lognorm - # SMP - 10 6.97781e-01 4.38032e-04 9.99319e-01 5.41511e-02 - 50 8.19990e-01 2.17409e-06 9.99319e-01 5.41511e-02 - 100 7.90146e-01 1.08222e-10 9.99319e-01 5.41511e-02 - 500 8.99920e-01 1.35794e-17 9.99319e-01 5.41511e-02 - 1000 9.14015e-01 2.26424e-23 9.99319e-01 5.41511e-02 - 5000 9.02778e-01 0.00000e+00 9.99319e-01 5.41511e-02 + >>> print(test(smp_lognorm)) + PDF lognormal normal + # SMP + 10 lognormal reject + 50 lognormal reject + 100 lognormal reject + 500 lognormal reject + 1000 lognormal reject + 5000 lognormal reject + + The Shapiro-Wilks gives too low p-values for the uniform samples. + >>> print(test(smp_uniform)) + PDF lognormal normal + # SMP + 10 reject reject + 50 reject reject + 100 reject reject + 500 reject reject + 1000 reject reject + 5000 reject reject """ size_ = size or self.data.shape[1] names = ["statistic", "pvalue"] - data = self.data.loc[:, :size_] + data = self.data.iloc[:, :size_] if pdf.lower() == "lognormal": data = np.log(self.data) diff --git a/sandy/sampling.py b/sandy/sampling.py index c9d96946..5cd02e3e 100755 --- a/sandy/sampling.py +++ b/sandy/sampling.py @@ -191,6 +191,7 @@ def run(cli): Produce perturbed ENDF6 and PENDF files. >>> cli = "H1.jeff33 --samples 2 --processes 2 --outname=H1_{MAT}_{SMP} --mt 102" >>> sandy.sampling.run(cli) + >>> assert os.path.getsize("H1_125_0.pendf") > 0 and os.path.getsize("H1_125_1.pendf") > 0 >>> assert filecmp.cmp("H1_125_0.endf6", "H1_125_1.endf6") >>> assert filecmp.cmp("H1_125_0.endf6", "H1.jeff33") From f369b91759d75db054cba5c52896758a9409702c Mon Sep 17 00:00:00 2001 From: Barone Luigi Date: Wed, 10 May 2023 16:40:01 +0200 Subject: [PATCH 10/17] Expanding the use for the energy distribution data --- ...O3WWC5YSNGHAWGL2BYRO.gfortran-win_amd64.dll | Bin 0 -> 667715 bytes rwf.cp310-win_amd64.pyd | Bin 0 -> 51200 bytes sandy/errorr.py | 16 +++++++--------- 3 files changed, 7 insertions(+), 9 deletions(-) create mode 100644 librwfortra.QHHCXIBOJA55O3WWC5YSNGHAWGL2BYRO.gfortran-win_amd64.dll create mode 100644 rwf.cp310-win_amd64.pyd diff --git a/librwfortra.QHHCXIBOJA55O3WWC5YSNGHAWGL2BYRO.gfortran-win_amd64.dll b/librwfortra.QHHCXIBOJA55O3WWC5YSNGHAWGL2BYRO.gfortran-win_amd64.dll new file mode 100644 index 0000000000000000000000000000000000000000..2fce9bf7c893111509005357b2bb7b4744d42f75 GIT binary patch literal 667715 zcmeFadwf*Yx%fSk3uFY`L5T$~CA3i!uf$7BDwG+S=pLO>tf(kxX~C$Kdclcky^wTf z)a^KuT0Ezo+Sc~;Vt=Q#?Kz5oiU~nNz)DCIxp)cSWpBbQU?G4y@Ap}I@7WWGo}Tx- z@8|vJK3(1!mC? zK~efnKl1<0@J*g^)~xTvg#hb|1ww_AXSdULN#bA7H>3HiId;as{(yv1^3CSC?}&WC zv+l6-sXo$I-|^)8et$%RzOlix?y>VNVtjnh03XTo{sHoR|E{}$_HKLB z{BE@CQ#9`;-zfkV^v|!_y~V*##)Pp^v{`aQzUH$geP@c)KUMyelTW%Typ#7Y=nFQV z6`!r}yIIm1E0yo{!}AIKZk&DlOrJg0jJeA9#^L$KUU>F-b_350<~f;su%EBv@O-5g zo?Ts|GG2QZ%rk?0ah~f3$aikF%J<>7cyu$!<9SBaV5@Zb6ZBEvdFQL|@t5!@hY6xQ z9~mIu`QKFeZvHxtJIGhT^UcHa1us1Nn`2eJS%UvF|(h)pg79x57B%k;7|G)izL4hmv#P;&VJ_gZjKf&+QjTYT# zHS1s+JzaMDWraRHwMjP$_?ROfMnPPwZr0lr$K5fvZhbAs3DRbT46Rb<*7$EUW;EGO`o}0rN?~c zvyyJC&=WgL^qPOnJyuT-lIC_vLbijXyLae@WsW-D?~An6(!P&pkq81`b#t4VllsGj zM^aH69kfTrD$e1<;6GewRph>5jK$!gr-%K9N1IU2XMUHKtR0_cv-TJ@$>)1~l6khB z`6?dfIMUk&3qh>aKvjQp+*7Wn&wuq&n5I)V))-w;<2B>B`tPNSFa5JHQhcKMn{Ut! z!>k5=z7Qk@@Ka%J^#@_2yKN91$tvbm ztkc?LUP`r@Nm;iHLpt}@<|(RFe3hGOo=>%@W-6@zYT}T;{%-(mL_YmAo9+2s9{&N2 znpYz<$+ASKBUlY`i)*R7K_FLp=TGwbv^M|ax72H$Wam{pB-Ol14scMz(|h@DQbi(#u-y8&eM%(MWy*J6T<96HAT~;rzJg2y2^j2bWlv?{1BT{oJyZ5yq##SOWec3d0NG|x0DjC2 z6B|N^e!ca;*}P?n|AmhAyes@>x7U>Wr({XvcAcj7Xr;r>{H#Epe%)BD8*lSgb~-6_ z+LV?$?W~TwkLGXj7*e!{&qam+Kj{PoKWn`W`|ML-i9gt|lLy+oSKJ}OrY%{qlE)DK>%2e1 zQ~v3h30qX|*%ddFb(W-A%j`~;Jz`hiarbwm`Z-d)9?cXt9#;K1l=SKNH}CDPB|0GSiar{6dbfKYFd_Y3gIk?vt;mXaTOCSEZEj`{_NGONCh#1SoOeV3hak227x#$ePFSJOppa{iY^W*O*q|N!1Z_*o= z%j^=}*;>~G=|<5J$bJeBLAX*Oyg-pDe;9tHQ9#>H9?*mt2|WYbV# zbk!6aqt5{J!wBLT`}Ymg5iTgxB>819hSeNa-x(z5cZ~OE zBrE?Q!@a=@aVB#}jcp1Hqb zY+k)lmxcS`3l~9XB~M5f{_V#x4}|A6z-B-5#vB;kz})egF1BdO*B(x{iA>XQJ`Pae_4b^Q9zztT1{=a{)ev4vmnQY zFr17xbfZg5#}4XEH2Y;%m+Quc%!me?siT>?A$p>8vTkgP8Xuc04rH^n#!gtx z<@;?*aU%FaiI4o|+ETwST(eV4&LgEZwJ&}`E)&(7k5V=Qt%vl~V$YJ2gPOMkl9tfD zxx{GZrXh(HL(KcARZp}Xmjg&$-=;t=0jrOUQr^7GMxp-KXu+|r)f&2i`RCX_joa@~ zl0&*GN=Dw=2i@+6y(UH>_onQ2!O1zd!byPfZZ2=jo{RF-hoEocFW>I_%3(n61NPHtdKR`?X{<)4Vp7 z)shcUcQiBXey~R%mGHC-K^l|0yCrpuK+N`eW21*AEqzw(2|}(sAz&ME<(1j>Eh~4u)MQFnXhf!vvjgZ-`0D=sdM2%iLtH#s^P7I-zT7xEmVTCC@ zp%VITYm>Jg$>ZL{_W#@RweFKIk*{|S`BM3M8fCvgzG{HJNWPvxtw+e$_x5@M5W%05 zuRD)YC=4K9#Wm5mUA%dW;@P`o6sLQyCA<$><=xa35ue8YkIU~fqaOh8ikj$g#zLGkkZmdyLS7XGa2YAxvppXR|c1Hmuw;6EG)eu4)_ zz^NYetN)Om>*1LL!8dvEVFSTm^58pEZygGC^U<%NC%lZyC1d8wTt|D&dJp&q8(8WV z?lq@+z(;N1NDp{{3#`ABDs!~$HNTbvOa)Nsl?dbj69J6%0J|@CNKtt+?Hphj z91s)^NR?xS!zt$K^K7;j4i=%;DqaLn-u372Z}$wy-+v+bi~0NC>GMCu-{J+&P55KM z>%Zsk&uVj{|Njzy|J-Zg&jaz#eI7hB5PX^k|KULJ3p{viAovL${LF#ihgeZNGkn-U z@J$~4%lZ31y^Kfl_mdv*NdCUZ10KoW(_G-;{C!~#a2S7Aq!1@^x1R&4Ufatca-L{_j#b@>NBON&J|yTqt8^r*CgQx zeKyod)tRoIjuL->=%~-f9;Tz3l)9F=jdp7IIM=;(XeCX0>!_qq8_1E#*r3#sSfoK$ z?~Gk6h}#OvHL7PwZaP)rJntB6f7{CX8qjd1k7#J~YSp<7<_!*hg3z=Z5H-HT)&q-d zOxJxRn3lyA!spLbkEbg-qz!xNw90<{l!vUS#T{iY!4_1=UQCoVZj^?}ErleB*Ef0l zgje&_D#(=?b_cCE^{rNwJYO-=&ME8llSp#QGjvhZI?H2ssV7zE>bvP|sc%Zf9d4&L zL|JrBHNPvvLi#bgF8QOG za78$pk(D8}Oi9NproRHrXWU;=Axu*#3!1TNJz?8NiO(@8P(QxJ=hzc0-*_p~lE0&o z#OK9Yayq=8_U7TVZK$X_3bB$gLN zYCf%h$IYV%e|KIXMfe-@5)|R5kRUCgm7SInuldbyODb(#1Zp+2D=M_q>-G{v=0U$D zi06MRUc6OJjwggtITCHM`z<6oMLGv58swQbF&y4j69R_LBMm+n-TciNN08@N_yi6k z&toLHT~Hmnj|7)ITIwS~KXXlyn`MJJtsi`a4aahF>3u;z`0s7_P!E1WKlnp79OKF@ ze~1OS*M6N1AK}3_^@Cqz!?C~I@-Ov+pJKyL^x!}52Ong^%RTsg{oo(ri({2l0gGs< zH_2?hNeWKBqAlo<%t^&EcDX@&pAljh+(GmBdV%6=;cpo<8O-PHtOE?5X^Eq;KVN?& zYx4el-9?hfTh(#pL)u`zN}5Nz)4W?Xu z#kr~kGN}LQi%~!8NYqb167`V^^(57}I?usB%Yxp+{|9XGdH7G~OZ<pD{L<-te(_hkx{&6RPeRdGHcXY<@( zJ&aQidm>l~2BJP(ug_#bNUSG8pXYhcn3T6qcHJJpp=ibHzMcWc}P zdtq$8PC__+J#M;9+T#=Hd2QxCmd+v#loIW|JQIJVC?sp=Uy~K9ax81-=R6#Ny1WPbJQ$kkp(v9u!C4mlOk zYmW1ve|Dfb1<`9B??LA~(42bcH9y5GqXwzIUTV!LhF)_^4l+$3IhD|BuFOF~0?8?Z zUh}ye-j+C6q|JX8fbmwHwyQbunSU`K z>=y6Zv^S)kR_oiVUAKOZHhgsa2GZISpA{^|(h~Rw0*@5|-wgbwlK2D?I}@K3E*6I5 zeTQVYs)P*N$Z&gU{6rF)7h{%r)em*5|L(||ZCdhEc*5ukXD-QxjBQmt;mo8@LseF& z#ViOV4iwa8rur|;oc9aL`?QB{CGX{#Sx>5#F3X(vb|}$Z7$WwAR&O6#5qcH4@0C)? zJ8iRe%y#X%H?`|t3u#ry@&BSy?V$=X)Jmw(!{kBS_~Tddw;*0A6-;N~Ull^UQm$%P ztsP_0QSG|7C|y_1pR31)5^bunqBFE<>$PKgwCh%D*L?_R=xzL&bz3RBcBO8n5oB7X z9b-aG?Yh4MKT$G8?M$^bhqQ+l&`>mURcSO+Th5N)SV5!W49XX2)0WFe^o&wfL5Fnc zx_9XlHH^5;#%cO(rP_5W+w?QaCuvnvt}fN4Iao{KDQAoYoggg%EV^2owh?N8G+z}L z*_iVhzNnPHLoegctjkKZhiAi({@$9s@f&66qBA$ttdfDvg#3FaX{UvM@hQV+?zvDK zKKuQ?cnHv@=*;d!O95}4HOnN=^xsLIF3B_Hrx?nbHsw8Mv)9{y4_f5suP$_FOd=-TAuF{8tjv zF`qbFhhkP_uI;BWVww0aiV|A~n|F}SQ5YYhy{y5c~}fK4~EMa~}Nb1Hm8n z;DrOhZ}Z?=4~jK&7=D*|@Ky(|D726dS7E4*oa|-%H_4c{r06wEJm3R1Fi%~GzsDJb z88$FaTfE@`C)vO}h4D8Jc!~|o(-{jqV890Esg1cFaJ$<5z9vs|T;~DT2r$ux_Smnb zhB8^LS4cU`PAc2*mRc%oT&MVcSU%rlCpip13WirZcKKZYPqX~OuO7zoFDQ?VXadJh z`Yj3RS`~6S3LG<2bK@iX)3MC`Hp@RiHiz1K*gLmvq))Zvhq96Wzh!x41D)Wt&_tz2 z*hq))y*L=$F%W!{2cJ9;{3Q=Qb|CoAJ$UIr@cTUY?)?McH_d~0IPe&Y!(=NTF3YQq zp5tZwgJi^t$g`0~cu>QE<}v*~d^ZjeZgrq}T)*Cf#vEuK+b{8;XFJe5zJJ<-4tJn= zjQ^kq-Mi1mIgj&ac+j^5s_Z7##S#r`wUT15&#X>aSoT{h6c@j#m|xtDIic@u`@_93 zKLH5;Ec1`am-mZLIE?uh;eE*odl9pLAR&yvuN8@ZJcx#l5cw|ulhft@e+d8ABl16o z|M~b|^FN-XUh@R6g(fPEBv#}^zJecO73lK+K=4f-eDXl>mpu5`f#5&);H3k>@AKfh zWoPz6*xg+vdk>c&I^<#V- zpYNRa2R+7t=1qcm9`uvlHqLpo;Cmi) zoj~1Xvl9QyNx_@-@Efi-D}hBr)Vdsek!U>*M0~G_GY&)HNj=erkrb{dkKesm#eSS^ zk(eG9lngzrZ+RcjyUJs3lmuCo%U%T$C-#n(Ia8I1N~}t&xk43EF}}qI=TplIB&fP| zqqtWRW}DPvtXJ`ctsDrLb-dKSARm*7hlulL+BY7cZBD%;XY19V8sG>;?JcT*X$qtS2ArlR%v1m^n&Li41}i zMr*u^gBqGzFB$8zBUU7O{Pp{w=6u0}#;4t2&Ei#d@~b!X6d0|UEB$(6{5pEjQQzCM zEH9oZU3|%X>Ojb#y=v#bt@s;!BVT+yN$EoFJV}saKf46WMd$qH{WG6BovtH_$`uW2 zTH{~Q_jl>WN$*OI#PXoMcR{?L&R$V@w(KpA{zchN;`LEpjW*}GB3rhKZ^<>*cr9D@ zq2xPv79V@`MRb9GsQT)U_3F2E<8!@wr#@zdUh`g@aow%&@6e6&r%8)O@vOrd&W+Ea z*RL<{ta}r}EIrpjyl16H->V?7I+1aQ1j=THMSoPtQH;9@LZLnYavSov$n#{1#M+>r} z_{f%>{`W%P5~)NT8~F!c=FdK)qIB&@D*GYrfD)`$T)?Y!4}?`5D*Tx^SQ!6GsxyA< zBGt5TZ;rpsY1m+1y6h+09Nl^xCuGJI#0Rzc#PO0iSP(y!6EpE(E;AdvGX5u3ZIHIl z|C&7TO}wwC3+0$g0rNnGBkir*o>026l3Km-lW!Yh|5f;n z)0z5H)fty5M6N>m8RB5RSq+GJg^(pPtY8?dmeFT~7M%e8>S&R9$_GNRI0t*qP?_`@ z=*5V!+q`ir4tE`BlbUs2`+3pUQ}vl={_O!eDQ9ce5io%7~W#8)gV@|#(8pu$CLiaI{Jo7+@ z>bYx;9;A6lu({B0(2or6H;T-8$NDBDN*pYyzeQU(oE}Gv&Pd}bAzZREqUoJ_)v`-6 zMFk-xS=7!Br7x$n^$!};Ud$^)p*oJ*<`)u)<`z0$3N=f=GsAu#0K>N04jCi!CwRcp zPCc=}p2MoZZpl^gHaV>aq>93mek#f!Gi-SYkMtzQbW%xra)}uxi_8-mFvs!k$~2L- zY5xQcDmKrZIU&R2uKOln1VQ3qkXUisFN_4BAxSzu2(b?U~lc%02b zMdtVm3YhK8)fx0nAiA|Ve&d9Hk>Wv$3th~sb0|H+r--6^6+qCj#EYHdj|uGWHOJc~ zJSLB?=JZ6XlGipa0V*>;V5#IZ>*Cn^uHA2N)KXKaG_TBCz-Y=(s=ewF8rX1!;0rc< zGh=3_B1?Scuk2L&ux*kQP8WB~6)9PNvYy%zFK1An9V|+IA*qnv zXWq*YNtZ{sy(xFBC9&7gmw&uRIHc@1$@O>u}5h(j?#khDWH%oyZJRNg=>Ux(qzvEf}c9?uBV5i zO}e;TORgcCVpZ*7p^jo#Eg?H4ie=;H%nd45jaMl)tq;2_deJ+eqgb@uX3=<+!=B0r zghM$fukcg+pe55%r{anCkTTcY4aJ}+HsS`ASI>4k`oQ7m6!{%~j{nK#iLt+#~nS5P5Uk^LSmmvFReTI)1>%WOWw%4;%O~)Kd&xdKj>5y*QrKJeh-kt z*Vehbx@@vNsuE>s0`* zAaS1V-2x2qW*976*0W3m(Miwqfx{|(E(iLXTP1120U%B3A##zxitO7k%h51PJb=`K zv3g|{Gp&>&_3u#ElTw^HB%G{gPd=I&Z2e(hWl)|jo<`j0jmf2E&jwZb{VM0@RNnKZo}LVh3nI!cBDLq8+s2|{ui#fJJ_bYZIi+lm+QkblT0=Pg^-(F}G!x9OKI{tfA1 zahz(jt$044BF1bgV&4yYij-{G5b5HkCiCZrDk}~T+YG1A42{?QE!EA9HF8x^ykKu@ zb#qWGyh2K#mFGKRF$we$T-v> z6mex`I2{}ssp*IsEptl>bNSVr3te*zZ|4T{3>t?Wx3Fr=tDf}|`aX)k06U;oR*0+WLXG1< zi9>cPL8-EpUYdV^A82TMWM*(Y2t}(}BL3!(_TuD0{0WZ063K*pBjc|pwt>iqCm>Qs zr6Ui8R?(W4sIhELiD-zLwR29)(TWz`W?XxKwXT;G7J`XCqwIX}lW`Pkp>UJ|(I9*z z^eM5?Glf3di{a8iDuX?~PXGRa`SZp7YlDZ}{@Fd#ou0MZJ?nIaAHTuM%6-98%MnYM zqF>Xc$Bewr$eVe+@%U+={y^^=!Kb>@q4f~lBu<|&;abdb3Y~~n+u;Jd`kelpEaeeh zx#7w$--iY1cIQimtGfSi+4jW%|$2WUQo* z7xd?+4dyjD1TP&Q^>0WwHZhW5yh(fU3Rru}aCh3R%1yf|tKcYF3a2lDpH@bVcKGQM z_-Uo^(=z5>XZ_Z^5pek_>R(@fY|lq9gWbQ7OqN9Rh_uc!seUl#3**?v>S^AG;j}(9 z=I88~&G@!F*|fFaa=+<{$@&Dj(@H!@Bj=3L8!h#f2>A3f)tiFO{aCMR(Mg*+{IEY%(}mLc<_#-{pMgys3eA3%{9%5InvgVmjp{d-YVWMNe= zugsEW^-@$J2UJVywA+g+n9a*em7dGprxU4Z*B+J-mYDWROC+&-B3%s|ty&WM+7~uj zmIir7jrSv6nQ!&BcuP0-G|&=WD9qrCyl+^To>aHf zKXr=^_|6$7nPN3v+QTQ2vASK6z#7hb9rvM-SzVxFkB?(tjMURVfS_m|MNlkZaE%x} z5d)d_zHYo1H98?){aAb-cTbDb4`UVNQzBsmk>vRl94SVHyS~?J{ysORYp?u6PwbnR z+E;%$3EGd>3DH3Cp}+IO6c_iA&0k`mxMQZqheP0M%=Ss6`}g%c1|~g^=J-*cx#FcD zl|c5Y)=1Y@OlUd2xGIE0vdfgg_!yc77zNhZE9JX8X0!;IEyf|RGSbxz=_1BjH3Dnp zS|MZYoWb?OBQ?!;4b`jqqN6sFLVBcXcVtw%s$B2d5;oQ{gwzrZEVKF$ppLv2I#q4d zM_Hh4eGQU3cAWd@cYY$V{bsF79aC5d{}t2`NK`_UP(?YROBG|a=caQgVkvd-4|=JK zYVg98NAY;!;o+EkOjy1>(qc`FjM*JAve7a7F3Ftu8uWmw9eRs3Hqv5F&|5w#jI`{U z5DB2W_C{KEPSjg^#)hzGh z^M@m`I(Tc>UfdL_+CaFNPkUTW01zCcrLbwyBYXA0AuaVZ8LKx%8V_ca450WkD;R_H<3!WqK%t%rb zI#RPrn}4gFF&x?L$y^MBEbafwYD^q3Id1Zlfis)8GNrT z>=f<`Y?PB$fw#5P_i<`4ytUPxm|!x(NZK5+RCnUi9ek!af}Rbt=nlR2XZ4nCg^@8U z87;<#(TcQm4^u;=Gi1oY6~}s+;SSnPt&qx zY;;UZL@hL!N)3^gtrMdGBwM_qoE9U24&A9MJ1;V(BNkYn+N4g$Fe}NTr5*xNt!k`R zDU&s^{AQ7Gwj-0%=FE%DYF@k(N_@(^I0~MTd6E39AnDG8Nzm9use~z_nCH{D_V~92 z5coW(J=s>hFQ_fd>i&a~;fJ%ri>Um5w7W|&qfLSRSw*+Ci7kG8t)&N02`!PeCUl#~ z2h)x@XQiou`y8+cv=j%l@S+}s2_w zbw)iYtnYTK$Oo16!~y@PP5ZkNt%cU7RI8;VBsG$`jytS2h^QeyS+x02z=$FmQeQ_# z$oc9(7eYi!)v=u*q9oY`(edST>Q1$5;}^}0I7Z|#A}_RW*`UiZLqqX1MTCg(P*TJd zA;OQY2&v&+rq0pQZ-*~R!M1(hvcX#FOgzkRt}B&NeUM~dYkB<;_Gn`zTFT@bwzhsL zK0jl>9$2F#m&@4NH8t?&vX&3Ff(X_%(sQx5wA6L98OdDY&+Gf+-=Oc2m#Bh&B{*DJ zW3JV!4n#)v#!?%!tP%@V%O*=tLL z!K71()s@!QDcYZPqoi0tH8@H7FO0|J(BMc8MrN%#At*DkWDMK#>K@H0}V!T~jg(4E;(^XU(7@=6;plByY#C-(ZuX+1|1*slVw|A2DUolJ_SNJQ+S#AF8}^osN-V(e3@_rtJZ zMY=vx3K-REDb@SAQoVBh%abi&sxk;@ujh`cY8xPsUd|W0kD|Vv=*&0E%B2pv9 z#%N#_@>RIhm9A$JY-jgh1ev{O6lrvZiOJ?6p^ahQwk z7?;1Gh;={B^y9D8i;&iq&{}G~^u_Ji&G1^TWAtMtg0|PGc?>`R}$ArCA4sHjNRAjQL)wCt+VZu!7G4KV+Y!N7 z9EC6^C9#>eaNJ?5U#5wt$BrawBGsav!-oc_vag(19pi#e(sPchC* zVi;K|#al@k0*`>NfMC8@c*hY7m>~1tlUmdynn|vZTGP5>f$78Q6|sO7%Oqj}Ws8N) zUnmy*osr>6Ce%PNrOC&`&XFYwAJm=55NKU>Kp)i`O|8YuWuWuaT~6a$zlIb-Nb4nG zY}b!#4D%inip_gC-^qk$jA|H*buD&A4wOZ|a zQLT1`uGPMcLuxxbi}7REp*_)RZInPoyC-V&wbYf&TG^xz9Mn?d>1nO8*UpaIu!Y0# zDU+L@A#{ffRoAw|bq6b3hb+Q7$ZiC;b)l-=UaEZ;1dphlNqiCYyJp2928-h4(zF{dtV zajWc}hlH0Fy9Tyx0jUZdTN{&l93gfNjZ^EeTkM%^<7j0GKg6Jg!jdeVXSZFUFC<_z zMW<~f6FlLx5A&qnP@5}S7$=6}>C|X3i0n#~&ULDPMxq;?IgqNSNA?Q5{%=PTEstD3 z@Jc!Sc2Mjuhu;oCLc4mK)5c2|@7+qb z!knIwk)!BB^7j0WF4_m!B8im_H`>;-A}LOJo8c$ylCj4Xv&y;xeq7AbjJ=v=dB*lZ zbSeX6Gl;b3ae}Zxm&9AT0_`-)*%_IPi-Fi|ynr`%a5m*h`+t?Pf}S$#6+$3p{c&eL zH5>*SBTEUl=>x)q?o#avYVnBY;5nw(%j;&WBx6{V5SkZVi4GMt$?A(KhJhNg7hxfH z6}D66r>i8F@gXt#sVK-<=kTZhdFaIUd&D0$LpT2Z1^%$La?O?&R#enDMU8(c|(uHg{iKuO;7yzw0Js=V{5e7$J87#x3C@+Z%hb z6S0N^@8XfIZjMOUR!h$W@iypW7C<#YFC1!+xX7`t!$25_72hiH!J!_wO5-ESE1w#E zhy!)0cH9HKTCxafQrCDu+HMy?JETPj)<_f%UA>$)GM6tF7L_ z$f$0R#0~T+5+|oWqPP*uC0b0689h;B9qNfgZl{u!Hx9XdPMn6QEFv=C>gr~eW>gn7 z4(8U2?s(+Eo1s@^Bgm>D=@?&;@@ar&Q>^#}fcEqNOy@Rqge`0n+eMKgLY zuEX)#{IF=V%oW7uy`_A)TNh7&JmD(bbUT#W3o{2+=+ujMF*G?gP^VULHM4Blh0tX^ zvRPRkzooDOivRD+m>;uI!AE^rr5^D-r+cYi{d?QustY*QF z@v7dZREqUi?^`&*dPcrgG)*3lKsMo#V}Ysl5PKMlxG%safb1;i*-=Fx{Z|y)w z$Ba)G$$-0zv4w?_CD&@eVqwOh=3VXKo2iwnSZelYiR*>=iGRkMPrw#7Z5;`THAOv3 z?EKJ5`5K(b*&r2nss>v8IJdC)>$W}8&~H-VUzO7K_Oc!(G_U*r{VCCZA{7P%Z6 zHkJv;jcM(9F311KkLmd;N>d&!*ZetJjQ4~7kaE?y#(>W^s(F7$U2%3^suSC80~unY z*kI~Rtf>qoKJe#QS`kewa+foRT#Jpdr-7OzGB1!4AK3GuYe-P3N3@>x=c8mN|2f3D&=XzqcLadFT>eZGK^&FfytmR@34*x3r|}g|hjA4pbc@ z8V2v$3UQ1}-`<)toR}3^Pw`%VRc*2}J~?KriD3a{?i3HJFE)HvtmZ(>=$oTyDY@P@ zRDS-HGOFp*9(tA+ z`o)c_jKk+q{{h_5)=!lHbCqTT%^W$etScGofoI+-VP#_vSXyTZL%9AP=;M$BE{|8E z(}f}@`(_X?<|`LRrqE-8^vk}EO5(K2NFuw^cW|;DG%6D(vByuRLTdj*x^C>Qt!hyo zEf%osg0LMTKDB6|Ls&Mok3=6VcTy2Rc!}k$H4(@BSJ<8YPQGSbr#2Rid_`q-d9ZM4-YOQCuB%b6AlJe$5 zjavL$&#I&#mM<;9bsdqa=18KC{evVJMFa1}PaA-C_mbJ69e42&B4BTm*_b&9pvf)) z1y`RNdlFmlhjMR4vWYf{QDld$%V#AN0^Aw$sVfebxN_AMhq2TL$it12#TJOxHu^bm z2@#(vf7s1$y+Yr<=Cim&?I}G?96X7> zi4TTD8NHdAhu5lW8!4{4k%)(Im25*2bQ9R4J=x5BQ)FiQ# zc00L=ZCJ+2ML`?;rTm@<-~E+FCm1!{)Ou1 zak#kdVb;Y`%?cwe^#i^LcnfTTq}KI($ZPUGUh?a0jX!JML>fT|p{wl(nlB=$yI&(R zMp2IFHbvFxLRDgH*hCkqE>l#E2@$Qa4&{vI2>XAEs5xTm4i#^5I;rcb9 ztlk$5ye%#_dK9lGT9t^fK70$!dSWGEM(U6XKNA47o*35m*sG6Ym@JFmf`F22iS7bj z1thsSvB$}^F8&jnj=%gGZMDf^04A}UhkzDwR3zt;+VghAcrO-sqdviYeElC)u&JDk zk>4h;?cbV~c~9J56{}e_H%$O!q-N9IB}oGIg~TMz(MY*#WwJTG+|kcAVuHVQ0eSv; zdMg(GGGcp_hU{=~WQ^i);b4b%U1I;pVMXUcXox*d5nDEJ*s5RHY?B-{CO0%e_A>?~ zyYQ<-94usEuLc0RwaEZ<#P9i{0kG-Mt}%VL$Kd!e@G?3I>&F`b28rJt`+hFdKgyj< zJs717$O^e;BggJDpI2C8u0ve&qk&!9U@T@T?%^kC5MAD97}Sj=_T<{)lbjkJueE)~ZMb zQ+c`AmIFiLHu^G?64%;)(D&bG=0Z!XNKwu9EK`85E zxy%oIN#n!?$!W%%V2l}WN5^!claO?~WU;Y_DNIb^$Lz%bk`-qiKY>6TDi_~m1(i@^ zR&Z(MJ>N^Q84ro_Qn39d)1M$A@lo(4A#y)$4jC&DM9Q0xDO<>0D7DocQU6X_Y>sAb zV;`mMvYF$TMEwV|T;*^3C>r1j)u$4=fCi9gGU<^p3*E8KU`QgyAr*s0vh*y-&=+W_ z6(9#87mI+VAPy*}tXgfs>&n&O$udV6vi?H(6ARKth=>HO;e^2Zw{;@1E&8jp#y_G% z#^gT45wV)@NMIB9s`m3lJd1DsOFa>e{J^CmtR5F~iv9Jtl+#|>E%9*rOilq`%@0)^ zWTig~0C#g0#<-$OtkiC`+OJ~Yn9xDI5(MC|@>;8B9&#NL<(4=5qGS-axI}xE|2ioppAJx)o=z^lGu0Ba(So@TT1Yy$V*bI>1uwUAdg_ z-z1oYNv);MX2s3OR=4Md)v5rm+dk{X1+ zUdO_S8Sf|-bbTB_Aw{HR``MAiCqzeKpZ}g*p8YAaT(|BN+?9S1I@%jR%17X9kgD4i zV_LV8%jRDxHC7hvLF*eNN{H-8{q)aQ&NdL5VWR zjS^Enlw9G7Z+kme)~7NLa{MMe$zP2|VIHR!{1%EF-Ef>kIf*-}eLup!1@BO^tcJ)D z8%207QH!tR9_sez1WlfM$dUPQ#u!_4Il)3AtVB$S6jdQ@ITAxGvCbcM(h1da8a&_{cPHH9sW5-Wn%Eu`i8pSir% zo?Zwf#Iw<6o!f6dAj;UySN@!6=H8(74u$nsnL~&9-oVfL6@&%putYq!TkEBsCe{cp z1#|v{QSFL;Sbb3~yk2rZLF;817S@NzP+2O&FZQxU{hU@V{zpq4q-o(on8Wrb9L|Ul zj}gDdt5hi7a`MalM)(u#MPOpLpV0~}2~r<%OV zDYME}m)2jDG}&pzA*PZ?YF!}uxeAGW5cj~ZDHRKBh@UkuHnNfBVw2=uu(_6}T|Z6Z zr0DkJr>&(W=p!BzHHTc*^ZEAUk7mZf@oL0s*GKkmu#Q&Q#eM|yO0csoW&H9`cdNFx z0|eEH+T%^+P~lS>StoaGBQY2swzxsje|;4+?~W3UfuIs9#{z4G%7h1l?LhM8XwsdT z`XN=wFiVo_nvod%ob1@590Eu+!S*}kQYuIUh+OR@-IDcpw<0!lwb%MegE_F|a$r4J zHXu-B>q=3Et{uP<>oB{Y;Ia1I9tP`=;CFod>LIYJNXJGH)9p3|v1>i3^Q(rig zFj-l`TG!i|wd7^IRCo5+$9fq$MfJZ)Ywj%hEgx>z1)BV+Al&UHfp`wi+%tx5n+51b+mN57Z9NuE&5@A?tbYXJuVNoyPJTYTC>4fu0DE#&bu|S8il9hsx zkPg}B(_ZALMptZ%s)5Z}a&9hE5%ICW>x94S?#}G{=&cAoMlTXx_8U}iJW+LMKo!d? z;gP~|QDbW~z%REfr4*W6%xZCBZe&NzvnSM#`mBfJ(E1@`Z+>w6JEY1+tG%O|7aadA zHj?X)yq|a3QT+>EOZ<{2vZ@4a6~M?oO&ZZ z+WINwTz{e4traRBnQrq>;+rFZ*X@|YiC}2Q9EK%0{-q!pV)A=lJMv==b=h?z{_w*{ zfL$R8pO)bGRm$?+9y2yat2$$&R(f4fAsTXC)@2GWK7J|q=Hlb8AU<9~+@B&*BzAs$ zJf<}c;k7YzCD!%KReH@DZT>VnW7UB$*RXP9EoG-l50oBo!{e7J;lCAOsLWkN6V^H5 z@hxsp)RE!wGZFC&a5b*3X4x@6B0ByqI>XU#e~#`U_{QCH%0D2(TKmvp5$@Z#+&4+lPTo}@Qh-4%gC#c4M9OkKzDt{{s-NNW-ez( zwB51#RCxT`R4BqBWl`KcV=;wm4Tvy^2KY74521X_=vEhqth0l8@YnqF@$qx$jw?mP zB$8c?ukv(9#EXv~#xJ|k0YyH1Nkb(z{!|qk&vgmj_+{0c{1XP?s|>eKg;_VTmz>PE zCo!Xx>*sl41bZ*5f$19Pu%41^O?JGz4n6XS@%Y^k!wuJPg zRP|PDR0~wGc2Qx!c=_G5>DoFUDe~^~;^n&lE|z75>ov%Zj7cuKa3*$ zX#IroRs4cY%#94GpBx9Fn`EbYAh9~bKspq|Z@$h=p8i|KLgzn6bhmV7`8xtV$ z@HKq1S!K@!LdM&zUh2x(=Waaw^PFK22T8eg8>o5u#c`1c(g`BsPZd0Ek!`a~>KalU zPEB5{Bn}VxgZ2tn1f-y*zxlJF7riz$)|YB#mmcn z!73+yF}Gj9WPtn8NX7XSa-VL9k&AL~K`sNf8x0FDfn@3QBp&Lux` z#EV_kb=LWwy%goZRbaK2ngvQ2HBp8-f4M-6@-iG_L?m@qBZlmF`3So$E`KS}l;pPs zU9sv6>wnq9>P}m6>D(fjoQ@W;yx?@)y&yuCml${YiDn$4>TcAI!I={}kIWK-%iQqoSuKBm=L^|BeYYER4HNP92ny~+g*Hl!M&kFa z`AhjyjYyEDl0l_b5xG2$?crB`c?F?N##)KGsvkz_?`F>SGW|R zSn0T$CWUi$lsy~XR0U9Qv4=HQ2c6eAsR`z&9R8#tDZtQE>^RC z?kQ2jk^vOXgWK?ok*cLO3MFfBajw@MlC!i9x48lSk$@~A8FDpff}8anFmuf=t~V!Y z-jV78b#pS^z8>Ai2vsB1};EExi-%s2*&lpIdNo2x@ysGhDv?bZX(U?S;vn% zIJ3@XCjVQp;fyhQbDMQY;)nAm+{G9Ya7j+7(P$*~y7Dp+LC+3^mbx9B1{^Qze%fTv zE`<|aMwg=kZfzV?vGtUk#J&;Id22D5(So+UxR8Nl-LBBJE+jmfHG$ot3iMVif-`Hc z-yL~jsVqkaa&(hOOm`u1rc4ZbM?r~dvBau7^GNlYSJGj!{W-F0sc(rWa0HIxu)AQ8 z2%FOGaVsZ=Uy_L7=Qx?ZpS$#G`>Z{13cu^FV)$G^vZwp=j3GVK*@SvK1Y|2R?U_KakXT65I&+6u0y)q#dn#`0W=op&YG1Y5A#T3AMa zZXH90{6hiuih{@p5Vy^jN2Mon>7&g>Z5$|2+yb|&8ENCTiexxT@OK0VXsgO>c;^n; z&|1%#LhDp2bbZN1j=&OZBB?hWHrz%PT52v;D)Z0!A#Yv@yT^x>&{8^?de(UH|9ido z|LUx4NF5gbFNa`q;s2d{sPO+EfTuN?KTYiaZ6Ar#gbgY!*)8KuICN;yw}ZT~s}QPM zx%hV8V>5|?Zzm2NFY%+~T6{K%tP$9(CZq@N3o_ibaVR;4gT!WWcKq`-=zKdLazn&2`6gz)gcziv3atvXy-Lx4z4p?E|I%cThFKM*Ki}6<6hCgSR$BZt=flZb+@zjlAG)ulBrki3lf5)AtyHBYHkaE~ zT|LUKy~86&xf zw=!FHigcLJq@euy&{);y^)DTg`b*sU^ZncDP?5T8_^p_+96!jj z<@Mi_8+Yz4Z#)Qn$HZqv(veE_{xxysP1e)K&xC}$kBy`Q@*KB#*U~?~rv^s;5I*vA za;P%p@hk07%e$YVwJDMg;V8d?>-m}0k)Ay}h~JWzpKjtVYe9wUFr-X+uwsGif{JF6xs)xQ;MQF&$<>}dvx6z> zu21#!#oVne<+;`YE;(Scj?|-Cqo(XNr3%>dYub}v0v4>)9-PV>HD=3|H-o*lwB)hO zpG4oF`UMJTBeVp&-oBYImy_Va+sP>`tE+2~<<4*8_K_k1f~vn4SL((!U^0ognTvvL zlSX2r(aT#&zLKriSq_%jvWhv}ttt2UNM%s-*2-w+(sKLKTN_syLMq|_hqOkG*|Ifv zQfNoN_2D%zSUC#;HB|V3Gxv^E|SbJ#PUYwR{3{fv|t|pIluq@h%9;FVhFEi{-l0X8P;2TET#AjmTruf(cHGhWfoHH z2~wA_3o$uXTHtw}ST{U%n;g?CCd<{O=}9Bymo)zhQ0K@j%rcdZ?D>?1ob2PXU>Ci^Bdy zdUlOai2D?Xh;b;Rh|-tQgVoJ8S;PfpTu~Y`LSw&cji+S4`^J$6GK0AzZk5e?+3vlq z-hAyB@71{d9*1tvE57EIz=}H}#u}SK(D50%uEI9`xhcg61SHt4o?b{(5C!J>K#-G&BqR9`9{FMTF`Z4wEpxn3oGs%;l z@M|7D*SY&I83u)ms_~JhllISu(xze|84gAt)|MG0UzJ%xOb7s*1Z!I%bw}vsZvC=y zuaF2@Fc_j|t}J2PicF!Z0tDNf>o-L8v#@8EcZJ6aaMp5W3-2m|1O|KZYM=O;noLD|% z8uH!_2=VpJ>uDE$<6LkHb;>5;l*ZO`;eRd_%I?axY#kBkl7^fna`$aI?YqfIx5C}? zta=d_iS1MA-doq&-3#V*?|V4&o$eLSolEz2|0S<`&iLXYZRF=3hx(f5<(+?G*Z9}D z!Qw@YhYUn;!%ifIpsTK|Bp@kMe75vLhGrAL=W6~MZqE%*1pFrtfWP)46=Z%Q23;MP zPZf0KWpc~5Qh9!dgs{9!aT2a(@CMg4MwvGan`T3AWBsNJ?7@=p3B4pPpe4QraVwyx z@$%M%8P%y$$JKSBHu(-$e22f$iYYyR!+k0FLW_OPn4;?ZwQ66oN~Und6qWUA{(@gm z117gq=E%Awt6TSE>pP4u{#v`BbJ<%zd4es$wBj_YmXteK&0RkhU0F=j7qy(BJ>J7G z$&L4A7d=ACx7`|d)~#~ASfHwjzjQc2N;s<-ByZ><_o7 zD|Kfw1x83FiJA>#9H7&PjmP|0k{xZ6q6}(sEAiDY6!_AFoW$#?XYn!RerR8Orz*M) z`)an_`CAwd!wdD_;-@tQcbih2;VOITPtwEz^Qi{xwa54+j;Bem>L3{Q5%-PXE1whj zG;gAVi-nx#TjW)TPR+ffnO_w&GG)7@CVn!5OTx`UN&g0a(7T7*3&N-DX$Vuotfo$7 z@S(53{Jp%1s$XHAn@ju&Z`wkBZB63ATEmz-XC&L@*JoutRCl2<^fIDO{1<8qqr-g3 z_WB($;t>~W%##a^5l2&q%wNsPE6IPUlYb~@qw9B)9m_=yZ}kE!8e)#ZEa1b8C}iZq zaK%Gb7v!8^Y9FjVtYv%+N=A zj5AfbwG6#}k+`%3khlW6=(etEYjC0#dz4+?Ap_aT^{ku5s&vJqg_ z^M90l?;n4UA-yhYye7-B@$&mnqP+e5B)a+hU24BPycD|OB{gTAX6^m#bkEg}M`6`IdFglQ+^?DfVNzAR<>V35m9`!F2**9rq zLH$Iz{dwQrB9B8xo0gP)V00D}X2Yvuv73+1B!LF4V=2;Pw6q*3Mr@{|>5l=UINHy%J80Oza-bIfkTMUPp+2 zeMvZd-$;Jx+;7Jx(tf$Lf0WZcLn8gQSSjbtZ)s;-4*Qfu{5Y7@5=5OfU;n<1efsL6 znq~8@OJ7}5v+RNUbg0oxJ+MJ_7K)B<^ZmQD^~(oDfPanGwn-!St2*8j4W}1)#OsV- zPY|Kn&{R#Rnjidq$mo!YLRHPRHLpEzkK2M%Pj$9U{SYvjYO%24EZkF@?Z{KJq#k-X z7zKpz=89V+nrAoMsrS<`bxmQ+<=i;7$2$`b4)xc+ZhaF{EBTbZtW?6K9zcACGIt;x zK4Axl2tVJ>SR)^(Y!4x=dG%PD>~#jVLw)yNL|)#qqa9yTMiXp zaBa!F?;C5G5^#8Y5+XU8363=M5zLSXQi$EZyUHRo5kdw@8zjuxg-9NAVY%%0IO9lfOetleE%Kp^2B(6)5ycYjfMkbWfg++OYCEp z!0Kd%NN1l~(xro?6i@Q0Ep5q6?noRAu=er!?*5h~X16;(GDQourR|w`r~@|iCtBIg za~oaCaU8vac<01{fcEf03MCGeJorZ9kT$O?Q}l!sn-c2iX%m!%#+EJ&Of6m&3rl3^ z9+IobT>dp!vPciyj@ms*eM7pxaI(MQ;8ZO+dpO;qqK1R_Xvy#L;mxlICu|%HB?pwr zQdykK^P7c2Lue_AqeTzBtWbJiT3#CSvCE#^T*w4@S5`yZ2*V|e>_&ILPlRKwmX!EB zYLLj)%L?H3z-BGgOPADdXPrn&qVKZ!NbT_w^?Hkz`~jY%MBi;%N{)=_nWq)Q!pkdu zBev@Xv-ozkfJt@>*qH&sc`{FQL~JvaJFLqRTSgt*5jG2!&?#e3!?!B6`$*;0sBJy4aS?w!m8dWS%48>2ijX$f}7^d-O zYRPE77_59Br_F!Y<}H!i ztQB8)MlN1@J)ACjL^v@88TM)~cP=^~a1}#U7N%8fRU4hKzd6x&zO=qd&)EE_{gQ~b zX8r%7?M>jLs?Ns$nJf?>;Ra1KxDhmHM$jfMEd!{zWCAldp(v=RsMNF+)LNAppjJX~ zW+c~fAhy3Zf7olK=NP_s(QM{r!IbjgRKu zIrps3dCs$)=R7B2ODnQ+7O zf=?)Bid5cz5*;7q=R{pUFnM_npT%eZSwSrt6)eE9bRTo$Q(78P{lYr~?$r|Yx|jOl z8vt7o)KfIW_>YasZ)@p8Gd!*veG#pF-9iHaz z5CWh8^6uj-YEAA->bsCkp&h#McAe+Ty4YUUjg)IVPs!g&bJcZ}v(tQhQ{{~#KKG|i z#zfwz;V@z&Nkt-HXK=cvK%sA|+neMF=YZ@ldEO-7W@?Gs8KtK)(!+qCr2lEgY8){? zxfPAXZZ6$LKq>T$&d-dsI;|7xnJV}qO+zHSo!XLv&>22Uicn8kPAZI-ZkWVcko^@M zo%wa(A(Y}Sm_@PAV4sv**x~y%hqip?V=J-#zW_NeMN@d8W_dqz67P(&i7GL$5$_@Z zxd^PR-V0_bvLm^MUE~xk_3~nk2g3yaL{TqeROo&*GYQF}2m^xAX8wG-Byv;8!N!54 z_>9lYecyAEK586Dgde(R{)Z&R;*Ll~SD@NN=9NHe+qK2F0=oF^#e^Q~tSzQ%)b^hF zI!(#Ckwv%xPQr>w|0hhA-;RxqLaKG(-zh7<|9rXKq6ktL-Zoudi7qJ*?iUhVe`uy0UNfiFL=s) z?v*FNzAHYlz-+xiV2c3(nWte~iR|Fb3#N?-M}H(a?Pbk{mgdhTGt;#ifZK&SxX-8r zDD@g1Iw=!>%$ZReDr!&2e3b5hcJ7q!*$Z=NepCQ~gb6Gs`4SanK6h&Pw2B&+Fn=IhcH$x z8m2M#5yVBCnP`hQE81?WM29|rcK_@uCSfAkkPmjl*0hJt!J&sa2r#-sn=_z9_Rwz5 zYx6@Ko&wStewOC_jHsM+5Q6PG@I+*QN-Iyf{MHCTYrY47(2F8lW#6+WSza(xBpFT_w*nG!{e{YH*CnkL0seKAj2$;0J0P2Xh>RbSpS2dflY z3q}QyD!g|UXo=zCY)73U&e&og_x?nP76N@u$^0STNT9XF_W@f-h);MHcUq?@ zuJCmcF>J;|JRjskP{C)(odv!29HB@MR=?*xYX+0%*aDO0lMoIld!`?MR)BUx{2u}g zZu95Y$~;+ST%Kvw{{8RTgqa*JW0iHQ-LskAM{K#m##jNP7JWwK%rzn}4@pb+AZtzI zsJi%FWpH&ZCeZ)`iAiTja`l?jDGof_@_g}IyM+(L8boa{%UOq!t|1FPVqzPIVhO_H zS)T|tmtpRX4?>JyyJ@#~wQda3mRv*uFhoXx>nr(yj^K|pVYE4*GMn)vOOM;Sk|Jp$ zVGUwMLR7j~5QEXX_Y(d6`lFF;#Rx+r5iDU9bu?3`Yy z5O3R_mBwfCn^n{ru_xTkQ?S5oT}~@9zx+@%Kn=o%&XXiLa4rZ$v zrY&r;mJ9gJOivepD5{pQm1UuFLYad6mNr<5<>o761p)dnqfe2Ph9T5Rs`0Ffe97Sii3UunV0C&})^CLRMoXYFhc@@BNBe(y zqIz`m3F=XFJ06y4iQrGDTX3UwloE-cm6@1O-jXd3r1`fa4{Se99o5SwfN>8$ z(rh=I+e(4sx$UDk=&l$>GJM>#Tlc=DExA_QtmCEkJ(}ZMhU)L~m~`4!=lu<l!SV0WYr(h9@qj^ z7mA|A{>YoPjz3ujwrNXj1KU#w%A$WPz+D-;o8M0ML+)Ft(rrf7_b|7a+N!xby$l>e zKqoW!=B$i|!B>5m*nO;i)GAWNAE0w0O*n;yQb=233G5Mp9WFsQ4oR@(gxG7mBciBf zY-&@4ZX>d=3)XH91r~I9v0Sg2#i7&FB{V$^H;)aOUK0QGE~(arqcxK@6h&8*d=Sa9 z8m+6O8@A}Vtds{+n)BP=~p(t=CE>=AloUKz};=8Vu8)?RAJ@Mn=9BJ;X2ue?LDh!A^4gg9x1 zNEDlP43Oj2qB)#Tj{e2C4ae8UBafV4r_15oUE`mh_ zyr#A+T=IFLgQ88RExP|<80lv8cum=}l)0CB1Q+k1cT!7e5pqBl{^&+cnRN}BveK+N zey5R%?XjJ8;KzO7U1kkiNjfF;|65R5nUjZJr*E=IgxF`#fjv9$Rhbd%CIFG$ke6vq z!->5FM3}@SW34Y(Nt6>63awFu(nBY`1&g!Fn~!V z&WcDcKxACj0$bEAWyab=TiDuDJJq572zIg;Mhy;#hDv42fkH5DZxM*a*$1*ItwZ9e z5q5sF)edKrx%eC6np08%+XBaXT`AOCmOpi6d~AuAYo-Z6X1qJU51s;S&S5tY(IGa0 z1>A5gAMvQEDGMfU;s1$j*-q;AH(bXK=NNWE-$wq@F~k8@tCij@5K?v_>l2UF=><{l|3UEvYErZJ)bZ%r2++Mo%sb zmFtPIZrj=7=L!!qt{L_{glVsf#Q`wk8@w*oDl>!fx>)2uC-p4*yL)ir&Ed|1_|>?4 z%9YAoqKK0jI}FL)<^9%&=cfrYK&dUjU+_HgsBnc%%&tmIQv{<;3PX8!UtZ&K4Retp z2u0?BBRGV~qY_ zM@_gOUR&Xrr2aMoFZCf{tW7oB_&_)&nIhw3@#Bd6q~uFx32!Li&)wo>L@o{8BDUCo z@ew4A(0$wXnVu-q;8__=)OB~(b(52+!Yxu5)I^L8pydQ$#PsF5#h;`XADdvv3Lk^i zX6ym@`m~#HxBG1Qg;ZjGkI&#&I=vTP)z@0SraD@j7R@{sfIrUY>yHEz_1(6IsyPuu zDeV_)FI;nEhH-6~F|NcK3EZ_8t}RP_CNrZ?ac;ma$DD7xuG}Cyg2p;M9w^in-w8-{ z_Rg1tdEsD}ZUhSBwZ)_)L~isXDRU+H)K!whWt!cd7SnXL4VM!II@l&F(;N>p0c~^(`QyiTpgLKMt7R?z6Ui;|3F4YK z1SkN!V*}t#W8a~@#y&>wX-ni??d=G^jDMHX5Ag6Z|4q5npL*Aagwa|uo;tLIoEUGx zrOKuQ%VoW2i^Weus^_L@K3n47AWKquWL8lZvm-i2jNgKQ7qCi+Z(Lzbkt&(*Z|MFP zNFEe*s6p`paeNeNz%9SRTmR51#bfhn?cmBjai%;PRqqUVnbU>g(uKcJkM&nl((_4Q ziGy}Gy_UcyvX0#QI8t%ke5uaMIbCR5m{@*fKJNPkQuAb~c?va)@73hv=$R^iu^K@Z zJ+pK&w}2jkwAMHPA>+@`uUx4wk1W!|@MJ~jiq*yN3PI@fa0NSU@dBO)R~BngiL0t6 zRf|e!Q)?)H0Gf3^9cGs3rOSHMPGiwMBk=!=s9H~E!9)3@&h&BOZmS2jD|=|o%@p(} z*Z~)rAgJ7!x8jZ<2dO40Jzd_|5J5grGK9R9n`4nyWgjkxz@snhk`n=;$rzsfoH;@& zFwYhO!RDhw?@va_K5jk8M#{j`#Kj~c7dkufzB|Vjvj7}teC2d)SGifLyaEK1V($*_ zEvC3^FaBO5?A~T_m2&c`iOPKO+lqbh8w%{$8_20_w$*8YReGfLRH56&vM)Fza&I{( z_6dmQZ@9TI(9r7hw)?euE-q?4OVQb6qoT7A^rm3q`xWIOZZcV;HBVrz>P;Um@EJFY zN3s^xNvJcnZ~{57{PoxDe@J!GOzPr*w>vakoSx5}5ov@z4e=XYLC-e-uaWjH$FB?v zydMV!WqhxpFF3K`$`?rBb3$ZViL-!m=y$jJJ;_M23h#Zrxq!pB;b$0A<9Db`JU2bt zJZ@F?(Cz-jE$)uK7X-Zjo_(QQPNcoUHtlETHk3%x!h5ocHJ+BKFv;hvFGx&@A3Up= zn10huX@5l^m!o&oxJOvRuepEQ;nU~YZ4OU82wzbA0mfjoDl)0N*IQkzBgLO0AJ+Jd zqqu>w$b@-z^etDCl_Q_{jLlgjJJv-b(kH)2aTDQ8r%SQK6wL-d>mP1o!+$;SPu!=u z9kJ5dulnaFcBdV?X_w_8rI$b29%Z@^iZ_@4aK;R@msWJBK*PR6mM}J$rg(bhz$Qay z>B}Ss^Nkzm;UPL^as7~)Jd)#C3$CQ%lShck9Ys}e`Mf(=mOib1hYktI@vdJm&7t_L zV_n%g{KjtMu+(8rltp|cLiz~SHDr|d!Q0D=1REl2>Wta~^8z$wpSz)u&n(nlBCc+U z7I@-#TU(fVDnno6`S(`f`Owu98Y;dD>XfT7d4wg==gsHX;(OM;LiC65$0-wS<)-;L zF7sJ-O=LIsRP7a4#H^AXfk)MDP5y<{#qoevIlCC8l*{#1dN=P5);;1-hTgGUUH=F4 z?rN-=C(=8)uO?0Ju4cA`IE}*gm7!@Z8G6QsyennM{k0TO)a-7tkx-ytRss7w!o1_@ zb0zTAqB;DPUZcctNsjU;qSw=fHcuCdTqAEY<;^ctTG8ur^D)e*((7rxRGRx+=nI># zU*2~&>_hjqE|_Jr$ql5_BT)y(m~Hh!IeGJWT0!R8Vy$^S-xG0!$nC}M zR7ZNgGw>EJV!g(9x=-gV9|*;Iuv<{@-;Z4+^_UX9w8g{t>=xX#WX1Np+QvBjZMzM-pqiMy)wreoeY+as;tksSR@GBnrrg#V4uuSF&HvatWf zVkA_DNeEipWit+K@lzybm`5(uYcoq$>9g7NOZdk$zM|BgLS3Oj9l2G~d@uaOP~z#r zBf~yzhbx8*%4f_dw8I+3#~}?Da2W{g>5)CSiGHLlp2rXAn(<>^#Hb-cF_ClVu@-%p zG%2Fu1h*VqnTMn#`8n82aE?7xLT??V_`ld((pe1dSnGnF!u1nB=vgL{(nE$SR5OVQs{p}%js6mt299%$7_Iu6Px2>j$mtmCuF{sAD<8Zc%zhNi z&#=P{m_A9oXODFqpVRw`w8CvDw1;^BINr^hGYQrYcn6I0t`y6Gf)CMeNs~&RQKPiZ zq$UOFf0Ay=Wl40=`cYQ>3qR};K@Z`^dP8K(aRnz#NbDz+5~z!NTOxQe(BG0Z{~TfI z7%TF|hVX&`rT6^yKdyxQ}TWzCrxjQ8`! zuL7vpa)?iaVM~sXj+8^k^~QQx(F^o`$=XETNnGQ3Xv?r;JxqMRwaMK>`n91opg*op zc8R(YlL%Vc3n5M}?PqqH5N`S|yt06&T*pC#6aI25QTS}!Il^bM-LroV?x&c_{t8A| zH&Zx+KQk8Yl-oP{$b3&Oo*`Fu2wkp<92uxBT18G6*E}r?KJM0^99=$;mh4yt{tc#Q zLvnkLT*K=|HvhX6aknm4TVV1*E>S~6@XI-Nf(FzX?YM#J3qKT`(jz;{Qx|hk9G$g~ zQcUHNtvos6c{p@4j>ZA}dK+g(+P>rKhu|nT@nPSmt7?ARYqZ#1Qb$@LeLSVa6@DY8MAl3-7fV7d9?gyC!iaK0 z<%;cyv|?+pciP{xj8fiD#awvd+$u|_CE}yLP%GEj&VWT;7&@s}leWyCQ5O4(mw0XB z&hL+WiX5v&4qvE61N@F09uaDzA+taEQiQs<VD0j5NV zOG|;f>aUgP8fJB7 z#zTIkFP}qx>mI&jfICRl(5vI`M3UsAnwm-G0ShXF znA%0HeTV%WMXg#KS=HL*$m=Z5Nwd}BtX^YkWIMj_D>&h7kaC88-HZ@))FO#Y+0_X3*V)W)_+Ng;B#0qj&{B)7=25=HOUvWhL-<(e+Wpr_#w+r5f$#L21#C0J}d0x$euii#2nm*fuGNJlGx%Tg2I<@R4H2V2nqB@ z91_XNKez9}4;3{S~d{yB~*q{zOyG%QD9 z#6p#rjo~bGU*zzx@J-s%TCNM)$mzbUo~AoRNEC{v`&|z!F63lj^ai9F#TU&z6OyUbsr38emI<3r>~ejr|loHK#0 zs7^)4(g)shLjC#6Z9V_Z@3?)8ArM(rU=&+(0JY5@k#8?CH98B5BJ$&WO*P^obU^PN zfO!xI5rBl%p)DQH9UDxeOP9Fqt}%CnM*!s<(sOjBdD-dd^U8L9n39t}N-G~|F*!<$ zT&ivw0MKGlk|9S{mp_{aF3E2#I+bQ*Y~r3+E?1!%Uu>=1Dxoa;Ac|YhQ-{+ZW;@-V znc>HJ`;(tZPd(s__nR6!{TmxQEX2d7XjYB5{(OCB2Yh4sKcG@6%bjf>kQwqb zvUG;Qs+N&bmYqq#D=4hZH=T1keiE z`eugq2i^h=_0G`h7#d!tT6CkGfuRxR;WWmHy^6{8C%dkY!Ot^i3B2Ee8VbBPZz%B2 zQ+T8>&RR~>8Tm=l$9!9h5~avB=3)+u^UTIWD}MYSpGEwayIB=Z>Hn$2-$mh-VAbF7 zDza`AGTb}KlKVhtrS<2|8k zH^@4Y<#EDL@}Uq`3kAi~Gx{4rhsd#9ZBe&?Cvq%Dh5hkqzI~RsIFJI;+yVw?f%$3% zM!a0g$7FV$i582UWK!1(p&twV`hNNwRjF^Ms>zd5>bo!fy}HzHc>flABa9>uF!~n?EnxoFh zSWTRywC1ViqtZRG2aVyp-$&%IA+&`zHR!hit$m=KHbPB$JQpV3d_7%B~YJk zggOH8dZz>n-;x^|9Kn(n&2yw(y>6pcVrROmv z3Yma4`QfG3Kln`tE?Rc6R2D0scIdv$NNzTNvf^14&6kQiBnWNn9m^BaR|u7zB7L33 z=&~R%1D07Urc7*Q&JYB!4x_TJ^LNFS7IkcblHlal$3Q?(D<2#hsmQtf#-5y5KJKkRYYWa~XFTrYCMe z63>dXe?X+`blb6~u|XB9-UvD*%5mATJMJd*VImECpt=*Trv+H-5U z=8p~%^v)xf`jyvvRud|w&KTRx-Am;<_w)s^+;rB(&!`YZ`rCnoucF)UT{XM1j&+J7 z{>IQrsWZ~_#TPFSqe3Cq=;leky{qooqZ@KH-x2Xj`4M^t27@2#K$X)2)f=V5SlII7 zZuBogGbHnZL}_Bj2wzRTTU>?+;xDG7E&c|gzf6gtSjyRJk?O{(ZVZV}=tdSVlmi0D zKgB5T*{y#ft+Oy_<%IB2w*Oale3*rMM3k0z4o@f?e4X>1#Mac~UfGQ3ifnsRH{9~< z%N2v#qR+4eqn};>LzEg7MWL-{hcE8MXD`xI-l(Zl9-t?hs<(5&K~t|l-r(4CVth}1 z;;J%rUL?q^Qi)5VL5}+jX`)RRQGgWgGBq3yoX|b{6K*Q)2)!vdn#Vtg5=Wjtvi;@Go?U0_M~7UHty4Ku156XQVt6MK{inIAgry_b-3V1Z1v7 zqB=amudh>0zNV6sR3$U91x$^W2}KjEC6G}Z_s zs#In)bLsimI{aE=hx}<1{!)p9G~7mlVkSQ+H#TDC>d{=aiQq*&3*V6QY@FixOgld* zf&O%Ynf7awJt-BEmVGMRK7m#BYHaZwuPFL4J-Xmh;1=WO_4)Jo$+Kv>dQMG0S2vbO zqtvQ$-C%#k^?O8;^n-Y7?`JhsYKwl$*o@V(S5awfOl~WId46A@>)vOF9c*JWH_~;A z#0_a8dG5vj_@xyyMYCoPh_2nC{^rT4k5$?OcK}(sER~R1jNsA=CksiLE-4=6(gf?! zng`OdG%J$C4zw~isSXz*ca`KO0*EN{$RwY`7oA`E+G2HkrLE}aVG^@*p-Mc>i7Rcf z9P)P3@~CO53`dK8kX=KplRTU~sm%Rnh3pWae2dzQ=>a#GP{kNyzqZ)qa8%^jKt72u zP@_HCF|ejhG(gFnp4IZBCW>UbmmUg029Th|q`w@b{yzLm+LwQT`>Bd1Uf=*H@gx7|T+9XF zR}x?aD=4Q?R*F~k7@`EMRj&Id|A(zwc4UjXp{9X!=~Vw{~`m7&?{%A zByGV(*7M96o{(B)R;gvZrLuEti=$*_iQtUTfn(vPax{OPbU)p@ad=iwYm-jR`3rwL z5n&-YEVpM+FPYp*3Ka5Ty*2>geM#Dmflarxmd>s(k%eDBy)P zO@trEUa5ELP;unDk41iAf4NP_U7xbdXcbkgOH9dkK|8Gv$pv_21<1dJ$z!apg@+HZ zR@k$(@)4BM3(fkq(8Bmb3Yo#P#i!77dMUU)P*B(TG_(UBXMrIPL3l8EjCCFr$>gWe z=9=&QZ_tL!uQ^CSC{LNzB9D|&(^^N%%v$LXm2#cHHK{Fnhpr12?x4ptG_2$iu}U{T z!w>Mhk{FSr>q@jGzvMUZ6k0(vswqhVQyE3l93r-?feaqFjsZ278Uq-fn z2?>CtZ~?10LPK91?c(vIcc1onTa??4e#b~0ip5ceB{IhQ)Op%5Iud~C);+D>&iN%q z+i-|3&gSk%lp%n1D2HwZ7|jO&JIzdYYFCFB974s;Hnep*|NG5Zj75mOO{h4*O-O^Y zX$+y#=xQwU9@8dvc*yMObSm<6h#8U+RkAtJ+BiH7geRb&ifxY|o zh{$l18$NG-HYl~|3|7CIKcoq|-ps55IRCGF+RJw=B=X!BLwv*UU?5W}rt6WtdF=fT z!9!k7Dadm0874l2C&>ao6@*|24*em&-;F;|qh=$=VKqP-?%x;WyMkUxgoQDpCoj2= zNq5GRV|!pKf~=0Y><~l~3}XUUAU?Uw5obtKM5sgurb_cAnx;;*r@)z{%E+o5>sl6P zntr5f7N$md7h#52_K>tz;Y%}Rx~B?X8Y4$HiF0s${%tqODjKnx{d8yHo9AIHljhPa zYm5*b+~}#mVOd)2bh@_;1A@>O#XccJvIylLz*Uq3yt78rJZOFns{KjJyWu#hde364Br8wFdn+MpGI6PRWy!cTZbh*QYz^+F8)|wDz1OuAy z5W#qWz5K%j$j{`Z?|i}~Y=E3Y&e38!=!3ANn&vx&vWyw+(1qv?tbcF>%uu1_&3xMD zcfI#h@KPl)AT1i9d!~gqAG(g9RDXU;NQQSvLigtEoEn}4z^+nQw#7V(^;Ml|JFFWk z6EmyK2|$HCA?~L^pEDm)#KF(jWvhLk4kL>lf$%8|1y6;7oJuAYuFPn+-shV+L$%jQ zlc~5Y-0;Bkiq;la0v3W3yv(X`Sw95}s`pyg@f3A`1X& zzRe!kq^wJu2FJeLOEPnC{o3*Cni-jp9*;(aT@Bt zg&p_igzkYv3%-nod~l~Y_)T?Zj=EmSW;;RiF)4|iAz9e=jGm)1T;ER51wd#A@u*{_h?BjY68119l1UXmiQp7e0P^!XLTEj??A+q8jnzEX03i~8txgxJN#SLn{F0urS zm8QWL72gQ6Rj2tPyD^Y~dgEg#ri3Eu4}Rhv^{2>}UM-p@&8>2JSkruAy@8FXgNVPM zTIWKLgq{n+ng0TV9h#?VT_t3Ph+<1#M^^~22 z)m_0rCOtV?bO-rq-vNxkAK=(CYUSFa86$f%chbMO9UqLtnHi-_$#%CD7Fvr~d(HqP@-EYR z3)n1kvA~QhD08WO1kSncv&sad<5kR=lc+|hnA~dL(Z}06^((vrK|yb;h&)n(7W*Mh zkXvNEw|LE9#&7Xv&BlyBLEBWUxt|N*zVwEk@);l7@QSRewq`OWr>DOH!HxsvRE%`VQg^udUs!w~t2*reJ=KwN zI%&NH0DAFOTk^SdY(bg3Zty|<5cdY|EVj0PHR)XX70-zJ50z54wGvXtx!Tjk55@j> zqWwBxyb&w00A6qagz(2lHqEa>MxFtE33S$xgJ--C=JXt*j%u+R zVbIt=bE`L|n;N8F-xovqsX-X-*e;6ol(GU3EK^qRMdOA0?DqNIu6X~$!+;4&pMj+k~u)( zRROB@kOZEB>yFSz`znYU`hvin-+742BfRZe;%|I6lAiaxZy4*eC13JOhtCu$Cxs1+ zKyB_ntzO{iZ}K9{U@tH+M-CNJ@!2$^PNS!C5adtX3`pY}eO|$I2xeU?!FTfnCTpyt zEFooYN@IbI6A)Jwtn~qUJLUrYRb~jxG&U z?owMC5Y(7bgsQs%@5ZLXWy|^OntQ3ZSGinWx)OOL;;OFIaa$cqHzAzICwyb~$%GVP z@Yo>tHS3g|vyQN8Dxxaa%-1D-Za|qjbw-OBXJuF|EN{m?E(pXH2^&$h5F;?Fj}{ZR zbJ3W@6^vu90(Xw(ZlDiJfPN5Qs{=f@s~5m4mukwc6Orb(4IwT!u9NINeGvJ8rD1e! z=n83Rc!HfoUps92umwnKbuMFGiMIG!U@VKAjp3FuC>6VDZEo+T1^bLG-VYj24mPx{ zD5rU2gJ=JyBV&yzO=Suh{BR(lD@NaCP)V0{DIMo7Xq>XGu?&&=WKBi;&`(yDC2{VU z1eRuxHCxS~J)l3(eHl<}I|G(r^G{HjQc>5FfTP``C~hnxCz6H}tKqmF)Ei-XVg3ir z%R#MMr9)3qUhpo=aLv}%`pQHH#eAlaG&+CFr1}swP)s6hT23sLRe&fGmWp-Q`F#3OwFm@ zXuSy2^U1xd`>T6A2dM6c@HE8E%Mw=-um#w-6e1g|^-bH&GDZ&7H7V8{><-C(Kj zH!oIYY~ATq;7wpbNq&tCZhB@_(Ius^Vi-S1VU)t9|0buxr9Y_`a7p5tMAo5X*(?KD zWrPCmNGA0fD)Av1JV9n)9v@XZ;I5Z=JQ2f#I!NOngSNW+qR>RC>RX4gKxsgq;+~H55cbQ zl95^h4UHw{-p632M+tWT$*qCpN`FSrE4goQWap63rO?4C%et49Q_!G&X7+GVDhbP&*%~lNEm0{IQStrSPSfKkfq)MYhfGEiHOIkb$3m zg`Zh9d{7u;Eo5e16^L4&P+QHx&K&e`()0mWaLpL*iCXmceBaOhPdp@ z=cFczyy4t$!OenHEnc7c&Fuj%lz|IH_s!WZ@=jjdkCH=UT=FuZd+uKUp?4-E^3IYv zIBXdc?k4YY2C5{q)UE>N5S0p<^7ZNV-ltM^=U8@p3x5LWorMuKfC_}rTIu}dBD4V?k5M@3Bk9=h&vR=gk4~QdMSa=VJ++)5zxspmO9PyM z^`nprqtTlhMPA(mPRDbMHV_Af$HqDoV@#T21rlep_!E=!{CF;FK5mQ><4@w=?#{8@ z)Zj|ti6R2*BsW}sw>xrV$ed3^*o_kJ7A`dj?nDTEbdQhZ(w<`h<0xbry7+s_&S;V2 zR!a*9BICxs2WpCFw&*Mh)_J?N#mWZ~Icy3sm-;T4_%fC~sM^W;%jLZIJg5Ykdh3bG>JOgMuXtdfME0aO#);v5>h?z5cPqzO<)_p^rv-hcO z5mpuK>||@Y^gi-wUc4_vLY=P)c)P-TI~9>hUwP?2!F3vU4NetE6syLw=m(?M9_YhJ z_0C!~pSDyMh@=o~b0gceAZEuE@n4i9AKVv$kTMBoSSML zbl}IF12BFq_6)@&M`Xtba$iI2m;7#;mpc?8J;$%rwy7&vkaouiy*!P+ESCu$jsZ|v zl9lailX*^Uw^7?|f4E`8P>7|#!>&l)QP6G_`;$#E+h4V8l%IouuqbqQ;!q3QS> zxF&{5B3+&^^JBAlk$e0`nZg}w4y7G^Qk`$DjOUlYnEeg=kr_gFQ22bvbeKCu&Mf&7 zO2D+bdN#%LKgH3T51~&aTOBfeC8shK1z(iEiEnh`yLhQ==9Qwex^pPS?|uAMFSk&S zIcfy9@BAl7V_89%N|xdu`Lq;C6t1`H^!E%~c{E4izqE9EJU`5LTGpbofOe{>7au$G zuXSol{ZrP9@>f${1&i`)RG}O;r6b~+X7k_pnct&odUX+BRj;n%1zb^?{5{*Gmfrdu ze>UR{q}25S^ke-NjE0&%fZ$U$t-SS3=sR4^amsd~IRuJb}V8Y)Ut?l(^q>U6pdlxGXI78gmPb zTM9#e=p3(h&^yNqF{kHUs^>($k)AvCbIs__cDY@fKBN!Ub2+ZWWGpOQ5K=$PEm86d z)hG^k$;0?T?9MedawVsK;bGaZ)fP>qFJyYxZM)3KTo7&^!3*-tkH`A@AVHLMGs(aAJ z!-})4gCo(2uv>A8&isPBslNgo` zxxeB1l3>F<;+=>QnE>VU2O67k-wZTxhx8l426Rh3G3G3N^!!5Y@uZ$xUtmi7T&0w4 z668qCM2dQsa1)$yF|45Xz((v0k>>wx)`D`&*CSBUKS@M_e4my)o!c){7M7=H}pay5YyIF;yP) zuABQ-opA%ac@^y*ocm0yr}6AM2w*qTmv}X{h6bhv3H{og7Z;hvz7G@SRYAx(yoK-u zjQ3{UN1nz9jx8In8=DA!p~adRU-BsQ-^5XS0!yJ&?os3hwh~JO#0^Kes4xB<{IEmc z=D5(oc6VqG*F*vzvoSs89idtL_8VWArvuLoN5dQ@GcyQc&t?)K*r{iHi`4 zvEJNEWzGNe5NrO47TJJLl+L(9BIvgIe-$se-}KruB-dKTu3>2@>xhkcsvC#RL+Kni zTlEcb9kI-qEA<<@-GFNMvd{jc1{E3-xlFFBWHLjUbX0SF|<5bwiLxi)&%r*e^V>f)8ghWfLW6{@fnlCX&0U7*3)03-D({IX(52yM=HG<^S zBcj{fRO(eccCB00+)3zwEcz7W&H~&oRLq0$B>{|#th6%p0XL_XbIMZrY=F)_O|V=% zNqzDDK5s!NHMljh+O6n!bt|`}ehq%hT?m+hG5)RKI|? zRg2{F-5;@3Bk{rBvXG@kMB_tgQTzwNS2mKlq~UawNkuP2*z!xrMdB@K#1Bc(0UR&|flT3UUHOg6Bb4{xPG)=J(ur zDQegCWlHcP5M;zyT^FC+U7x7!uG3y#t8-n4&$Ak#wZDd{@hbdGZO!>5s}vAvsSU#G_>e{SsGghS7oO}mW4 zn2d$m*~ci~^bcL{@7I-D!bhqOm*M5eY#q*Y)!%Qm^<&_rdRM(Blb%}PRF`^Q@mEJ4 zQba|zniwE=l6RPIu`8m`Xd6w+t?~G>*BNVdxxSiX^y;PwLTp+kC_Z*zU)W-1!OED(_96dV^T!$vEmhWAMgE8>C^4F{vc< z>)OO417r)*ICaIP48-Tzl3hLW1qD;9K$W;d-~9M0Cnlh7o)q2KTpT({qz!H9RU)su zB_)hL?ugpzaRU9+6aE6@?G@g|ACB}Hoj$zYCEm`V-5ZX0*2>Af#jW&0N!W572JPGQ zv<-TCEBjKBFZ=b15=8nUvp;cjKVRYp2PY=(IJZArBDMkPm2vhqFFPhWN1V)mFLgDKV9F; z_~Ox*X{Yo{{TbWXM6e(We;1zg3rHsgq~kBU09N@*^# za*`}CDb_|YDP+9E778m-)(|Hk@HeZHD+?^V%6DY`+nEI+OF$ubMl;7jp zd@!f8#flDeCa7xz!J+WmLBp-4D;+^9O5dDH+%bd)_=*<25U#`pmRj^8 zURXwY+^yRpD$`gKMFIZ<)v_h~D<1AS3z~2zVbA9&eu;k!mouY8W4jckyQlO^9LO2X z^-8rC7nzX(Q5zrF&sR+I%7IU=|1Q_jsDw~$ULkgqO!?PUdG6{VQJHN)nyGehxhP4> zE-fvg>2fG3cZShN4baKOOiS3>8OES=v6kj36?(d1yG`*(C=VtWTq-g{;@f6-3K)E~ zQzPv`ovxZnJ*DJD>6ENDiC)-~YB5)07U*{dCf+tmWBaXIqx zROzL!VxpgZOeE?Y>RV97VaB3{CrSR>-_8NNtTT*k@k;Z*s9iuhGMFg3Rmq(P4g4s` zz_K|K)asba_e`-oqthygp++fuI!>RdK_47KapDNknjD4WAS653ocS?F(}XxA=ifln z^|8Iu@JR0G5`b_39*ohVvUORH*nV5}Rvf~@XIps zbrjyg1Z?gkPjxGV}-qZ1l zlmoqLC{>DpXUWIM;a8P9U5V*)rMZXY&9!6k`~lRe4&h=gjvb6wYSH&(EOJa(7BVg< zf=WYDep`N|6;R0C(e%?ESLkY(XHLEM^Etz{7fz8-`xptpb6HW~&s+Y^R{902=YHc} z1vO}Z(qR!Vvs2UdlK_58S-5t57Wli044E3ztA97h{pQlEO-=XZ5%BR_(x*&!#2Zq) zj_A(Y)*W<45r^zrW#8Glo-g+N_YAv@d1`6t8Fqv7oZvi1InVQ*=V{KfzwJ&3X2Bo<}UFedoEwd9HPy zE1c&ao#$_y=Y!7kUgvq6^Sr@%PH>*1oagz@^EBt#-+3M}o%WsQ7U#Lvd9HAte{`O| zah?x4&wHKcZO-!s=Q+W7j&h#oJI~XcXMg8;WS7&v^W5k>+nnd$)ia*I_URm#1Vgp? zm9ctJ{xV5%__1S;68mSBmTMHs1a%K3Y`fRMp?Es?x3rQ?HwZOn>=pZFGa6&Ohoe zo1y*Kt$Fe|xgh@sQI$9?z{N$#YAdK({w+W=hvPe7&^P3_Q)zv?{>I z31Z!{LK%Z&-%?+Mz(m3;D9O-$R$uYlXaz>HG!7swJF+q3I zCNUPn&#D<3o;5>aLs2s%Vf945&6=MAN_};HWVQE{ezcwWxkj^(=7;RODTMK^3;%_P)-+PlIaaOH)XyCF_~R1_ zdP;g@7$a57(xYwl0;T%qTCN}uKni#hc_Y5EV= zhrSg*X;~#T9c;@B4~^`|MQ#E5>>m_%#pqHJvhs4A}wQiUlDo#^jgP!lss~hXDz#8*qw6(D!ub(udi8yzp;?? zP4)@hn|ex@yiX7Lt$Mhuw}<%0(8J#Dxe*cU9&W~{GC=sQcZ-6kUmMSX3R#d2KkpfK z1Qcy)N#keFu-!Bw^5_=lxz>5EaGrm3p1*OP4?53#o#$=N^9JWR!Fi5yp65Hy)0}62 z=XvBmjy&Z&w>ZzW&U1zH{G;>yjq`ladEVDDdH%+EKB%5)_}S}GB6O}X-f5hrH;pV0Ulzdl$TpqW%Y*2}{L-7| z^^}J%!U@3pemG?u@Vp;vXjd+uY+?u9IJ=4W?1i+cU@bQN)a7=YHM(bWeM74` zp3mY`nq2Uzv!d;I)0OG=$LSH;A5V*U$F3{B!u0G73of-g+-o@eLA)gqckwVv9<9weCqo2lm`-1 zd%`yx>r(@p?mMdo3k;Erbrfr;d3bO2R*xJ+_ct6-KtYQ(C(sVNyNnhqk${K`pG5+` z`4;O6J~{ls+qPg8wmIazhPA2pxHk3etj_Q{S$fhQY*^bkpT(FEau~TUx0~i`y2H2W z#>SL3RwdLYrgn#`xj#uFXNFVwf{7H=+L^booH90O)&m;ZQIY^MTW++L5!=$|-MHX% z79V%Uv+923e7@0ojBi4@eMB>9*qB;6(P^eHzt zkYuz5-P@GGnD#!vq@^{#qH6TvnM02@7xg_Y$F=nezx$9#c(FgLUVrJ%K&0OIB6JT& zsTdpMwtE-EesWjJqxf||dv0~0)0b4b0RBZB6>QD%C$|%BW)-{ovID(75D%^_2*jr( z2@kefOv>PSUclgYy~hl4QXuYYD*z0kzsrzg9ze@bE@CJ|e33cpwLVxcVVU2YKXEY9 z*LNge3>;=GT1>XMQmemGAWfIkIB}eR9`SjY0Ey4jq@Fl~^Ym#R{A76v#_ui;#yuQp z0awI4%RGWB(TY~y<)5HS4H-#49$lgpE~#+wTUcoXW5CWY(iroYy1`G7#xHFo9;ztd zsji6fNmc*n*fWRP)7X>OA=vYh>W=vgivts*7VSrlAQm&wN;)JLezZuxfj>72|2ThO znFupJ3}Fce@e?mqG?AlTd#;-ul8U?7;;_T#W6}aDd_r5jZ0D(Vxf-!^O$sD;p%IGp zRN@FQb?>eOBd=yyyl>?_V6+F4AC^lHw{mlooxX{5o#URl_mOt4o%ZU9c?Xh?E}T0B zo(-d}@-N(>BKpk0RZtRYAY|OWK$q<9tErRz%M{8;&DUy#;*0YGnd~q^W+kOn5y>H> zO|H5>ta)USd$=;d{3V5;IA}Gpk276ahE)N(YKCmSb%yl7Mg=}mRF;#jd5Ex>%Q_1X z(LL5C_2XZB9L^wY_(QX+*9Zo*k|7Al1&M-*$J8XHDp*rV*3?>iO)*!<|9%d5fJyk= zy&-EV8Hn?}J|29t07^?N6GRsBdDhn(qzBxq_`a?n=xq)CT@WGmLskcq@qWA8CDD|c zXiuw5qkE-|?h;;!^xnm$-(uCn3B*_pqDx=3*jcj7{`G&Sj^kG#^w_@9YT=$PsgSj| zji*hO2P>+)SpBxCayjp6nLQ!T6PFng1hmBq>GM~qa;1RxSqcf|nwc7zmM8x2tgrK^ zIlaD~YO|@c^urwgDbN%P>qgZpP=xSlPxH=guEm%BcL@eRT}gC4xKcwB2GB(TX;{i`~Mytq%qf5(P7>H0v)Psbod{}@C{RJozG(E z)xTsg{tf15_IReYTIWd(8En}mA!w{KXAw>lQ;64lEOcq(6}S(2j_J$j zWsl#zMO)gR4Gg$i4#(%pL;X`1lfqkgxBy8mh59tD?JEl-{s8aj%Em&7ZOI@c=9>|$YcUTau7kbA9pC*mkb-ZV69Eem#kJGWRPd z|GId|!aDD!@C0PDutmwxC5;nx&uRj9p;j3Ba_M!vKe37MHS^t{7op4jQo(qCUc|oH zhD%plcwcp^*ph60hw79w7I%c&@>@fz+#9I;UGPb|pV)NaztD--)AloC^`XsF$5@i0 z2HUY zcnDk~{GC%rVoXesjH5FsNM7loyOX|8@Hc!xFFYy4Z+2qQnf95d^Ob`tTZ0VWxoHJ?=mK}zrnWO=SXhG zx_C_`m|V(&+4vfiWsCWv-(XN9{y(|Rg?GALsgKftaGq)VR{lSf=(o;z$FAcd>bRde z%+zq4jIqgaPXWTC%ls2n@$DM<_9owKcgwIeP%aI09^XKE{l(qvd&;JJr`(;9E51Ha z(LA1oWvu3@lpEQpjGuh4twxJ|&a1)gZrzb%$A|#V5|1217no0SWHkpF3OHz>emz?r z{>j42l2{zw3*Rr-qDQ4NOr@{=>p!&8T{aFXhI* z&|F5viBv5nM9=;bdK}YuUuH#BEkli#@-br%jZZGYxQLe6WxCImTp1w5=4PXrE8Xz%8u zd4?>aMA0f}q*;R-5ASPucQgX?0+NIwB7=(-V(X~$P9xXFl-^u4YXI8mXuw`|qm_hi zw`|V8nxxeG=}{_tTewFgJ&`3_6gFVFEjmCea#zE2xd~>H`G}3imq|aCfivU~x}EOF z({|G3Bw@{PZ#5sW6E4Wgvydba#2>0?qLrX~OIjP*JlWAFBwdW3cLi{!Hjao!F&*U~ z|C#=H`SW9vdD$fbTQrNqqFB{P2dl_|qGkTfu7x5>sUeRgWoo2?IZg#tX7|PDGa>~t z8>$JSo+$kTmork$G2GkB*uHo{WKGnP8sW7970uHJK~CT#L?yQ(uI9gpZmC38q1)Clr@HL=?v^^vusOSS)#wibj zl^F$PxkC(l!!NL0%T*S?XcZf_h)Hws~TS z;s35G>|=G!d4s}lDG~Nz)!*9Q{-R>j-&&`?wN8I`l8uInXh?M#e;viYzP>%0;86EMUo>>U&U0(HTK$blgk30q_~FH$))pM-E~G`ark}ardC?AJs7Qb zL7MdblpH>in|3?<%4U((%h8frQLGQQBOa0Q(w@9S#^n7?dEa5bKPm6;*za@YeJ$^4YLl_Q+W54D<{f;x z1V7;aEk5Z|t>DuZfebjOVj`$%`N&QQO+5~m@}$7=xI}2&vq%lb$CU-+1L^#2{}5b2 zoX8b?z@`k8F}alt@*5>UTH!#S@Ge>jO=g~ZCw`qYdHlpv`5z=TQB)$eZp6MAuce*B z4KjN)p^hGjBpf-?r`{-Zg+Cx~GkG2H%Q}N~B}0sUOW0*+U)dnD&f(pePiO8Z_4mIs zcU)mrx~4S8H8wsahtTMGYVwYsyPeE9+1C(y$-La|+#-3u$bLULpLaN?bb6PhpJuM3y{lSy*+Lq3_@V5X`o$M;k_xUEx}1t~O<|AIoJ{7sXG`^DQ$&|tRr6Ao z5&7QR1zB6pS6iOA<=^nZwS4Nu7quU?@UlUf_PC2J(^PF|eivbGr6cBS)ke{OON~Et z+JkIC_w?8b4mE^Xq?in9!RhsXCv@5lQllY(fvW?&AeWB5l{AK)#K`C`AI-&H2` zp35-fE|@#OD7u5vv{;E#UQyRp`XGl%v&u+*Zflzr&tW6g$Ul?pp=s=xvrTT~pDe#7 z#>W;!4(A#9{rJ^b!#;Q9aK4eBE8i|+bG;;Tn9INN4=v>P+59f!B(C$jv0wb^a-(z~ zpAe%Z+J0p_{Z~Ij`$5e+PiJb`esr0izb9B&dXpsNNy3MALQoQ92j1LhCybT^vBj84 zJK=mu7$6CMvl9kO0s%o>=Hqrkfg}iZGZ)(lhrr?G`I0bS65{!Dia2CAuL{aBRhAX~ zv^EV>uod_)`p|idDtr=Wn>2ba&8xwv{egvB0BauJ8A2b(v9~G5B|}g-t`h{UL|`*7 z8bhegTq!G2j%!Cc2d4aq7n{f|4nL7{2#@^pM|O32x)RNm{H|_ITDb@Of5P>(<}*GS zwezIn8*j03!b)9u91bY`V_v*kT5KIniyhJz`^a}p{60yjp*hrjb;^}E62PCtVwHHw zvK-ncPKTY?q!LFuIcw}h7cv}P^iEEWrb=;Ik#*-JE_D(MBypOPC}+kbXN@FIcM?Z9 ziN%t5hw{Qeytn)5Dwo9XJFV}qTL*q5&UA|Z&Q2^>i8W5nsdgeYlhdybJlps6#jngG zC1~z~wsGaJ7M0LbD$GefEow`87(3fW&4v6T=$${8+*7pZAf^FJA{YIlWc8$rl#(f) z`z&hHV7^1vn}FMVNxU+T&@0VRUd{PXPLA;SBaOI1{ebBws}|i%JO21&;%CZ5#{13h zfRD5rYgOqJ3oxSgOd6?rC>8qSi}%Tw&T)cxFt#=S7jJI@9#xSwes@Cx0RlHDC@MIu zMomW0#BCA*Ns|uV)(!?i2bXb+A~X6bgWZY>p+k2=?pzz#W&S5^p^+&ip=XGr#z@bzlFu}Ba;ytgOn87tUEX5x~ho3RZPGKyd- zxg%F%y(9{0Bcoyi>Y*u!-P)q4p)F}q1WA003?ZeAXd&Wii_J)vnpF^#-0Hhpd)63U z=+@G$e?bQP8S?YlnSdHq=o|-P-c@p0)a~CD1Ga|hGWH7Hyjf8%ng1gePRUiXNYBfz4>W!P{mzN{-sX-;}N3S{5uXK|3#Vni=F)Ao%|0v`SXwv+59QV zKRlDa*~$MECSCBk(aHb4mXrT>$^RaXMhc&(lmE|7{w61XaW4GJB>$h?{F5&P`LQZ< z^?9`PN7gD?OvXyi$>i*&&*WL;{~Yrw^bC{#Pom_@JSX%VDESBV%#S@VKk4KT2>gPa z{2v`kez`Cz2mW;OAFhZ~J%jxHi*oY+UGhhJ!bcO&f6c*vs=zPI$v;Q(O9**`LHRLE3aK#&w26 z;#3HJ_L_v+fuE z?N1r_>ptFS-;i7`_{|}dkQ2Jl1AtSR61X6tI?tX>n$?fiBLpN)UgByJsQ<}aoF2vc zZr7_msPb4xy(KfE5;*q#9bEQi&gkYS7d&Rx zzt(XlWJ6(gAO%>{{t=nk{r#|&%nmUbs~(@%6FE{EqLqNTX+}v?ep%MRAi@W?{E?LB zv&CoY86{{ttl9jgyVWJxA2~C}rus~=j5m&Y6WK3lyo;xQjq#fG+c!DpT&F&ytn2S4 z0~gMQj2T7Z;rR#NmBj$V;U=cv0xL@P)p-@zrsKs?N*P;Y8~X-~%ZD4M`N&XaY>9nQ z(Ymt_mkn@2;SS?C5=$@()vsMPjO>;!HPoNxb2*^8!a7k>jOr@6ye(C&lL@gqYy3cd zqq^~zE&O8lQqAr@D4^DhPKgRBLCGrj*M)H1a^1XD3a1BT#~14tbG!~eM84OJbM!r6 zLQg{#=$~01il3w3&2RcE#I-9q~hErQ^ z=Y?6<8%|EPW~~vkw$`vgPAB<)!E; zPSKxZs^~O|T7#w7f3!DO13>5er)zIMUe==}0O|`M>zbh`ydqZ|%d>SN@c6a?n}Br= z-#F#mTdH{Sw^Xsp!OZ#BwKrEp$8LQPQZjP1#8`O{_Xp9Jv?Vp%jQUda#{;zaZ}6V1 zyH`E0;Cak31mWd3I>&pA7Jrkc=RH!^9Gf6sWcontzg_ReDh?G#fW$gJ>-b_@7ric0 zr^DKMJ8j2IhqKaZD^D>pT5D2kZ7_d~IS zZN-kK%lRhs6yGsYi-25VUBsbMk#1WRkP&A*;PtG|A3!TveLGiA;mHZ=Cxs6jbDowE z7jxct633YC@igiHRd5~u$_T9x^Ix}rrGu9->ifS5^uJ4{bO(2He8#(VEj8Q!?6Dxj zo+i%9!{p9`D$W99AC-V|9}puF!0J31H=lhkLHetRM-V>!d64O1i^;$v?@hgaH(p}< z0HNU&3`T=1iX!9WrrUMt{WJSb+LH5%Xdv-VPZ~Zra)@7^@R0fv{|Bicc{bN@tO(z% z+}CkOd(694_wKChh&+zJ^7T}e%N#uaZ}FX!#rG4vzE!W^fh3tH+deLSg8IoE(620t z{KmmtgA_$<*R|!WT49vTqF|rx$xWb?+81eg=$Z?TInrH)EZ>wS~+!9`=I# z#>=P5W+YC+{?a!1t8#pFOfR37xQ*`w{^TCNm$|^b7v76O@0y^uJ-sjIHVc?MaQovw zLV5Zk{}q6MmRwibaE(8C>Q6MRadt1SkH5&J90W-poTKkb)P|)0r^Z>%cP(JFg3#PA zGxD~+RS@8c1khqWSNL{?`=e2Kqm&7ML$h<@OC;7__iB1G0ZH9qYpfyTtfTb$HL)>& z@?r5w(hyJNK#3mlQ+fc_hp+Nt*XQ}T8&^Woc16Cyf|Vn*d-!kRYaHSlmc>E~e4p;) zSI3LyX?}yot2z_cZW262XU_bm0yRe%;N|@#bgX*ouCHT zzar1FT_5?xbV{I~#n+&pB?rF9kL>#9&ysg-V!L(u*K!$SVKIlR4-8b&;AUy$`b^;R)z+WZ5&2vJ0UKrM zC(K)%ZIWdEwv<9@3qKrKP7eJ<-UTVSKinBe{~ywO5UBr8>HW@z{{g*))QaYNq4yA{ zX|>Wcp?5*1X}h>yelPS6An*1@Z%D1;_bSPM%%2&QvT_xdS?ho`5*BhuF-CmsugSs# z0;NBS`hnCtAUj|8@NZ==KGPE+qagj~?w7aAef`3P!iDfnscH7|v$GvHp|1;ll(_KLu3| z?XBE8_nox6Kai|OOy`V$Mz4U){we&=6#VOY;_nySlZAisC+oP*khlTT1YZERh|z-D1qdzRjLqVx6I|>n%YAum^%)AKK=6DNx-0wZfA2tMHt)nHfHEikgav zOA@T7sk`wnqlfH-1I(3sw*d zrE9q;3j{7A^u|BZUxh!L*6jCg!zs?s38u%Se_g9$mYrmNSNQxci_dS>M4Q2f`FnWo z{H;)%5HR-@wi+*N1!hBX=RcRf_KM$23cpT&<*vy68T@wX-fe>4Lwm)qhx}~ZJPaAQ z-P@a(0C>x22~oE~<{yfJ^&G92=wrk~uL!nwvKRPc?;v|DHOAXPt!67%S>b|=u1#O9 zAz(Y2Vx8(^?Wys@Ldo&i)8fVL(&^@ScO!4SPpzq)325$kdooq2^Ac+~y&xX%uPO+5 z4_2{P9e-6y2hA$wrye}2YKv3))n<~pYL3F}wWr=-*GSzHTqQ;xUCmkqEpXyg$Xzg-h+5$9I%^iL$~wVM>h#{SH(p8n zFi~@YuIHP=R~B`8_)4XAiYc#7+-3zE@%I#D1!_flL`MI`6~Bd4uy65#%A3K;RpGLr zd3;N)S;(HlM3&L7>!t6qUq(nh+?q} zeIgbzzhW_^B(648EdwxIYzxggZCpqOE`3t`z9Ff1P5y95Zuq+(K zugsaMS#4*qR93~V$%+mVHDJYmhabBk732|mABKD+2!0MMw(cP^R8aD~yU{uL{r^;6 z*2@1k_5a86zo5_mfc{Ib&eC6I97lrW(T0*{c7n4G=`sY;s??@B2 zj_us{TKp)6o{gZ--jkf+H^#_eq+`{%7_4}Elj+IYFCVkk{qHchbd;~NN`RQL$c*8c zmH5@<0%TPE417t-97_50a=rz*g^+Jk`AKi$-FDuGlPS#!p!|!R_Z#JV8}Bzc?@Q(V zpS&OGyqC%Q-+2GZdEY7Tf98E3r*5CXo7Zg%h6lGkKw=r zW&tj6vu>Bv(oeD)zj%>dO&XhZj_x6Dhsri6C9LW42?3vRDipauc=PL!PgxFj{R5LH z#4f>JlN=G2AIeT?kyXUNOXU>}6w?SsBmNxC=0rf~<^aA#z9BbN$Z5Nx6AR@mF|b)l#6vWiD!{OQ)IZNtnVH94}I#zr%kyLb8Zw!d6DZRn;7=U z#u0-2d1MI}$kP=(ab{VZ!4*J31$3*tE`EtWAV0_aK72MMaYoO-M3t1MGgL{}Z;FbX z`Gs4zeNsM=tE9lkOoy!yjV1`-f{{yXm6Y zyt_VE0D*_ByB22piPJiH#R0;iK0;~wV>DZ;;RfhDH8az%XqK`Zd~?e-oY2+v!4<`2 z{tw0!r&kHRV!QJq2f4l>oz|1M_YvN2a9(lx5r^Igj?RyfAJp>4;j$k9>w`w8^#G21 z+}%c2`#MD$XFMSfZ1OMr^S;9Iw)Mo@_&bTzlb3t(e^G3yI!3XvYY(@FEOVw=+09?( ziMr-gYZS@l>y&9#2BrPG$8yHH0La?6x8VZM$^;)W$Cu?_&+&c-g@`PzYI6R``1k7O zowMjC2}=7Odj&;o<`pD|5bd*V?rs9&s?cBA-f$Q5S>umn9bd{ew`x)S_#%9XFkBLva(t2Fr6_VTt1mim zzsmM{hTl{`J%Yp3e--KfB0Hp5>iI_nt+A#@g?X^Dr*vb!;()VMN?+Ynug25@x2sZB z;$|Zp;qYVbc?P79L-cpdeVDES=7mM()Iw{(&oVBUk`yQ+pc)s#CpDfL?}k9-irM>m z-!i5ab_Xe!8CNIntX}_?-Ww*7bLB!*f^QgYv-UMQ0;LpSk>TxR}M=7hl|4d_iR%(j0PNN>V*=*p>$0pw>_M`CHKsBrj>Ng zVAjGIb@-PM@<{n`KSlf%z3U1S>t<~mT~|2w8@A1ic2bJco1HEZ`NENJj-8*(v2(8+ zJFn^r@1HJn=L40-k;JaZ0U@JBj(UHM#`Q%25l9V=ixvK$>CH^G=`YdG28fsNS?pML z!^enbJ>!xqrIiJ9x6NTZRSn}cvQ@>&49NE;M|)Wt-fUk*RhfpkzghjSj5g12 zqs{OC3shwVxI&9RsW_t5I+22;ajZ;>-=)%UB4!848YP*N`T%Rn9I+K_gmcrU3QdN{ z2Qgiu4+5*xI#=b)`<1@zn2RpCWahC~{9c^WjiO~&Uh46zuIlfZX4DlpcUVssDz2sb z#xtAkV3Qs9cI&X?T(nk4?v*HQr>P3KN|)iR*2#7yDYE`_-yQptR6R>&&0l*CbX&P+ z`+wVGM|`?v%J_5iMQjN4)W!FxST#)_s&?DfuTw(Rf%RVqUaPIg>HLs+_!M44=BVHC zQ)_&gJ}cXQ$))Y8V5e2i3`e8bEB@;)EH4I-IbUia(^R=%x=!&` zr&U3YEwQ7#;WL6}tq=p7uyr#sPj%Dk$lajx_UCk+ra;-&G5-{hTO3}>u_0iO5jg1& zy5+0r+8(kK26MZ}g&h5;gfXhNH3-7`da!H)&le&C5!NtP|rhSgS!L@*rREMkJ zO{$$lav=bORnF{qFa$aNZc*Sri0qrLaqWkzk;n(jZY*I~I;_o4gDRJre5sZV>~7kA z39}S=50xDJmDqHH;YNWEjpN1gpqx#Fe7j!Z4iA~kdgSgNKSoN$&dPMV(rxV9S~F@1 z>k%XSLMAm|o0DXAk!!vkt=BpcXAVZ*1)q62F*CX@FMROmx`OZlTy#Mv(2BEm@SSek zf3;`e>MC!4apKCX_mT_7tTvD{`hei^Z3>gD^C!!{{as8H1?xS3d-nu9#dvtMug4&ZzFg1qF{w z*9mvd5y6QjodB5GJ2}g1#+(rzIYPyF67{D{VyIq12FVzrz?Rt2-t-;L_!2pwyWh&( zZ(3rOnoc^b2~VONAB~%*vWy6sk6J<;325^w zC-O+r&FhQUD|jFcmdqhOiLW1@&j;=RU^UX!!fIrs9SD?^_M-a2PK#Sc^S^xHyJT0M1 zZL&cAMv^f1vK#F2j$fVU>8~w3jF0|g4I2yWgF~-2@9Oc0IJUI6`M1Z5g}Z&LJ?Asb zJ>d}oelUSWb;b6vilL)G zMt>$$+pGd+9x)W-_skS|nmNV0Q!nk*O9?GRG%LIJsm2t~&TaZb_Bcug%^Qn_$X12m zz)MtKdQ*{9d@jFA0y_L8UJwwWS5uJ|mz$QVwP&YzcTeMrO3!Y4D>maAZF%jmYzNei zgu$*SxqG}_r`uym;E=y9_io~wU=&q@;ZFkNC;RWDWtf3qCEs>hfygS(6%vyg=A{Bo>#rWL{ zt_v@DX90B3lmBqUoLG*+gRDgmfMK}B+WnZqWebGkhB_s=*kNbaqFM+`K*Mbj;)pAS zE~jnssM@!^QE`Pd@O0BJ!5$}OORkzW0L8jPYH{T!-c(kTdcQj=H6%?D8P?Zo zsJlL4)8)IO46}pevaZ}JGj%Qsj=jsLn|BKGa!iQH_CUF7&spEgG-PbEMhGZ%L5oC| zGq2XI0i>AKKJfbx5>!~b9u?$HtFpe62dC7R@|f68+fxe^ZKMi8sC!?`t)I(u7FLAnS1S(zYXS*bV<8G!75kH`ttv^~vIk(dk%@IiJIlHH zb_iMaJERI|am)BASIJ5>JY^4c_hpBhGxA%)gXn046wR zZ)3gn!`adY11HJi;OuV|0jx>#n;dxQGfJG|pjkzNng9MA%)MUVZsb8XdiAUk`8w>A z4ce3E6&DWR7TVZ`akQ&DTq^vzd6@c&vM+~`X5*68Y7NBS#>DTZM^@F6j`EID?a8x; zXKIo1cX!M#?msPdNpb&i4k+#sZvConY}2@D1Ev)BH`;e_u-S_r&Dvhu+j?n%R(Z@L zTA}+`u)VFoeJtAER^&eVVw-$C?tw!Od|NFowgulHaR_tU#b$K0T^zrj8rKYefVkq-Gw@K2fy;i<9+HuWJQTQ zrK*eNhiVt|qb->);viLhyd`8iL1VjEscRZq?5DODX70>;+( zQq|Mt6V9))#nGf75(PI^eT8I5RnKyMW)#ZX{3rNV{!;VrQ@`@`VD{-A_laIpds60p z+gBHbFKyi9@f1MhwR{fMPpspdwFMkpavr>hYZL>>yV;yqC?te2Y{cnP#3PL3OX9J1=B?80Vl7oq)y9P-M>Z za^gVd54uKTAeERCrn_Af{~gJpOcz~tA`1YIu!G1cJdh`R!!&i8%si@`Es^t``OdBG z2dYaiVnoUKFXJ-3Dc7UQ4?UWHWhuhlG+30Zm$)u6(P9qWpX5jZe5g#|dOb!ZbIOXm zOhT@R0bGe%er(ZN^IxJ|Z0C;I`=ZDE{8#jtTbTW=vtJUU0I*6J#7u=%P-9s1e&LZ% zh-%C$mgZod?fo}Osr@)EHW4vG8;HpD26^N zP}s=g$G@}%$%}*jjfIl#g=c3bX2XbjxdwK(~w>gzZ zt0glZy7`@|X;CWw#8Z2DWKgE^%XsR7t5W&D=1Kli`6bz>LwQnzE`Ow(CNf$2!}J#g zQz}1)vb8u4*q-DpX6{yB`F3SK*JCNJ%=cEh3PC>|=g#Y*%m~n$UahcNYT~S;5e!p$#nIYrUVcL>yb6?5@P+Lk&C4munA^yQK z!9geJs?5*s_*3=g%-0!xXy8#nIW=jGR8#c8eCO?8c{5MA_8kVtAUU)pBj1uJ-Z~D# z7eW*z8S5vAC-ou7AlJn{E96|UHr0_%uB=l+E>%56&~qhRPw}=_spbj>SBzT!x*ybJ zxW`1EfcY6;k>ILL`#qwBhG2XjU#;7ob1+_bY!8g*UaK&6kaNZIUNQbZMpZyt1$(0U zh~16qm0{@az_5r39JthZ{m38$cNb2dhkbzj5v?q@PXas z>B6qb!%(iVbdL6@(4?;B?+88ads%BA$;9itI`L4ai@HA9+9LSn8c|bd^8myOH}+n~ zhTqicT7ssB=I#-8<`lCA&6zdH3-srrr9X^k5_Tc$O3dZK=8!SdkKZfOIr_CUY3 zX=6P_r1C&|6*XQM(^DpfK*Vyl5-qmzzZHl&))i}VnNH6-{iob7nAl8 z&(`8I*l7{9$7=WsuQsnPH#9e!-o;*Y{S7}EUZv~zu-`Op788s(gUJeCqENC(=g#Rq z_`ezN;g8LJEoxSEGBC=+mPg`iB6FY(a-?-XS`kdn|B2$Y#t!8+#`@ohL|J9af-s}c zFh3Gk2z+OH=_bca6*Lz_rDCH=mY1kc3!dh6F=yz0P5plJ_7`|Xg{t_n66Indz8ts#hr|a=&g(C` zgre4c!)5)yXampw=p&+EeCtmw5ai`g#!!(pKno$or|a zcnKX+`GXdh`Ht4yE};Ce1%jVf;syQeZ(1N}ZoAoDyaL5ti+=)d$SOjS6HVf&=Y=TB zl9wS-a_Cn;b?uEgl#0JAWjBlkVIdY3W4-949-*YQBtbXs#NvbRUw?=d+c{cWa35c| zoZ<*_H+u>~+5=lOb=uSg!B+uceH9brclX!ggcFdbfm-}wo*exFdPT|TSaRL=TN03n z_9r~3CD?3)sWLVjF{Z6pTop-SaW&omj8t(g@`_reTjejO4Y961*A9nSM!dkHaVOqG zjkl{gH%JPUR?+(7zH(>pK1YUxTeN@R(indm?Yb? zizG3_4_5*r05g;Y>gDRo!$`IFQ#GQ`$oHMS z(2Pyh-Laj0!uw!D8HCwQDCRd*zxcQJ<=FUr(47q0g8eB?i|dvN%~|Gq+qyQn_=ntr zxI)y(#!jboU|)gmij0Qavwa~3O>$ZL+<`J4&CrKyT%}NC5FRkoVOL&&Bl+g-D{vMm z(X)2$Qu|cCPHT4a|Im;86{G~s+oiKISjam2Ti)Fs@mDUA{_`8J*Ju-;l}Cm;=B+=} zB(^sUB}Pwk0JBBF$cu@;tG{yf+;9Drug@7JHdQU&DS+x%bD}Ahwb%F=V=0f1FO>q_kn;4Uxu3jHSW8Y`T~{DD9X>hHN6CTD)MZKzj8qf z6(C=Mm>D$>F!NB8eBk~*ZqEFb-}|Qj%}#qM+{Ud{b~V(fi4fZ4waN zfiHgQQ?-Ss3yt03acZ(~fHFqZmaefbCvT=DZvhfe>35m0d+skXw49jMYEt5Y<$!Tx z@nVJSp$r6e&A6FwDeo{EvaUlO%&}jtg>jOjZn;?m#m-ve+n_lJA=3oWC*|x!usi%G`^G{yfVCoucCauWgNv7Y^iwlhyi8L97<7H*cr8qlxZ72vV}3VFZKE1kw^ ziIX8CI*#5$tSWn;c|zwJB@g}PSwpNBnfPR5?O^|QHRJfS!~oE!q#SnYD_>89^uZBwl0j|1|@40vaL*#rK-^Y|*ag=F9(7Vf;smH))3 zX=ZX&ECuAuN38?zeV3=~;CO`>3CIORPC7+h-pas`npX>uo2D^V}mt_5FjTEnI6k zhiEpv*qaG@TSKModT)P8$OsP0tS`H7qI6*X&*ACjq!I_Fz>{N-z{D*sW9f9^)k`#c zP~}bko1*k%^nU5hm*h-E8O*IO^<8<FRiKhy(_wGg-@>_7u2-B>B^ps7;CJ{r}|UXJT45srP_66J3o+V80Pe zlKCJ0OMb>av|Rwrb9ROsqZHANrJ~I0&x?Z98wJa0U(ig**N|anwup$)LH`h!#`8|fu{|0Ql+;t=y@9=4sT4`VwI(iWVpC^+dm5` z#08t!&O^e3?AI7kl|1YPW@MB7nEH}z7tGQA4zm8(EIL#|66DXHO31`3e?c?3 zfggYLA)z43eWItP^Bbq68I^apCJ-a@&KzZP_?L z35fC+5jj60a+pc5|Kz{ z6(}zDLJ@G<64lqSHC6s5r`Hk6s-s2j9R-R+)#5QBR^QwqU~7_)96F4cXMPn6Nt$sg zOVtbyhQ&YL%jadHyUPS{o|f$=bB?F7LQ7l-kX%as>CtYS>^~xwvji#vM{ zg*g^Nn%GW8$PRdk>d#?WlCA!uK`5KE0ZP#=pd@o&QL1VfkMMPsiaW7Iu05z@LY^+E z<=c6>LZ0|NPkw_hWY$DkM`ryc54Eyj^@;M}DD6y@u-mV!UJHfY_NKBM>p5@DN^8EX zPsJ7L0$cAsL6qu9$cO@3$0A+?!L=#IaB3!=A%{m^U=}hKIK#ISGot;S zXcku#pI0L>6V3!SM*0G-k;@#Qw%)rDl(=ukR9NYBcM}ys3z2nFC*w(qG5bG3R_4~Ad;fL z@!j~<@xm5T@bhhyI#;WR3nq$Bz?|q)Q*DGw*f^=89ThbkE9CNteEbxd)J`orJ$c2j zik$Uc%30g8%^z#=DI2g+x1JezL&&IW=l?aKN-NS4+f|~)F9vLkZuZ7@9j+zrfn8!J z=WB^6R4roVqawJXPOYayfghl8eO6_1|)fzvCOjyYuO+HOx z74k%S3GQPVVOxVSCuP~WNv+AMJVEV&mD)TnW5WIl5Y3Wt7IevE6ghexdF|)X-I>ps zFN@C;T}g*h93$h%1kd*Qip6t;-fUC2@P94zw0H@wS=Px;=?!2nfA+p4x+@#EBdy+1 z)p_>GYB+D@yk-d1Te>=A+*8a);?GVY3#9_u8a0K$$?TG%A zWcsXAdT2tK7|qZ+ZYjPG97GtG&^VviWt|B5(#KF!zEUUq#m*{9JtM$mtcf6NmtP^i zWN6_flUbUUd0wA+mM*b&KdCg7xU4Tk1gNjFq?95$M?VE-c!b-6^|%~nn;9#h1&7jt zy-Z5dRT8f%wzI^Y`L(!A-h{H6?rpfx1=lZ^Ajboaus&Mijh(<9m6ZUdTf>2bBxz7Mqv*d?=jg1rl{>Bo__;fs~*l4*F7srwjZgGJOP zrXbX`8pH&W)>X%Lu?Hz?ChWnzT#g-0E`YeCm<5wuI`l^r57f)}UjS||;~!O8PD4yA zus%!BY~~hDDj*UF+QVsItLt>>)r>%rEx4ic8Bj|PhrrV&7OUe-&8C|;8is* zwXwF=*K=Fv27cT5e+_=v;ZjZ;5MWH&z2 zysy=3Z*9S6Jgjb9%D;!ArLCLCju+#ISH_VbiQ3Zaz^viPE*D-Se|^TdpWh z3K8W@(qZinN zvSt0P8#l{RkNf_(ed!G+$g>u|h^anyLlJQ$1L|oEPrp`A!}GOxk$NiZP4vqfiXd-$ zzT_?-&xuYs(mqsaKGKfMrdcX&Bxz;YwC`1#M6l$S5&b2++t=4wT5U?JJ3L{x;f=o;syWKHEZ0*M2JarK)9} zhf=db6eiGQ&lm?^Pxvs^4s|Os!sh^jsV_5F4+#P*{{rtmP4j6?s=9*Qn8na0=oV#1 z&8$bH^7wDar<6g zsCUROf2j#2@LUA5lKqbFhJ7>7&9NJNy;9W$0z*r@MoR34ktFz>gmw~A)ruDO>pZicVdnP}1AsYn z-M^4u6E2aA9OcvN$NO|+p%8_!ay@Y}*!14XKzJ2&c;e{jI(Y(mnNOPsz)ghg>M^UnfT z-Sp^p>N}RZ{dOOj?DOR_v`wkQXQaqwTs_FFC+V~#6V_ow0ao3Wn51ByUZ!?|0=!sH z%>~Vqc#{1d&a(z!XPUA~no=Y{4LIPtuH9Wb`pT?hoHA02ONZIF^N$sT5yhY9Mt7(l zaF>uo7~^SGcB}PltMaJY12xy)TflNtZAvplISDDJqqL?&U_IEM$~^WMRFW+HAV!c_ z=`sh?YN3VXaamtILMB6v33XPHUL?Z3F<($osw`QBzD(zHZFP1pW-~SyN}9ck<_Nbd z%E74m&5-$8s! zZo$d&VVv{fbSaT(@k#RG2tH&)L%%hm3av6v8JV2EpI-m9-ndFSMa~0!Gl2z_v9fFE znbU|#TOeM0RsN;&)p~2asxt~`;@S|i0OxnnqI{O|^KON=d8c$#c?%n=vM;NgQdy2Q zTqo|7gEk*tUp19CTV!vj!ujw+-8?XqJk1*#eQHt2=s#DJ z0xVA*!0DACu1r_J`G|UwNq<7|yWberpiGV8*X!BiEa3jM;= znH}2EV|`|?r2ZA*=&l)%)W0At*4gjc0e)QU6xSQaHZH`af1NkX3&>wyOe?#9#lWD0x!;S^Uf5 z=}oJ@13Ao{L{$}-3;Q!1)AI-!a08FPX0?ziK&3q~wjw8iShf1K;&n^bQidgotCR?yz3?I9tR)$NCE4 zN!KX!|J%1q5Qo9DDC$H56$9JkvNYF zIJvJ>EO_qOIs6}YT-3{>#Z75W?1m~H+Z82m+CYlF=ho}veXR~8X+(94;MK2)$&+wBxc?0G)j0TH`?3=>`hz{aq9a3cA--c9i) zbtv|PY30B+dPdRc@rARWvo^IbO>$swdDpuElPy4ENo`l)Rd&V42ga_O?Zw&IY*eUK zDr$12rieLO5 zD|(Ym9BPiw#75?{L6nMuW|N|DGT`kJC5y10N-Wr)W0D|>ls!^WGa$oT$RvLm%KwQh z-Q&+uWpH=>7v1Y-QDf5j+l$#|svTnyCJ;@)S?{8rXZU2a+sihH+M@uT(T}VPb3j5v zkG1FpKni_dB(Hmv)deH`!>xJHPmhTq(9bCOOonHPRg;gR!pQNmrH(A<(F{L zY^+-8QQb|wm(Pe+)=`h1x*yQOOO1 zTXgMoMzb2`SVs^)%x#&mZ4?VL7#$fVvCd!AUFScsy_xDNjQB*@7m=~>EPj(`p<+yF zmObUXRMk&Dp(8uWTkJ|c0!wt55-TB&nb>zq>^o`We;z`!PRKT4v2bAN5B76#ZS00T zq}Vq+m9IF4fZz-dH+vnj zCUI(BxF3viYYTT^a7TvsfELaiwe;Gy0{x?cX=N2<0x+bSYNT%iL^nC)O@w6RcVer) zxN+>2LB~bZx$0b<%1Py)?Iv266hnvPz^^#FWvzJ*MNJw{a4PG0Uik2ae0YjyCwk18 zSG)5Cz?TYVgv%8~Yq$ev7Td~JG#Ad*4x9x7=Q5tv35|*ssxX$D3U@!>y1XRE`!vU1 zgPs+;emH^KUek@YwD^P6DaXdmV40;eGSO1anvt=coCg>SKH>%zPw-$?6Fd}MVKL9z zyyfZ>rm%;2P@ZUJ^>Fq56b7U=ZzBJ4iUNVB9yq$np$t#-_1JPx437a1Q;B~m76=rn zjaKVS)zQ5T;usDjjs9sGOSx2a9{+l5amQjkHmOWc21i=^;=~49NbdL}lKbmfll?D{ z#S^{(Q?B@L%^DxW7a8C#kZ0ovc^6Jn)t_=$1XOZ(n>d zI#jcB@FlxSZ&rpq>l(_Xmx?|@r1js+%Omc329I-PKekRI)mWuASn*HzlC|-3eL*f{ ze6j7}@ctxy*ds|x{7oi1A|8|M2*`i1IZNBY++(Z~0u3X<9)jdW%Y0Z$W2zE>1g+Ti zu$H(;4G)j0pJhEebS6b*F*5iqbWo?i!n0;xqx$J7im=R&^j{_& zWS^;U8hWl<;*)hQze>M*tm#xk6CV`7nf0KekBTU21)a}w`nG#M$aH2csX{*$duh2R zN>6p!TM!x1*AvS<31JRwN4D$@MPHAmKgz(5zTUXp(PuSIPiVfMxL5qb}$nZICya`-IE1CI1kw z58ZfWb)fhdPwWeymiPo9=5=);^CGzeZ=qo&Z4PM5X&Eti%h_0F zTJgs=XzmnoT5@ESo*ZfEW^$(hmQ_KLhtV$zZ)k}|oe1 zn8kNTGP%n@;7VGmN}1r?H{D%%W?s!1)Adv|NWxYhc82QTI|EE2bKrX-dP z;=*A|fhm9N1Hw$FEtR`T1_>dmb?YNe0_p~VT2wAJ19Uw(XR4m6DUcGW8V8e9O_B5J zlOH{KYm@vC6v?cvlQZ_IniBOPRYRZhB~_z4zlo^)@@Lc#=e$OzOqF5DRb&Doa}`;t zrjCtXYMTPxfQ$9v%ra|Jy@&#w&A*hyWd5(C!X-6DRq^fN%BU%BS>BLYQzU^1;%v&o z2QvLWzZ|KOO8}ECkI8j*Z%6;;QCi80XyHRZz$F_Ux5!(*&Xu2TcbC76s~qvRH__S8 zN6E$?%eR_E|C7|@@x+^2sF)x%U%tzqC4nUrMUDCL30fKRg)=fe zX{fAr1&G0J>V7FP$Ph2G!^)Qp6QgFjjXw(wvr);rRR7td8NS)k+G9Sgz(%Sqxk;Ej zSPu=kMjh3nOAD-uZQ9YK(%mIKi#WU;AlskGD|HgCr4v1Ar1i5Tprr%@+!Q`CQ2F_s z0fhT4{YsV@-ge%D_20{KOq=)vXv(s2#UEsg+Nvqt0K^7@FBBd}2rWltyq$0E@dw@U zca1$4r3SCu0Jdod_fz(3Yf`5p=rDEBg$h+uX=$}q;_HTW<=aC^(D1)FjzZ~!L|%{W z;*rbESFvBkDJXAKbywvN;k(pTI-SMhf**<3!+MW3qHZV@A1%DJ`YA8S8Fz}3#s+4e+&d}z}^tPPM7H7-|3|eM0a6|-^6}I8_AT~&()rd zl=Usi-1){Fzy%Hz^{N~Gd`ncj8~XVMrK@}c95X@4dsj#M2i%Zd7&?(KErP1YUy)VPu zL2t8Kfw>BpD6erT;#tOUli?|YvV9(7k$!O&FZF%wyZD#^T95w}5&0bCO52=n3Od%D za9_8p+{{kZwPur8AcFP&BAqj+^)HKiaOoOzP_Vbxo<_C8?@mXt+i|bdmCTo@FyP{h zuQ#?K%V{2$k?~d8d-TTVgd+S^X^AUQMf8+nE=fS}METX7MXr4gUz^R711zd!nUNR@ zBv~23k=EhpX67KySS?zuQdN`XuKUt?LN%8Ot3wV4I_=3cZjk+`!ba+HDKA!6RkxFq z9w=s8$!_eXpYy@Kij*vGwy_$Nl@)2qzEal+{afs#MZwDSPd4+d&eGAkyG>>4M<$_P z%;6-*OdzBR_uC$muFebhjhgaMpcwgQo?QCGX2}SW?KISg~2@g>q0gu#L=jY_-_@*J84i2JJ_$$}W{@A{avcg^) zF>GRUb%r9YXs6Hww|VBtZoOLk9CF(_|4>DMG3T@|e5gxczhEE6xnD72aI`WiIy-Sv z#~kX&bj6_Z7MJRsLOWOb^e~IfVaCgj{^%HQ|L|NlpCgo((KB7v)Tcn{B~a>tL$ga> zU5!*19|r6vRMulWmaoOq&y5^T7W*Z>TW1my2}u(!QvSg8z)sIs?R7emVdJqyh0kS= z^0`?I%b&$9)W6hu1-yj%y`(aup? z;`ZEfnOxcOr;rVoK0(GBu^$ji*;Nu_4F7QUQfk9p#L@j?>u7^~kyDv+f^>$cCl`u8 z$%Xv^K)~jZ+{gZ+2sxITk{NY1;P~=trJ>>(R_VgsUFw`kDEXjjX!&-L+L<#a>i%dc zM+nR+HhFM9)1x+o_F*ZpL0J#Qg4rT_S4j>PN|C`+7qCRW86#%; zhGv>Eh3UM%zT;y(_MS)I@rj&RQG}<)sVI!9H^fzGhH|2}ejF@jgvOQ9b(wX&Iu+@R z=M4GxBxB-O$VlZ&=2Lkl+VIJh8An_AEZ@afu!&D_igUnF`ZYaB{*BJ+B2CUO3Uj&Kmu0ZXhxWDI@WptO z7)sR~W1mlQH#J>C!VVD9sY^P326eLH2o%qf2kV|9B*S03;bj=_LAr}fc&NGzX#Z8F zzyCCzMBSfK9AZ4x8mnrIS7Dcswc!Ufeu73SJe7cIA-3?2^hd|}lGR<|qIAURKe@we zoG)@&kRw|x+U0z7D8fAJkj)(w*>t^f)4#D1=XR5GJ0q!q~EdWSrJKW)uarcqLE;ie!>&%mR`r{UrCj zh}mY*8#Jt3f)7FB5p;%1~)uZW=pZrTCqC?9Vneyv8HOVTe0iE5Ji1%$h4HEm(}8b8x{HQk+EB1dcj?xU^&d zcx&<9^oFy)yxMyyHz;|vrVvT~#$DQx5PZ?q6b>d&?OmHZ6=%rHrcIj`kf36=*T2Iu z+5^V>tv~*%b!V^A_T-SLcb&iVEq`)yncrB^G>Hpk)<)J*E)QbkC$Oc)*obGg^wy{M zGdP3;=ZoQ84hh@m(U6h6)Z(MpYxqO{WJGZvU)mDj?=C2O&=}$>sDE8CsO_bK36A)yc9@|k&CWE;txqpPG4#Z z#jvX_?=!|1c|E5$WZxL!{{~Du8v{9}tcUpVFTIf7mJ_fQ*4OXvMl0ee{g{yC-E$$y zZkms%oYd~;g0LS!NoGX$?}u^(5gqJoN%zNg@xkx#T5`yr9Rf(> zlT#+ON8Zt%f(Cx$E&Efzo{}8%QjM2AE4o{*e>@&jZNPLWP@_HdiM^amw6%o#6Y`uz zO3a$ns)5LcPsU6PA6VWsCish?oj4rTN>)baF(VsKIP;u2_WGJ$aK_K-lBycxOJhZ? z@hV$(=?Wzuqn)MU%VqpjYs=Sk4P6zG;K1Qv>>EbwD*j*TO>Aeb3^{(3AW_Sep8lr1 zVg_I>1Ft0VA}e_R>bzo4`emn|z1&T;%SnnntJ6@QeG{0u`tdGrBrP)0lfGL@m8EZy z?#1XXa&MfFdBc!Y?gu?3(t#!svJz`j4q-cxey*tyuwVG(%bbqwcDl<4HxUrTbo z?&RBfB=_*1xfA~e2*ZxS=Z-x4p3KO52?ft?1RDg*IEpQ+5)g(RkX!epLwwdfIF1T} zK50)$w#Q!sC_~Mz<(IJ)9w|+y$3yUr6CRkCqn`aLZ)Z5*PCY zqt(?8e}%F|h0-~?xI8-c;VPxWvayURj%_%AwHPk}>#A?mgd4t+D>C7kNGT$JjEbVb zSRWG^l)k7r`^J69s2WbjupR9@T8l?PmzzSyObPdIxNOX{@MUAdkz+(v5Pe(Oy?lOx zN)Q2)G&OBmzbg>sEVi;rEZHKTpyaRTI7@C(x~x~3KV6Nh!+PmM+LOuc@Y|RPkylj} z)BwvhL+UZfNnL0=U>yF3;Hdm#Gi2C9pI=NVXaV08fukJ3lrtqdy1ejF2)#!vh@#tz znUSL%q(}}c@U!? zqbe!ertyp_Z~YPFQCreSsq1pj%3y@=m{F_;C;-8(pfpQnsOhNj^&bU|4|VN9e6+kR z(oUsgi&`kC>q@hqQp{~>KjC+dLZ06&$@DWOXZM&1FLm+~b-zq?RsbYln9+BnE-bjj za^Os%)ev!x1jHENqPH)U7XFN;bvOyJpNY{bJ~L_u4v$T+m9+$gr>b>C8BXn&i};$M zmENc-mD2{ZEDO7YYPHia87-n5&u;-O_~GmuT=hSr+*{AGL6dn=%wawBzHmn4O6kuY zO1|i`ipo%1x>8TxQXD0d?owUOvdFvq$#awQ=&@Gh!%u&27Q$1kyB{+JGyR$PJu?|t zF1+4dC#Z1GFsCEmv?a7zH2l}K1!atFRyjl(Wyb@Do7H&Ptq9V2?9%V}R9Hz{&I;>2 zoC)>To#TWW6>`RcJ}>LJZ1{pY-DSfEQoXZmsN*q17V{?QZgE69iBxXz(Bk(?Go-U7 zf`{s?8uh>))@1V7zu~PpS=SyV^L)Rghz}D8qoYPUPt+Fd$E!0I-`cdJtqb~4Awzp0h71ab1D zM`!uX#Zyqw;@8q)%EHLnYNXY=Tv3cYe+9U51<|L0v7?WNxlv4}fAz@#DZNwh(arg) zcJCce%bU|U(chLUOR?i>F9QSn-h9a-_PvGjpzM2z3slv6X~7)KG+7cT6IaMZD96MF zTGq^a1bGF)o(i<`59~?&SdZN$?e8z~z&XFW12#x6@817)5JMWVb&w&CeE{X${?+lH z#;>7#ovDwsFQ5T?^gsKZQ)3&)5u3InT+H1bJKCom5-1+haY=EJ#I7ydvF;EI8`_in zv%S?D9wZCNZQA*A16827V0&w?utveMX|Yi8@x3TjcK7zyyzqW<>(eT#BWwP1>X+<= z+gl5AvKP47i*nM6R9bAK&jB&d1<{ZJQAW>9&D{b9|6#GtUg66d&g5F^@OW;|TI#97 zuI?!yjOWo3iC23zRNO!M`L=#9Ph*no-*E*=68{%*QyBf?-hS=K|3Yb@T$3|w#Zu3O zQoImx*vk3pPVZ8WPZES_o>n=CySFa=kVD9hL$oI+WuyP9`0c|Sda5YET)Q$YFd#tC z-!(hh1BbLsqptoRY|7%$x~cB~i4MH6?~XTP8(R)}84Po9ao{Ozamv}ZF;raWi6Shr z$Tl}#Qe4;CaGVb^#f!a5 z^f#FcdFqGuHe?vdgLmSK!rt^ILYu$IzCpm-8r!&&>&9mOieE8CGuX~)cH;Yq$5L#b zXi2YdoeB~##AbN-6bU-Q?rivEqO;=A9kAvyRFna7bvPv34k0d~V$sxcHoGx$B8LWA z=OPH5pyYCi?L*8Bg06F=O8|X_e93_uDd8mBN0FaI0VnG(J}9WFj6H~tJqJ|Q9{|JR zz)#MQMcas-#qu-iAMfMVaR80hF{t=L$-~P?u*_S)AUSXoS*^Lw^EdK*wLF^xUy!o0 z^M4}+kw@0Kq#K>3tu*);6hE0ulT-G~?mw>f_>^vhFTwYOUS1t2^htBAVg;@mMZ?nK zF99o5xj~CRq_7$Iwp7?la!B+?A7RF^ny#p@zP(xDwp>1cD$nXlKP{o;Y;xfFq(6^5 z>atcl8S5qEGM>BT6AMbCx z1uIn3^GnEOutPVbnf>Rk4b4io?wSjzjLwcKCpxIZ(<<3Vb#wp2cXH=1g@H5qTQ~M{ zvV*YbI) zyp*2StbpZ|7y3FDaOPk=M4LFCfI_SqX5kj%P$t_Ull8{UKGk!qXM@I@L1WD_kGx~2 zX?|rl9NB#ZUD;{$d*e#Uo;_26KcC%1dIsRqlAi6!K}}^*-H?;`-@TW&#JEm;<1S)m zsZzAB1ZngGYc{hA(~dX1Kl3uq8s@1oKJu^NLu^)&mwPW6|Cm^;$C_cz6E2b!>vQZ* zc&z8Je5T)U5pL{U1phl*C38<{?3DA5&YPxGfyPdC%!(UH&mvH3v9@RcT;15I4(BBE z2S}pU*r`tUB=ZOJ8mZp4qOnr~TWj%gs5iz_`TXYXtG16&O zNqn`j^L8iCaCv=^%y05Q|He8QYWY{5N$Mlo!sV1COhhvO_mXg1W2ZWflgz(@*T~CU z^V{6md6NTZG`QfRsD^6(KJs#7Jui)&YHtDif%;yjl4P#~pyLJoxS)Thlkly|Bfi*; zop(7&g`hH+& zEsyceg8S@Db6opK8K*8}m(qBb>orm02Xn(5rtf2|IX40L4&BS5>@?Z9SH9F3 z^dd)ch8OO_dDRIp9&@{aiLs-7{Orf|1r{1_H~Nk>I6b-Rq65?SQer z#}Xt+WzSnfXY+c_9C6|2D() zILnSDgR(EWRZGPYv+@&d(FXt$cNUpX%0DRIUQ_;AdT2Mj#UBWJNaZID=R{|Z@br&- zgGb$w;&*9VQ3NU25(|T}!TPs3Bq3Xl-mm=L@2yvu)Rf0DIsKR|tuvh5;ok|!Wdr+D z-S)~)rWr+Z9|q(p4#-h%rixr}b~$~{MK)Y~;w&I4cQss^=xW%Pi)oin$%h_8=84i! znVKuEeOVV_7?_}_)L**ZXfsw=>XZ#!_5q|)1O!`aU+}bdp#?bWSsW78*}gaJ7f3U9 zmaY#Ugef$boH8#jB!|{=yy)9FZbo)imfT30EaXg?tR1fhS%sD{q)}nDV(u3EQW6!< zX7#Hwb0%6UmAzJDtVwKlxWkWk;#l1Yfrd@kVGr@ECM+g5g3Fb`hAmWhi!^J)7mhKm z`$D=Z)`5vA-&Fs;9H?B47T{CPgMs2=NY3sCN*f&wUni9Jm~ZZ|^z%LYTc-5Nj~ha< zG56Bn>=1UQhGMftlNnWDy|(%nc3jVO&}?qY>fj!DysZ=?lVAP zLmVpn5>g$IaOV&+yj2S%u^48WB=(#h_{-szlZC>rK45+DIiqhbDNg?x+r*w*x&jSt zBSS^8X9qo*+vPrv%G#YI%6N7BUmG{eD3)80bxa9tSS=FcALjuA#>-a4vCyqFAR%km zsgRQb+@L$~^^*~k#+q6dCH;^mTo^lC9hcu4KnLcBUZxqVy$I*zZ4sCk&Wp)n4_0QxoQ{mylXSq zg(}+wJ1dAGJ6QQAL$l*Spup)0N|^)Y&k8Ib&{0KcFR}LLL&j|n z?k-V=8!73`d>z*IbEJM{DeWe`da{oK{hT!WpgrCP^n4fnTE;Y~oUi%R5nzrg;K2I; zWOLx{VgFxGF{V-ToMDX9@HGMR;^FQf-8RY@q&|+3s12MDq$-JA9U|CnzxK%Gi4T?{ z4;ZmqwZM9$!wPJPLc@by3!IiHM|$OoiB9Bh~E0uIIE+GP>F1CtkRl3CatFY>qHAviC?>QRjA(@cCg|ni8l8R-^yE}<3^#X z>s}^?PU{#jNPK`l1%b&Ug@MWq0pnAxc74E`mLMNnt*)O`8(^(L34DF5JgVeyPAFM8EPNRo1Im5i zC>iq{ap!>avNFn8ACK+oBC4IQmg$ef6QA&Ei;ExQeMd)-RUwTG?sz|e&&I8*WPDWV zNx65Nl@$MACb!#K@$jD2L|H((XUimV!@*OlmW@Ih?ENRk={wc3;Dgp6u=KL%?!jH8G zp*e+Mt0HpLtS(JMSVXo+1P^K7{n|o_N2x6z($}5LB?R>r`%6juRg~-=b;}ds0!fj{ zUn1rvCkx=_Jf&~-P#EOcog9CWoDWFOYMKz3m&ayeo}UJ&hJ(Pjc7m@dFRZ07R=y_A zpy<{g7zWCnO?Csrv-J9Nh6z*H)>l8eOtCUNS@eai)_UMNK~a6~whaT&*}D-1o-<4Xh5naf_WQ`0cpHG7(>{S z8(z_4UwdOMWt45I!NurZAslsPE1Y|$j_3dCnl2)TuopJ4_lYcA`=vGXWzkrp6=mTa zT>sEbFeknkbLKDT1qOIm(kR@UXsz2!{AJwn;nYcF=!P4ersd1?v1Aam{q4IlP4efo zX{uK>Nlq1I+O*bf6QyZWLm%4XN&ihZEEVmfd&0<$j~V8pchGLJRf>KPFj7I|?Npw>`!m_ECHu1KeC}yshAKNa#oF zzW_-f`8;vaFk=G2Z`cZO2a@Yv4DWJzcbns~A3X%E;zwp+pY;&BlXJ7}Tn1Q9mAU7` z(0#4K9nQ3M8nv8Kx@}gq8@D`i5c?!1%!2KCXfRDIvVWAFI=3LpU;-%A4l{ zHR)^Q*;Y5JvJqtHw=&v2)aIU#7R*SqjuH1LM-gT}MfN!>M6MGebRMevhwk;tQxb!yt*9Cazn2>P5|c2njgbwcd_VeDMsqbjb)pUne;fHzj6 zs31{;5t5GKP|I8L|DKt9cQ+X9Kc5fmy?18LoH=vm%$YN1&Im(IVq$!W zbB*FOzIB;&k&++q+kgU;*?Q}hh*7^K*z!qnkW)y(#QVlLl1^!wQePksNAsW@b%Qmn zbJvU7*^t@_s}DRAnUD_E7p?)I7uz(axMRa}e!j6gcA{N-TI?hyoC1XVd1r$dXf;R( zn2&>Mk2Sn&V>qy`*;o=twy*))VAQ`6Y;lS?4kt(A*gNbk9%SS7Lt9~}Y1{#v#YDG# z{=#(VM}-=_+gSArW=T2UfX+QhbZ#Rh`)PW8lheM{g#xUVu;;OvaI}PB`3`aCHG2%8 zPsMl^38yE@I9)>}Ke%H887++P0^ zsi$4GtqPo@sf{nArRKhV&3gRh;md+1)ZvWrs>u&U4#i6lij{rsj~ z7~$l)xC5bul%Zdgg^jhQu{L4_ncRY0vbHhyhF6;Tk8_h0e>_(oVcvtrTIy290;%g0 zFLxYLc=_jL^GEFBHY$i%#jQSW-STVvjHEaw$^0zG>g_@gJvIni`%#dXhl6!*ya$)-FLUE;JqiSM$0PD)Nn6#tkXWP%Z%vf?EjTb_-HJM$p zPr|JIBY~Bua1AwEjASbs9HlAd0f?=a9ARWiU?n-o7kkJ3t;$8E;s=dkB%Hp!3#aUj zpEE_7=>b({dQc6OM+f7seJuYVH7+#N9%`D}6>7R9ASc$|(^m|&hHG}j+SMr#eP5Wh z!8sFRvOpUmn?ue`XTo5tendvPH{7p+@g#-Z1&Wu|cWp9Njbmz_ciZSL16z2Bdm~+vcO5}@dt-1^ z*m_kdg+!{JEI|}&xx=6oO}3B$i)w77#eO(GU5R$%2CH6)5Fn-KvSAI4?=wd=1U_)e zzYAgP%LZmn_2zHcqhv8~tl7AhyP=U-#v-vtu`D;zb-==07^!+MoE|m691|;x9&I-W zJ>-bg5C5e|Vl;`TmN{=<0m~rMik0!NbS{qnmklFtaA`pW1OEF`Ep!T8R%X?YGHYHo z?bt9PVZ4FIZ0RlE-?@?%`~Oj`+@)EA&(+SAg+bJS=xN4Nq2mus4_cwY2Qn4H?*dbN z4L^1cQ!qE1f&VINuU9?C-BY}=aukB+tc0fBE1aH5e_`|p>}FoxsBAP3TWJe+pW1I zSZXZ#0^Bc54=6B8ghf<%pCNFP^J7``;uj?Y*+`(N71Zur4S$HeoGaI&%(cDvQrLt$ z{22L$RW9%o2Joe&ncLZafMnQei0O`9Y@UF|=r#8U`t{C!Tvny(IZ}!-e7p8h)x56- zr#W{E9JA)qG9r{*q{jTbM?D5#2M!!$hOz3(xRc!@LmOl;19fGp93EnUkF^LO{nCMR zpbqlDW5c}ub8M;8t19-(%%gCpnZ8YNr)d%TEOh#AbgL@wzIHRZb)^AkOxVHA$D>P9O;!hA;TZG8Ms-w(+B?nc@0u}c>GKsFWo z=_oGSy4`4P&wCQ;C3YW(p4F}%sYl#}QSzng> zIn}nSPZVRpbZ;vN2p;u))`~A%Ts|Y**mcmA$N~0zTb0lwtFLchX0Tq9bEC^CCfiT= zbTajGU_QWp#-z~zuQl#%Pwi|^p!};viQWoANf}=xT59&^!vmPIE;gwgu zp;`l|CRcXVC$}2O05}E{nUTyCx6Vp@4MjMI6tZoxH+b>$*?F$T4fR@q2>mYLm@-|e z2n?$n>#R8yLbfO5gZ#B8SYE0>A`5tj+_pGZvV)~n_<5^@UZTWFoB(xb?&gw6P3O#c zk)Lcotif2ZHN5MC2I3O5?z;eQ_OSJ3B(S}qYD3uC-*C(;k(%uss-TyRyJRmWQnT4u z0O&4vhwHDJby3*o#Y|CM6@4qP(>rPOA4k@tnLA z8p%#hlt_tq!BSa!8mXV~!P2K%^_l#{QW>%RjAY!)DhKUKd2UbKO9IUYs3NFc8@1Fo z0SIYRzo**vL^C<0NnX|Vgpj4aNv?_lb#ai9l9Bc_6!mQb(jnN&saDglA2@Y zNj@W8#7oHjt#B5KjRa(k5u;Qo(jE}9K1OQvA}{jjjQ@tUG$mvW!0B!uIJSD_d7&dz zj+Sb4KG}7W+AS4cg82uU2&W|P?In5YurYwwtKjLKoez(RYxH)~;ClE`?SjrA1Cmv6 zmFRD$n%s{brhbeOONIKXa(oBdjdX`_ z7I9w2%J`9KSU$4w;c=2Y@_V)X9@E0pH1EreDpN}#pRSeB%J213o=KwCnKwr?M|{lX z4l+4*tL{HG7VYH~E^3-gpy@ zb$jnfwT%xd--WB3Kl~mIs4x4BGdzi!csGu|*=IdmYaNNyVk^e|FM2dL9}3l*p3IID zPoSnAC8sAqQ(Ndvh5zB&2myU=NbRHHR;Tn{ z0oRNRj+f}Fznjk%tH)Axqg1Vj8O&bRUOSSq6c|kdy|^44ZqcPjNNFGO1yXt_rSadJ zHHz~tTR6B!>s~r4kMn*gnF`26!tv!K_)Hy^gpc+MOV-lnlKb(8vupdgE_qr1mE0!p z!V&kP$hWA^x&8szWC7;$_x>>e`;7udho}*FgwWVee^b(L@0RZ7mw!gmzt=6jbwFPE z2PFO6Zs~#i@^?!5vAJ}nK0WCf$r6adfH9JNHFc`;`#vP)w(pZ12zvYwg%Wcw^;)jt zYPz2TR$QRg;!;7o|9B)k(XOPTv@|PZ_M8i-`v4{MloLvFtBw1X`XCZ%T|U0gOXeR- zy-Lu{WprvmCl^#8=th8o5^swip$>F|e8nY`LcxO##-S^JKMox2N~EB;cFBwar5JJfm&i!BJUEuSDy*Fcaf zfd+_>v~KZ((i!QJAHvKMS&BCX5{K$GB7$cjLjNG95pWsqe#I(RTZ7dNWHNW6jt*erPh)i7#1)2!vwFkg1#!`?&VuU>V12H8SSG2mb>Kard7HB zB8xrY`fkdgyN}2fx_{`tD(I1A{{81r^KW2y5^D1Y?t79jj|AtK>y%r93ee@Tht_>i zBSyM&sgJT_^UMBC%GOg>MZj5ilRPM zD*;yuv|S{$EA>&PNWXVhOGJ)z`E^ft;O1*^=RD@U-zU{+AEKbJ83pq~4!f9-q_!@> z-LEZkHnmxT29o1=wy8u*^OPxf7LCPCoQbx;`OR^XR({pR-eGRjDg+f9%$>O;xs$;K z;QR7{FBIS-1bDjS$N32{NjQ=OMrqb7X_|aIK$Yaq=oQSKEu*OPV_+RTyk=A0D011?Ufi2rdv;XOV&01NppSc}(__ z|L^9+RKa;%1B18_4IVoHtyc#7mVQ{S8^qVu#o+N zpXtrchVwn3v0D4A!v&RPd`av+O)jZBoq~2r(`QOyOfpIe5+z$G#|@byqN@`7#$chN zeH^OT*A+F|OD-g*G+4FTvvrfWw=4R^yuD)oiEV8!xr|Km=S)%+or`NXMdaes{|&$~xbJB=bvq$x$RQvlV2XlXs`D1`@lgy<|U`CB;1jcpm++BHe(y zs(X?8R4dSpm-$Tf{MVO|^WT z{e^R$!lWyTH5783000#&@p2yA-|=6wwF6V0^DD{!<((b+tx3Jjem~P9@t@r!`Lgq~ zlNsx^P3{_MFWLNwhkFsPj2~x%pMJhdUrM@a%zJ2uq*r}uZEoE?q(6 z(>FZ`egK~&qt^@Q$X4qXXE3kb_`#oG@~VoSE5~cc>-o!4i^yz|W_9wmheELrh3~5K z8CS_8ZS;w2b-&PDp|1L+-=dHB`iq*V@|zl6p5QL(-zIif%$&!qylZaWs=~4A{2E?u z79kHX_D^V<>GkdSX$^hXX62u+m&YT(g+Bk7&Qm?&?MEeUt7VLDARgW_wTOIsH8DVmYeM_`MBmlq${TOE4acb>JAn^W3tAtF{jY~ej7?+;nezyz^dd!d z(}G0wiv0nnt-dlogYmJY6)_CCLLg1eC-8Vq1V%{oj)Z z`=V(PE{_+GdZ+@nHz1oTVtun9GY_i+m6$}CieAk8&f`q|XOsI5nd?gRt|<-Cf1eW5$dh8y!I6AN@peLEVoIz)~3PPclSQ zhNbx#wvvGx)Hu4sZEfZlb;Xs+)s~;@{}dQP(-#StT9sjAeujHh24d5fL{F4iX)syA z*&o&Gzw$jCY2#bs(2U-gg z+XK;3JkUxB7{xhx_QBMNmP}c0K4SYSKr~vh3z>Lp=SXF0eHDPD3#s&c9%46hUFN0i z{2Nj4&t>0H`L`UV&;PNTIK5eTe_iGe**@&%-%nqrxNGUfp!IsawQA1f^z9p|Lhc)$zPLLx;YNM}aU-V?Xe8KMnA9%+o6Fnkey%p^+8&?w6suyzx z>VHuLTOS9ZbEeYZH7g0L6|DJu4q@^_m{v1y5{WAFdKNz|Pp4TgTCXcNw&f;W;mqI6 z#?%gL#z@oR{3XYIy2{Vo%^vseE{hAIgso*`%Bma74tizfbgQmbJ4;%174qfe=|c-T zr=M34kDgeY?226lJ47!;J!r2RCOvIhT>ByGi)kP#`{xtJVd$7tfwiQ=uB~MAwpZeg zk%hO)(a$$SEUyYGR3YaK&=OmHUg56ygj(rNxnG! z`H}Duq3JaL`G%e7AZ;>@4&Yaiv+z7q{vvPOE;VVb#ou5<;3Q>p8xs)~Xd8aCRBT&F zEruzR3lhk)`7h(iyMe%XO2tN=KD4-Ey1H$%fvU2mOjWPml;J!oPA&ZtPv1>ppo#NR zdr*`Y?U58kqKVEdf}bC{Zi{m_x_q~IqGm*-n?&C6a8PnFJHBv`_F{qG+h$E- zJZn3`IKU}=4g<5O;VH`d8B-9X%e{p!q7OejpBK4gS?gfs-`eKg8#SkQsH)9+sp@rW)(CIoL<4coLLGFs zp@Mh+d_14yf0lLFKDSNGw^{!RK>O!?qjxaPmogDYkFw2?UFDB|1+!qBm^TDO=!LOh zDyo8bU-T0vZHGfA7`;ALDM#|yaL3hgWgxjJ_JL{7WisiC{nJ;c@ku4paO|V_-l4JWc=(6Y zGZ2X@1DT_J{KpO#hbSU70HGziV(ie^rywHE2HX1x6=EFL+}%Dwme4Z7bQt`+26_5* z`m7BIM@4e>FTTo+sJwNEzAiy6d4?Jb77M_}0lzW>UvzEH@kh_=fk5nM!gyx@SQPXI zS+)F<5KB?!Q;n5xU+~rsv3{Ae6n}r~`o>5#(69MxoMwN0lzFJzdg3PXsaE^`JBq(J z8e?RxuIZdT)U;K%M=!REYC7kzrFT&oT=SCVn%EfmdgoR%{d9-48g1pTh9WKsBgf9+ zyIx9LL|pE1)*mj^(_HkpYMy4S9FOIZ-&=2rVS0lz=@bO)8g6h;?7qra@F#>Lv+Eel z!X^P?%|IJ;ZYFe`GGbSfm)Kp(s7JKSnde&gl^WQCF0CLgW;!&fgSkj&-E*?aO0HYq zH50=FiMmRHOe!5WTD0pb84|FC7hgcdr^tMgCx4{lmH+}rz<#tou{RQZA+h(8rE>5u z%6(lLpo+Add9qnoIbY}hj>^|C9(8(%} zc0bXr-P!qIX*uO|Y+l75OEKmbXx}CMeuBKq+DXg1rQ#x~0#14FmGaKe@a3V+ZQm7q zqg(4rGsTIzia^$v;<=%qB?gvT!Kr3VYUG|13Rw;>H+|-J~9@# z_h;qr(&Oaa%Do%%ep~Lnm%QJQdoPjqE3@w_WFWh{k(D0&6Xm@oo4&NSyjNx46Q7O5 zO*2#O%ZncPV+$mKmAdgq;*JVA7S>X%_7_zU755bp&`bLZ{B^nd*+EB@&%GZm?|;v| zSIGPQx%WZxZe`y!zg!Lq@YnIACH77mEX!+w*I4~{5rmP^jH0{ zjQ6EglJclL$w@@_ukv)NJjoT0OHY$0iOafFv;-AIb?NEyG@EZ(=nC3T_~Q2$D&R5a zie#=UTRK3pOI+4G0dkOj&AxWBavS*)dwYe6B6@G-T3#ex=4O6ng;Z-KFJxQ>?fXP^ z5tZnED)oyI%p&VEXKr-N#50u+*;L6%MsljkT5`%ctZfp?hbDkau4#QPkf+Lj)3{|D zmY|$eT&yC`8p*W`ehCJvq9Tqd!qtCDkIO?H5^gF@$-vsUfx%GFC zb5s+`jWQ*?Sqdh68L$AVOC%2T`Ke$ROgty_2-w4n7dMBh17A3^m=EFyk^exB=wyzU8GpBTwX+T?f23S<_; z;sicL>?gfWc|>)J5-<6k5lk)pdgzfP zYH83Ol6VjE&QxTE^hrFW`oxqg1ydkrmxk>Had7pt%;D-z59O#+PgLwZiMCaIvjz5g#GMLbe_g>hK*qWuTSRYZ>cY{@Syy{5Z{vDWx?Rd zJB^Qssc*|KI|o`m>ijr_eQW+)e3tfkaq`OFx4{=-W@-Sv>Mb{$Y@}|5s~BP;XgRKM zJ#Wru%P4ZZ6bVt}n;;KwW1h)ynCf${wcXglV-@!;_`vU9fwddZ;9nU1Ut|7J`Wd^N z;UQ(D`tdCvHSaPdAr$hF_IqW%*?xFcY;{jTkZ&S;0_}Gv(z601dMFr~1scXJJ;He5 zSzxe8>eilNhl2G757sF?!upxOT0zeWKJTNO_SmOac`)9C$G_R8{}vdx1H-2;gI&g@ z{AEXK-V~sAwN?A6Pel7vyT16LirBEkot4)Iq9@>N#(i4nLt@^7!x{ipNd> z&p?*;!n%_G2`~Sc9`Ss&1w1#w2OfS>sz>}D->2#E3L>D#dM@(nc^MEr(Bm2E`7!nQ z_y+Cq1HFn6bHAqAZd0Ng^y<5o`h*_S4n>b!Qkow4jQoGmgnXk@$IwT?kh@22G?H=)Q`nx!ts|4ByfH!hyXk-}FEP?kkOI!IL`)bFKaQu|-_kXnDJ z;(~_f9w8}EZ!P!>zuZ2j`bGu6=9H3Bqul<=w~8L&FPJ#L9|uuU{m@9I2v8s7MRW=iECd6sfsXpB)_O~&dzFW()_Tdh!p!1ee9>c+FZMEY=hnr$#ean{BsIxj z-rO#O@Uz)jZ6{kkZ=QB9r94IMrQ{(;;2Gq}*+abCQdbsYzB~!!Aj%}%W1hF@G{1jE zzv)jGq452Yq0yb+u`q=QyF^1u?$Z4Jb+O8NtInF`_pgyZo^B-VkP>HlB{on(yynoM zvV5P@ks8pE+}9N^B*{P};4{0oRB|=4uueu_g&uv!a_PTnilH zpCUfbR{9Z;Y+o=-F1fhS*IQ`8Va=42i69w)>gg27hiCbkRs%UC$swkINZ4C zAz;Yf!~~!Ry)Yy=2lIy2z^dU_c~La7UoPFP_shLe5pGnNm{n@Y1`z}y`8#OTJop71 z>q%_CU3c>>%P&HeTxlL3RA6ut+2qvD$}ZUavXdwa3#Eem>h-hChwl8&gZe`_!7no? zzdo0`_@}?HK4WZ40 zCRRzAOHYPv^)pUm&RA`rW^dZ)b0DalE}XX)$$_kHrPSqnuc1)ou0&ihO_rIoug zwAIN(^{I6q{8V6R{!S6}pB^xh*E5M>7@6`OJ7g07R$4H(A0y~u5_045V1q>UPWQj5 zHp>rkwmYBSTv-Y_)BgdWC+Np!Cxa2eJ&XPp?bk>igIJ@_%Bfar{N1HWLXt27tt<0^ zsE?`#x{n-db7*+|Kz9XsQail{jH9hIVDa|62CV2yWmP1YRZTKnya5;-exG`4Um!p7 z=M6O2r0FAG1(g$#=Le03U(ixUW%Q@00S`(ktr8I)DmZ-nK(~`ADk5=I_b8N{=7*@g zjE`b-@;+j5a%Rc*#dLxw@3Nj72?y8P69>uVE3!OglT0uudy0IsN%QIn4!>M4rdP<&iR51Zid8Zg?Q91BgwR7*DqRHbEc8}xqQY6BV4m8_7VHmCjdd5zjS{4D&=Wx zj5+hpFXvp~Z}f1tAhYswlw{{^s^~)!5M`y2dYVsC<&$4=^f$W&_Eg(hqkCLckdL?*p>0`5609(uf#9E3DFheGk6rSB zdK>&p{c%1&?qKo>baxOBSBQf&(K2tVjo6df58Gg-7nEX|Aa+djmT>y^Qli0x)8j@< zG!Bf~oF6l*_JrF-9v6h$$BmTVMC)i3kK|JGEC6`sjr7XE3)^{?m`toO)R35@OJXU;OK!~7`&PTAEY4v7Xxi&<|*Rh_f z3`r52;+NL?2qoG|-3e6Xb62_?*sLV#rlXMYX$)~5 zX&CLHRne6?%$+(p0IeVrqLoFZsvIEWX@A2B(= znS)soOYF``+%iyM_UQnPY0`a3$)%lPdG{%<_NT?e3Ra4i#A^y-hkFq$C}*;5i5@Tu zCkuAEKgv7glXb6xFme(|P83$il+{)K@g}j8w{pFca{*n;C}p?2t9+&UygBobU$g$z z{{9kwwvSVgVbIWm6NpVGK9}!|t&Wb0@4Yg5#@Lb3_6EDnYei!m;BdEe+iaRrfl zu}}Q&lk&Ol)8nIO2J?u+kJo>xbp#WPe%JZ>yEuG(p?JL2nIt5$w!rukft)zd6+ME^ zSbuVs_N?#tP<3MVLvy$DE{$^DWzK1wb}4h-XXw~wMa@MOvNb93mnRM6L=$W`mEV<_ z)4cZ0K1Usn`9H}%siH<=WYrCvO^}pHWF_E^HI-jRpt!>^Qko_Hm>whP^2gpq9;{P0 z@n##S+qb-#3B!6(ag?*=G1@rNOg|>`r0gflfOZx$v&rv8@bC@&ceE4~TsoERZrFIm zibShicl5EfmV*F+^{so2sPx9oWRGV5B&U9+j3Rq-f>^-9q7KXv=+N5)W#IjGgEpvypeZ|1^{vRDv)+R-~gC zcm%l)+5H_pL>jq7A;Ni3o`c*26sl>v^CYuzJq}{wbn$wwY$Dd;`rY^of`^0u6#Rf3 z>$J-cqr^q&;nbmKN#>Z?G16}v zB{@)Xy8!6)8rv-U1znlXb>sM-<_&W$_~3vEdG}L{%!9jL&9pV02SMqlC?K7Anj= zp66y^88I&_oILp!9H{Gj8R1Ucs>aFGx1I<=J=Dh1IEgSYQngma4YR2; z&BX~sY1%M8UHnTr6%A#Jg#R_VSI>}nIkQStujs*fGp>!{|H9~*EJwWgHW#0a09!$V zEwpjEF12Z?z*Q9*;WkA=l^STvye0HtzI|TeKITU%drDWO{wMRm>|o+ckMx&JLJuKE zf0`Rf7Y~e#30BNGB9Hpo-Xg6p3JxPWBeJD6`i{iBu6R%Q#FsF6mGhVn+H7d-2nX6C zV;RZ{$!F5mT*wuVurAh=9fLiDn% zd7g@ls?;i9AM;Me;KGVvQwuP4;st)oo^NQH4Ir;VZ-bn8AF}d=9YjTA{XM^1or05R z^BB~v&e{U|qGGW*iGx=9a#?(ISL+VSR{DR=P3T zKlN#>50`gzECn*|I$1}`OY3bSp>c#Vdc0{L8zclQ%Gz-eu0dxRQg4+8-W*Is(PoVa~#QS`gGT+(P` ziTxM_xd1TnE)g%97R#Fk?mRV&9i!d)?$PLLnN~A#m!t*|B8uNfLu02HEA_wQP#JmVI-w3P83^Yu$OqUKa^Q8iKhYTgf zYO)8XLImo;VJ04u&jHL=!x9IiLFhZ2Hxo;^_wHW_;(WNjfk4bC|~WaLFEN5BP99s0R8GhfRiuWjlQav6WrE{;t*+iKb7 z6Wh#H@Ka)atr~$V1X`2Ipw1+skF5}XbN`F~G(2H-|JH_DG!s`m!T<9hoyEoAi8#=^ z4^a25gGSG%*aFm$@}*>U{8%qJBT=+a_*WXq%jvbmzPZMHIlrj9^p>{(9OSH4}og{~1f}6aGrua*A1gA%lOO#-gpTM$mq#lx+DCq82>hTI0)vuV1OY`SMW+^hs4LoelSu$ zrAVfUU&^G) zY}3LSvv~yX?RuB~&ou&CzYjg zUYtA;LOwmnZ~Tw{;{UJl>qKLe`{qK{3%Dm>Im&`1UJ|dVPm%s3$xD2K1GEgI8n(bE z6%fqLAF#-(ukIpGrR1?5sZ^7c%!S;{z|Ytau_{Ls06RY%}Vr7Gu#*c_B!>arbofb>cu)Z>YJgBA=QbmP8STf09J&s4(Xf#j$4C zz;I$sMX2T()uqOwGeJZ8=aN=f8$1eJPJVKkK~j*RUN!BaFI!uJUCn}uJB<>4x(bKz zHwsj55^C?RGEx@F=<%a#(B+Lq;+-vf3qe}WX09@MxYNnv&5zW)8RsyX~_681@ zTJ7kKMoN}^a{s)DJtnK~<4L_-gp%_V@fQda8NCEC{Xbvflc1Wf-F@tpiTnYdff${q5VTdh1>VFre9*)*G(!> zHfKNNV=#RMBj}mR2gxX~)Nkwd5~9T&Jxq3d1b?wdv{Yb^aNvwsrw`cuD*$A^^gAYX z9k_*f9jR`&)6pWbwEidRsczOqmx*n`+hbvU1JO{^8K2p_w`NH&MCW~8(OUD5^ylcj z%+vhLVjgimo1%b=d+Wg&8@gp&tux+C#yntu$YS|doqh@FG6<7*@}T+vIkF#e(I=%w z@`tMUdBb`K3U*E?t}v2vZ*+&IL}CmgQMAa%Z+?ZUmkGmX0LF2bk>@JlZlZw!({Rx zG_JFGBQcbh%FUkKoe?^RRpS$#QkZq|>F%F-VtlMApy|k7Rm5@rN|9x%gcUi10=Kf2 zvom_TL`iU}NlQ;cuOTYhYUjvoy|Jf>ej5jz#+V1a?$k55ApiPBLO^vqRn1qLa3=3b!JIW5y*Js;~6vMX^9JZ1?>rg&;q6y z3+|&wg7(p3cmG^EVt^OZfMF%XMJ%r=k!j>f^%@!eq&hAVPLIc0fwP6kF^6pR_Jj(o zjVV}%*+>rKr02`Pm1on>gr!xLx;}5cVP(Qa*KpTl%bdEfJz=ys4K>&o54$*BjIYYY zwU|XpC#FL!6(0R$eLS4Y!P^EhQI6Y&>8pa!sst!l$@Cg~*Pbs;1qSOx^=K@_{Kq!p z*h+mn9iH(YGnw1-Wg?RG?@Ro~|3`$z*U|RLA}$tuV}u|_Mt)o z<}n|t7oX0lMc|xRAw3o_7S3P(qyDPWx360@8tdDvYOQBrQx)aC)M3MIo)#6RS zD{;b`j-)CNwRY99q>JuEg!A`b5S4bmU@d>`;xVB9WE2<+ewpR|3DlM2el~74ode-l zQUh#Q>J$r{w8=duYY6@ua4PSUge&k0=)}$&=GYpYJIy(ZY{8{NsbTsAD|D96Sq=6~ zvq7||!@yKF#iyC55EeGmk@E_c3uLF6 z&&b!Di zVajQ!U$xF-z?V1}wXS&cD_)Q(68@Eg-C;}(XO9trM=DKqy!{R5d`h_YG4}KFIjs|< zt$HIh@S#FY!ljH}`inGn!%tv?gUdB?^pVwQr*^_P*Ep335g4eG%?O#dn zsOD{Pt^uN`^|dO(vmEX;t9Ek-_L$`rDpQMdn$%e)2`ZbU7AKUwJF&93y>7qclM948 z-Hd9S?tDdZCrDWt5^h{kTXVnH?(;BK>JgB*sC&D=WRi6o6tGYhUrmT~zar-m#Ed(a zWKXua@8a~1fE}rYP(4KW=KM166OoF@G3a=AWts4!y74^1n|LuuSx7T4PA)H^nB3jC zBhfM@ac)UdvhoikpuCmBq=}D&7#a%ZwvshUNvAvfD^V>HM6JP zP!PsI*YzsWw1N!Xs>d>d4;YwBQO5w6hMG@ei0iEl_8feL_Bef|zM9Rzy7fm9Yd5u> zKy6{`9lyfhvoa`6`vFyLrkM3Y={RFWztLT1|kf5j6)Z5c5lwOJNO>`0;S(r|& zZD?E-W}{ankcrQu!|Wz9({ewmE!#;IGQmcy@HTj%6WJb+Z7t(bC&H5CEl%7T3kRUb z$R&?q>+|ZZv{J3a_?;@fxV>qp``FSjeFn~PZyPYpCQzJejEdL8&< z^?d{@BNwzZ6ipnBk538UYB2(1fMX;1@<4dZ%7t^)@S?Amlf$Iv)`QO9b_cDb7R zTR$%Qdpr(1a?M_dt>?*w)|!YBS})h5PO2?f6HaU?3RZ1&?wwAL#?y~cOBwC$g%}x0 zunl8@98(V3N1>k`0UFsE%Evcsr+|)kcLFfFtF;>%jw}c5#**`&zrK$Ruj-&2_aZ-bcg@h-CpWnRcc7+pA~^;wjp93ApVYsJ2hSe6``t; zELOUgmU7OoS0QqIk;nkWzN8eKJgFFyER2pBjOSA4I^OEi1OC#wy-@BWPft0D6W$Uv zKG4BXF|jQ+K^2Bho%jeiJ(^J5RHmQmG80 z%wi*&8{k@0#m2J7Fls8JZA zkj;<-AF~9(I0yXpwCpJM%c1^%OU@UAlLuqx>tpOv$dVQ+zvJnkYaEU-aA)5GH z&xnX(F664!_+rGJWm>yLTwR|T0e%hE?uOxrPw}w6wz7f)#xh8b+D*^Pikz#B*rlLP z)|e<(=#AVj>QsO+GwLdnZc#OQ-6T~|kE#Orib0&kWaefg$L3c_g!n=Fl&AXm2lhqK$-FELcFq+~0C zuS8tiY5cy8S?1oBiVni9W0Zjh*;V*r*Bdpj84G_`$}GTa%k!dpc-Dz)t2$NPQY!$O z&fp-Jkvu6|Sj?SM1g)x0(4;x0pf#9E5-lOtCK0z5+!P2Sxsk^ZohU3aNjg>qkHB&k zsrSKP-2bI)!4TUpj)5f9Bqr_DsmzO9@yh~T9waiq9OGSB4H}FaQ6ywnfUKEgn&W%e zR(OQzD9D}1;DllnsA-)u*jRE{e9!5zZJMRL1j)l?fA6V!p`4iz+IWX(=R1K=L@={L9%>=h72sf6GsWCgKNn zEAD8@@$C9;_HnqUgB)QNx}o&c1NBJS;W}Cc-7yvjt=wDLdrjbU&iX_6V0?A}D$VaF zja_FfoXrClS7&-7j|gOYq_~x%>5fYeIzCjjA%4NgDDBeyraIfyI*gqcHQZQm77C{H zrF2lHA*-)Q-v@$;Evlxb*A)w_U4HpxmtD4t(2U|yS=E*Rafjxg z)DJ-2tJ=SUX+b{#+A97(3RfBXoOudY9FmBt0zW4A$igdK{t{zI7V2w;`1ToN;SH$Y z!tEEPr}V~wFj7fxq08b#xNjcwM;%hh+TgC5;xESkgDp!G(`+Qdb+v+5&_ zZ5O7CdmBqi<9lk1)XRMkg2cmI8OC51u6j9K#SGDwIZAH5g};gLZU%O%oPQ^0xMt;= zf|0T9LV-bMdP3Kl30>7j@^O;n)A1ZY<59K+LYzIY+O@q3T1N_u)KKXtZ!pq?DGa$l zr;JL*_#`!4+}j|j*E;+(<717pj8r)-4yC_G0L`tl&uM7f3id;|J)XG&aU4q59SBx+ zGz2z>1G_Uv>iT3dRyp1v2b*lM&#+_|U1MvE1wR9rsf1oZ!9NO#B;9J<^(496sU-ON zFs#1~qKWz(N?+_(vUlB37UP+**y zIJ>4V?Fv<)kQEyy?vsJNnZp%+v%1LhTSNj*jImE$c3r!2^(I+xc4g*=taXa5RsZkW zl64qX>@D0)_(^6&b-ULJKowMVRJ~@kxiV>juA(Vhk4%RiyYEAC3*U)oP;!VHx8NU& zhSJjt^=UO%N$sp;a;H)s}ML^H@u33LiqxEJuD z853pAr*PP;0c^9D$>fs~R>wEgNG^t{n1V51@gTBp2ER(&J|`LdW?COI9fT-^45w*G zT=y4Jm(u^4g;I~JV#LUPhzAkGK@}S+D>ZjQBj!8oWhq%Jm2txmUto<8NK|-_pf^S3 z;}lnLP2os!q(k^!SM#Nk;j_<+G`^>_vW*<6cKR=4@8NPK3~4Xc2AInk$HKRnZiWN2*tv| zCQ!XnsDkB<`Q~VKC3%Qe$dtAwzVO+df&>s!*g7)Rq zD+_bA**E(HR6`TgPi9}!!=4aS`PhpJW}=ZRDG;3)e^w^rg4;@%CZe@sVvLNfh!Si! znD|_wA*++MhfWbXGyN)#S7D&6m5)bN zF41G)ycd}_j0Lx#Ig0KP38sUM!RO$pg7en!-_i>HGbVJP!9?7NWa7$n_j}alD}yKo zQ-xl&&blTg0Yn*;eyTMV-9`S8eQjk(QAtKfYBAtKflkhg!Pz)WtO^EJ`S`lu6ZlLq zLICDEk&(+Fncbj#W1m*3C^c<7Fr+HG!s*am#V~v^N8|R3Zoz50*yrw_q}uc}rfW{Z zrX=u+9)QY2FZhh22ZOPMY%)UST}6d-8<7eAnAIISS)@e%w8**KcmEAaOtjXQp}+>C zsjp1ujcfE|8{lYpXOO!%(*t^&=}2!ZL@iG9|FPg|Tp5&wqs+g0<~^V4!;LRB_)gA& z9nLjm^eh8u=c=)Cg!~W3g1+LAshCCQ9^1yu? zhG|ekSy_%5Qi5)+k`Ru|WTaF)`67BA!`l57B`AKHD*gvvtj=AV>Dnn)Cpw~%l&1SS zUQKxlrTYYw38!PMJ@*P|Q!0t<;-COK1G^lHdIUbBn9sqQw}ZySx2t!OXG&eV`0$Xm z75Jt*okrQ0$!&YdF2tn>z>~Zo7dw_f;qAqDRnTK1se(0Y=6)V-T+@KRzb6(O=uLS< zEPkIy=9*~VV0)o(lrRdC@dwo{HDAuYAhmT)nXzI(@1Vt50btdvoZE?HG#fXB)5Slp zdV^7XL;$nIFWL*FFj&FFThTRhJFC7l8+U@ozsvxu;#6GfOW$1FqfE4r zi4s&AzMsPS_bAbX*A#=p7(TR*-!Jvu`H3eIC)cb*7)qG$IptERHDJDn?hcWNvxkW= z1ZyVyg-RYO#NoeRLiiRb_T=eJEvpo31EqRh+8M^m!=>nwf z3II13`%x+LywN+@T^J9yY7MNZ)Q!`F>iWv>0t2ONxirXqUxv+{w3xV}2(AL8S%Ur+ ztqp4e+cNF$1PU@KXgw}*fIZW*_=0Lzq~+czyd8?)xwO2?Sm8-_%a`oE)&p!o)N^8)jR$-G4#XNTGl zpz|IQy~V5>KWT&Lm~n%QwDK`Z zm&|LU8>|Usf=Ml|AK62^>OyGNO=~~X88UBSk589uX_aOX#C~}hn8|YKzOnQX$W&yT zCOa)bVbILO!L^1;qmJAQP0y5d~#K;3_RM2XZa;e{w zMF0={8;wOZmRBv=GsCJf48L)_!6{2vYU zCwY`KShMEJ_2=}xbj-5;;IDg73Vx4DWuMMed$n$my1@%XG2c6BnQcg{2wS!I`OPh3 z?Q}26$chV?if!Ntb=>#)ru0`I| zh3HpJ??$wKkz+KQ4)Kx{j`$Ic+#5;)zNC|II@W zU=^`GN^w`86MF|4$@d_gRF~SvLq3jv0|%=Nd0cA3-kiHT?p*|U9}$~x@j?1Wm2R(9 z1FOBZ0@`Azgl3OHTjG~oF$j*9+s|F62)hQ7ZVoXd^mBT(HH zhnd`ZC#bHU&Gqh`&vj?1_S%8M$L=4gT&?eyF}U)$A>!v}puD{T9ixI|#)!v}&W$x5 z_Fte!2!Ai5l?Co-1ujH`y+IrmbiFa6==cN_huL8Pkdw~ez9O&lJ@6h6xW5FrUJsF3 zGpybjbsnLV;#T2PX^G}q&8_dC7i76r)cFe(%VI@@SEqoYyIIXVjC7j!N9HwmHy;#R zqIL@z1T&L5#Fs*K9G;IA!k#${-5;r@Cn*4F@KXYg$RGC(U2^><7n8 zs5BN$70lH3bhZJ`@qTS!E5j@gRm&V0Zk$jN4)hLI(KccD=co@-4iXu9JW5!WKlT>O zh>f1Jtb(>UTh3-?++8Rmmc4uUh`w6=fs7@FO8W#wS)VPPH_7Z{b%LgZ)AWo-1L-$4 zHEGep_;<%B9P~t!hJUg+$h!S`DuY?0{bblmRnQ;{{X`G?sXlaptOS=??DOqgtV$S~ z1aA%;P_)e-j!x&(9$pG3kQpS%B=#O|%)g(S>6#^2_!KLR1dx)a(m&3FWMjVAmGrf|yZ4bufAOy7Hs=XGsyR&s)MhYgewF;cmi(Wn8nj6ESV+<$K91daUiDuW zYs7=c;~?^@@u(QZsx5XUT6az!B^)l>3K;WceMtkq-tINS*$^xUkIsj8ZJ4{h2~`N>mPIZQe^4`@?~6S@CoM z-@EA;eT5&T*QxGkaFg0+P!pNhWDrL21Y0PdX>{WjoYW;9i!vjU+!{B?y+k)gBV47y zD4g}x&OWU29$>vr(-p?j0Wil&)+CgV3Ti+5+oDP3aMBPm%$ExUr9Vl_hRsXpXjr&-)Fy7YBtSuZ{kTR zn5Zg%LUQ)NN2f*ToD==AXQU-w&4X0UOT6L+#g(%mwG_SSafYb&+0Op-cYbHfl`UlJ z_mr3Ia6u+ra<%_{01cY=0si}E`n?~5Lyf4nc^8y_3&h0k!A9!vJd|IOXAfoN5Ggr- zMoxDOq+B{Fh!8UV++if9!rb-9A@>Km`u^{F;OFYR(GwEui!B>V7mk$r+$CG5 zg15gN!+B7mN! z>M+$H)&liYuxMC?iTHxMv4e|&>l!r9}E)X89Z za9VCmG=twEQYYev^sQw-W{4l6>=ayI51o3Yk^0{rQf0|HoR)LoG_iN=%%jX@J|)@m z*?3DYed5fgxb))+-zQ3BrPKd=6* zgiA{J{pw8~o8_}U^7Q)$1@~|0q}Yw+Rh5gch8W z7aq3ih6e9hDm}#L`TwP~`!{%GnT!K{N6k94uY(EfCM3@o^0@yXS)1!5{=>mDzuzC| zbK>PokIg*8YE=h!L~<@uT+v*>JzDFH)Ya0J-X?KZQF=xPUtxpN;ij$CklKC!AKqN(~ zsvaEjyZ8Iv9%a<3S`zF z%zp=|D%Z0Yqt?p@eXo%3#7FRXL0H0zXEZM^xLX@+a~S8O&afwqmHUeOa^vMhb%SB- z6jR?M=tqvxJ;s%Y^bng45*tkWi>gy>O3ZTt;{@mVGleEfC&_F?e^2Z!ianVT=Z7Q( zSt|9#AH&b^SYCWAJ$SwNST~rB_pBm!$e!0CKQ(Q$kH&q##G%u&CBe#u%c>8wge;Yd zEiGI)FH8?ek)gmDNBAAWY)NkM+@vTQ0SA|EUS3SPj<$8ewd}GbT6iBJJZh=ws(O?1 z&&@RD#uE{$pd5iA1Z9cmwJ!RTNMk}OvKLG7AUnsQz$Qz*;DG8p1!NDEkgaO)ptBoW zhRa4Zaj06HJ@?~DsNr~APkf_*r2vm>8pVdNiVvoc)yM39%EsU~Fop)WY$;C4wE6MJ z=;`oC4$()4RPRjeDZI6}vl2ZAuSXbfBlW6yE5t!qiJMZ!YpVJ=IR4YY?-H*I&`v+V znZFhk^P@*KHnN& zalF@L3m~!TdJUJd+WUe7)-!;ci-+=}fVEzA{y}q?7nNHCp5I;NM^K3=wTQQ;cmVNL zE|nHec18e0C$5an5=U`_8ZMya-sdO*o%VE@P_l%KwS=3JR&}@v8p>yr7Ma@%#H^XizMAYxYtOvaRepUogZ{KK)0!oDcD)8&Rm_DKh}+q~<-9jUaFn-C z8$sDjd2YTjtKK#P?{J87&RKTDNH%%d<8;pXHOMt?CW7v5?*zMEO^hy%;yjndF?e$a}whEEk(&;0hXSA<9p;)@;E9rq_Ph)Vf-FU6+!Hx*kyfC}3c&mLZ zp4$Y{t9hZ`T8l%>YV0X<}{A}#P@f+UpnhAYfkz`u1{QJ*$_cNydusaKpUahz^& zQlHLwrFv&1eQo84OkZ)s1{~pS{v~S-7V4V^)74_%FG7B9tNHhw`$0tfEkH!Fw&$OB zx*bM$dT}D3HXF$sdCRuDU$))p;^yuRuV7GUdE2i!uk|~6X#JE#F~?DWtMYfN|7CVW z_sXo3`^#DfWOB_}2l8};cSz6+tXt3VZUglc8`k%Xp`hKIB#RhTPe!-)CbW601fWMm zty`?ft~+FX_61uqqT?&wqErMf>PGS{3L%xA%jzJ{@}WTB6WHxTu?KxabwG^~O@G6r zAlD&TjIe6x_fDn8c^jGKuRC`!K5~%TkTeHzpEdy)3wBE9y~TeL&nXcHPTo458E`q$ zgXwaM^ENt^2-x1B=)fOZG%U(j=nr6XttTD z4kEb7NKr@>s4>%FB=04+T3^u0Vf4YlaOIxk_vA+8w>3qHmV;g(H2KHJnkMLULO;GZ zP`Zcm1pIwhAiUW#bNDg-md9ziI#9JE(Kd#dI4Q9#`ueiKZ|WJohhKQ(Cs`Enu^y^K zPl<=5tT6;cea|5N1B!&diQRN?%e)(r$IhH$<_IlZ9ik%Z2{GO}<7Wv)@`l=fFFM3f z)4b2%C~z5AU7U|k$OKK?n3SB8?*?Spp@1ZCQ%qv{E+DdCtas*E>Aap7eX>Hz8`*On z$s5_#1~?vi0Al3*+d|cfZPX-x`76ZG-#K4A8J140Ev_|I>}*oa(B$aO!QMAIrDCS6 z=P2{-wN`hpRl0LLL6qJ17)6J$?^|4c8zt6M zT-u<+tQ_3O%4#;5vEnV{=dYIGl5eWV9!2TA?$OrxRQf-x%qv|v@}HYudZ@W)d;Hcv z<#pBk{{N|~_TPQTuDbtkdRl&n24wdY{vUhq9v@|KJ#arkP(*N}f<>$Hs6hh-Oav7W zWS49p(GUWJn?*@THV_TTHreH3tp<}o(h!UlTea4vt+xECze-!Qcn>0i_n>HlfJUWt z*Qf;X0wU!7o|)&_TM{n%`{R8-uL~#VJoC(b&YU?jbDkNyzlAm+I^TYXn6JyJ(FO~W}SoYXce_9?AKI|Kb$MS=9wf-wTi4^Emx9sE-a)U7TvxBd*Q%0Ry`d z&83TPh|!g<)$t_rfp3tdrpWyt)c|M_?wUV|E>+PIvDd7%3hL2OSxVmxoEcq;;B{8V z7UMXJKcaLrN5vbwvD4PZ%lA^!@OYg3RdRc9g(`eGsY@q$-cccExdqqpr=IRi`BaZS z|M$WPoLF|4II)^`RNW2{G^9A8@1H6TU*f3xNP_cy^ikR*ttzTbNGEXJ`?SRhc33PO zTJx>qVYzn440n(84Tr|*E&^A}yTpKbnMzSayQ(tzJ}mHIWf$xhG47wQ zSU5sONJkm?!z(7y_7upuQaD*DU!KMDQNDijTYTHfSGa!caa8t*JQ88#hE_QaYD@J9 z+xNDHw(q1E4b7Ku6kW!Wk0C8xYj7K3c1g3-B@mcs978s`u&3D0?vG4trT*=KD761%)n|CO@HXVT#XRuS|6-opAuJ#L*v)W+idH)D zFPNpPeapVofnD`t52FlYE`bOe0sMhMS?O7UuYW6y*g;CbY-&5Jnb*3Rxx+{{KdbIy zfH^{dzeESX93lV60Tx*S)ZVL)e5o?r2w^P=EMKQGtJ24&r{9sIyEr<1GQ69?<_H=7 z>fWdllEOca9AHy)01O{)J92>4(E+f9km*Y}OZuLykbt(U{yHld72_L7rBEHdbJbS* z=@MLRX!#Ad8NuraD(5Y! zZbFxgT<=S(8@lH=kA-4W+oa)Uo2=Hzc2zeV36I_i_6NqJODaR545MwklgJ zc+wq}Vka8rj}DxXVtEgntL-D3VOupvlE-PiNB8*HNM#XA_QyjGBg3Zew5s7A(c)%((0SKYW40Bt=>a&A8K{!LzQxZ zbA-LbfA^~}R6lV82*)-NH*pc1wW|=N6-ynO8mRjqm{1KXi(lG8J zoxrl2yI}UOb>d_LDF> za@;mS*i~t^N>of-twlw!2=~~2L7Uj4#{kP;*hp)ql7IF{j}+@5S6c71Wj?pCRCU_# z201Fl%3ICiWST|?^o_KvwOA(C84diAh+^|5=apB=W*T7^^(CDDjrCU&gECUm`kt6s zJsliDKGn0R8?5V9J&(Px6>&Nd2S14E~DFklJUaobeP znuDuV=Cu3_c~Cnij*2g7-{2x8UCJp~haq|-tY*c38Sy_cNc^w>l)O9eGmZs{t+0s3 zoXTq%27_%x5z_f*sta_IHg}^^iAZih2rM|2h-CM60FJe1$j+x&(sKX=*9#rERrafE zwm6o{?)I|-`13>~f0AFs*l+Wbh%MvmCinSUMm70{%Ta$ArBoc`HkJ>0f&KV(tbRKl z8^d?{Jubi^iMv?hB%Bq*|7u-|n!yioozH&6UQR07uQ>KCE|OJQT1hl@(+=~EcYK`M z-{A9IGUntP(C3zY(8$}0=gR#{H+;mGs4e5%ahv5-^>^wfTDP#|ENi!JVL90C)@eMn zt6NwOo^a~~c~G~o9PEDUD0xt~upI1h>yWw?23AJu7M4W=*eB7u=h{92l=- z@)t|1rObpZCUfSi1YQvy+qvSX!q{QoiA%}zd_vH+P$Z8@2TA9i~A7m9w0LN)8HGp)Yl6?g%{TNW^i+0 zI|dN7cUG(R#{``k8ZcjYjW3^QVt3uu?b;~q4wfNVr;x2+hK0N>VUx55!b%lWWy)GZ zTl`^~RP(aCW37<`Q!X5yQ{nLHV_=N4U!mdpuA@z#1Q$5LYlvf!K7)s#pmS&!B9_+5^h9Q&m4}H^d_&yfi zs7*xMKE_4=;rOeXZdN(P-ig~+dT#D!QY^j?BQz~6ZP^_$1{myfUcs5n6( zvpYz5K&Lmp|9SdtznHhWe-KA^|JlS5uYH}YeTmpmaqx-nT_rS3{@bicN&d(8KTG>O zP5TsGTKSCZKisMp&nMc~E#Vz9toCGXRjBK6HIG$qq&ZTX1CN%$uGDgpoReDD?>u?a zh?hPR!jakpD_;mH2jnSJp`e={ujETzzxNk&Y_q+Dtoy4vtD(7g8+f;Lc``;wOgC`(fN2*yENd^`ijoL%o*!Vntoc~pT9fA zsmh!|xJ>dXC5@|Z6v}d_)lXO)^=2(Z!YBzK$L(v=w$Rl{)|j{C%(Ttr5`+9Af@IVx zSB%YWc}(uZHlHzwto34Bzq+$r{13XVQIJ-sB7#&%g6YflOBf_mhGQ}(DaNTg;g)U` zQv&;Pv!7|!6gd-UOX(NMjgzW&-Wxi~QcUp14Aze96I znr*(D0>3Wi0Gcc5tV353+JALgo%ctyM&NHFnIF{kxJgC1IbCk9kiy6~W(IQiP=T1| zrMJqsIfkGa~^N%ke6M?*`kKFnjq2@F{@nMA02L)hL^ zVt1k)^6BvU^Chop|A*xCa9#IsLODeUcsNdiisY2I#LTtXm zFk~6gZpP7Fo6=iZImv+*zrM~=M}I*Q8FXZ?dM!*N$FDBduYL0zk5#Jl#$Z||3h)@V zlXj?F1zLM4{h<7tJ}6c6bPky<|E8CJPg>pBY*K!KIp#^q=V$x=>>sqAqKZ(9DKg_@ ziX60U1i4__8n4ElL-5Cy{~E&jo>z7G1*>dyN?ZPpMpv^PLBU z0j@EQ%a7{%?2s@A{~c*S znQmRe#!0zJnD`@}_F#|CdL-%u_Wq8_5Pj7Hk{|UcbevvMgfGbF5QWa+!EHB5E z^I1s0wtfq=%$;sgIi22ry(mf_1s)R4mDf z^QX}9hQ#^CfJUCkI>-_{)nnIv%+2g}sO6GIR3Fs8 zfJatvB2tiY;u~)_l$y-?}F#XVs|pgYK5goL4S-X`f0`p_Z1DyAfjHmUay$oZ#f|Q;ETlzp4D8CFJjjO%4C`d3J@CI`C|>h10zwY5j{7!{ zLGIE99rh(jtl_8@|0@)l!}tS>2&Pz5LI(Ovi4cyGd3!uiXA{8>72oiA{`Kk=YwLP9=1Mf*;4aPpkJ;ss5v=E0hr)jlRl#?i?eTo3S8x-4W!+XUR zwc~SW&8lZ5wu*z@eTDq(>Ccvr^b=vZB@5DOZflg6T4HQ27g-^{s&+qDU@b3)jQK!G z5ALXGdjp9ZWrNUmsOyt869JrpxsLQlP8*XX6dNqPJB=?lI!Q{zMk{v;IaPnTgZ?7% z<}8bd*R}_e?4PZ&f0xd_V~b`n`akRMQX*XL)^2i)LS*em*6+M~qUtw1BpVf&woPfT}B<0+L1<@imnd9~(EZJF!8 zhNBRrh8*tZns)*pbNYlx{K~C3xk878iv3PT-o__PTty|*IuUn%x~_9wAMAq#m+F6V zLj3xCR?|6+Z0fQn1-tij`6-MPQN1wb<&&6|MGSPenn~=!D;uGy@5N#p|1CN8F`ykZUbH% z>>C@R^S!Y?Ee{#?qVgvlEbptpczlyTV%Mp}9gs2&(UB%)5UmlTrMs^+VgE!tv=$= zg`kx~z`q4^YA@ZLGxq2YMB9C{Qw3JZ2Y28>+Ig@;;m{Y%M)X>ED6d{g>Bp- zpV#gi7*VM3cxA;OT|CY%Opp6ku316RM*rR$cfAx)tup&(3l|yPDctps(mbiPHO>b z>bdmx$bSCX&DMG4GT%`5>891*CgUY{k2&hlvKc%!TFc?0EXaK@>b+y7=zDUx#Cc5o z{by;z`A{DXuZPKn%#uN7zcP)H*{`E|sYGm-TMzKo(;yXl>sl(mk_1S?l0t)&O2*EN zZ?&yQNNw~{1<*Q+k_Y+%=*Yz6n7Qc0Vlyid{stKxc=qS&9MVrBT3FAgYu>gRLj&FEuTNu+i}Z-@H^Mub3E|Q8oa1ABKvzo6hSX@ve%ig@gba# zd-{Y$M3qgeT~SWKS){}eNnH_kz|D19>IA-brA8|Bh10>U@FeyE%fxqWxm1^m<0VCO z^Z&0z`OF18IjT1CSJ+>^TBw^&qc(Hl{TXp$N+}x)oB+NW3ELPK_mW&X_h}qU6$b)S z&eJ9R=~pXc=rtWxdqDbw9y#W->eCFC7byKLm-D@v zT~?!4bf_$D?tvpO4*X+Ks0$qkR9W7w*u(r8xQ29E{~hADXH3%K+t35>fV7{xc5Zid zuy=P-m$Lgj7_Yr1p9!X6V%PJQOkH;BQ)b(K((!9p?=_TR%je zt2UJZ4IY_$U2y94huc*{1erdt&2n<^Be1mAdtg3Te5UsqHNDYCxG3SRTlWU#pvF$+ zkF7y%dm@oCpk=w`DvZ~ytab6Ue}WwJ9cZ7E5jf-$E*>Ohu3XsiRm+(LDZw<92mrm2NQC)6%9P zuJ!fiz%;pLdSYGCP?L{Q=ONtLoch%D%sBk<NT-Cp+OV( zC9H+uepFewLS%8JO3mx^O>QaZgAkF013rtnhBI03khVyxt0@NsPIbZ2b!#RfTwOKK zPs;l=ec2&d(9Nh@m(U~~e8tm*=H88-d|nCVSS9C0@XUJ7=giol;vH4L!!51use~4y zEO3P*A&jQDu%cjkiNc2S<_%BFx>|wBE z{_IYeWrtLC&?K=wxQ0rqYOFoMvD%&B6x*xHc|AqIa?1=$+^IG1+hO>Km1I~%T+A$i zk1k|}`mbT5?w3QyopLFBk}R&cxjZOQcH}0>OpHA^x%n}0$vvo3x<(fDmw?N!GvWT-{-iN3*)m6@Z9Hrcy?sJR`F4sW7t+lg>-`26Y8@5D=R+BWx=Fk|BoD%7`n7O zhJ6*3MqoA1IbBAQKp!?KnZVMVf1>#ut3Kl`&ot-8?uv@{^C5CcYN$PJPAG6YO8T_V zATG|ya|~LUkR$8?OUg|&gwTXINP>X};d0TUUhRSO?zXF0SjhGC1mUx%$Qb6V zeta&a13<4BhV}MXMqfs51UJs*KF^bQ$T&n28MIJokGW)9R-6$9gA~ul1$r z63%5&Fqii-%b3riX?o2I!QrGyX_*m!%p2-5RVuj8EQ)29ljq9}p7%LUTc_^ugQ!f9 zTVHsi2}kw@33VyH9K*IaZj(tL4fbis1I%_HTWJVS^rA9g9GWlix#P4VR;?f6QqJ_c zOmz57fw{BP+T&JYPp;X(Cs(uy>#!U44`8G7>*i!`z3`ot+(^XdZlV1|o}mQnbIjhy z%-~BofUx>sXGi3WT)e^CHkJ8Mo<*z^#Y$BQsxwTlC{&^6Y^ZZl8y(6y>^aB8Ey1y5 zDy+ZnSZM58tyUuUPv81}i-@!L&~)IcpKJJPS8qz>uVtk1!rQqNTHz0;^(x&2kTGnM<9 zRk@k}KGcpm#iy!U7bT1gCXkvWaZzLv6qUZe9l`NlFgmTwcr8PaLv3WABzEX)p+yXl zm%kAW$zMqFmMGcz_M!IHmEro4#MZ#AWORor5B#|=I*|jtRU%}WPcuYPRbHW^eST^v z+A5+AvdGg;9jAtvlZUZ4k~X-{n+l)yRDwzK5?5tHe?`zFLKMKI;_WHCkp{W>KP`h=JZDY_n(M^l0`RPP{Sf>8QMh?dbwX;%1`mH&?lbzH#89QTGSOTIJ`}U&604-=y0dq%A}91>WBtem_j!?}&U)Ki!R= zJp4ool>fqN`E-XvZxGW5fq}#JdGhY$RCa-~zarNBIq^<_o`ysfbBB!RAx=7wAD-DHx=~H|I$!K(@@Z|#u zjgks?OBN-}DsVYU4oJv;-DwNq2id2Qo$Lb~VlU`N`{Hxg1VpXa=uU1Gt{Uhd5X{3-Qo4EARzKk4(mK2HL#_P~Rp=gdFjOD@CfS;* z-cKP^g-SrX6&0gNbp-rU@v>JhZLW1fyY=iwQZJ?8yAb`8ss^AzM}YG~9ZUtjXS z#LXYC`$`}6wW>ekqTFRFmE&fgRMkYSu89ysTb*>J>Y8$R@~qADOd>vqP<9^bW_7D- zRQr-4u5)A}u(3rOwOvt^U{G^SWx^Ul1}?epkX(wH153H<(%XH#YPS5uP2GwWN8PWb zA=2trm4h}bQ2@aXx}-J?LJi~1gy^&5V{Ia$m7&nPI>%Pxr zya=_LZe2UGp*EaD6-m^qeouMbb^bVMvn7tod>(1Sn}Z`!{K%&WOgR`S$ErBFa4`u1 zXH}qU{keFstIcXTak83%7|MCF>l4?tQmt2^GEuE7)1|jqHLB{jW}}_cz!T;Xs&!6u zwGOLQnUzY_RT}(sFE<*AjE&*@l}Zc*KIKA-5XT31Fpx4}$i$n*nk7R8-P0N;^Q|5Bw7@~An_{1_5j21&^suVzVeZKF=cMRjc}*(5?xl$5gxz;9^sL&JfI6P zBY2r*dFBf*I;wZ{ffW*WNgy=seU9t56Cyvsxz91@L(y4Lrgx&Box6>=K6hNp^J(`b zh^@h*0eIA;W7xZn6~8%I5}WgyV_48pv5E(xyXg!i_LkgYi@lq0SI30;g{XPig+(;W z%LpIzj-d@{;RCs7zz-9&CR^*LNMucX#&Oda*+FRGc;Gfze8 z%z`Vu5wgO~ZGj;nk=dezgL~Bb99ahK9@Ij)EvCHbWM~&z_Hie{c8IQ}Ld}M-U|?D! zY%Ov@<}QJym+1K966sqb)vO1hV6S294HQ??g*Y%mpNrR$1o##o!9*~@!Fn|yrgF&bb?JxDe>_Z@R7{VK6hNd^>fFZ44$61s3ecQ2O(20`t9M)rm^?%Hh#9{IN%|Ew!zZ)+U?;q$PZ2pR?;(2&~ z5j7&o3?Z4+nh!Pa!}Dh!ndh(3IetB+EO7e{m7CeGkl&Rmzr?Nyas|6*hS~j;FuT{m z6Hd`#j)T#qls2dLl857Gbs8^<)mLG*1DpRRMJh$6!y&1SQRK4C$HL;ZRThhTBUpUm zClM?@ng@%;&+B2a_(kHOQx>n31A8iN>25eG&wxsPv8Hdee8k}z^~$YZ1V7`PjK~Ux z;d|0FA%@?F>=A~)TP<(6QDZ{l|5*6_ZdgUl5gt$k{QgUb?LB@?1#J(+@cDz(=Jv+q z#_c^G;-uu+Cq8RON`-{!Hx4-;e>#lbk6${jJ>xsK|>}uZ5$|UP2IV$MOJ6d<` zuvmZD5}WnM;a#!*7$I!d_fj|8d$f;_VElsmql^3TEZ=T_j$&@G*1srUlP(|Z|Jn(L z(fpEC8oLCaIF?t2+5U_$+uyOPS^iNFh3!tD3gnFF3Nn2^n%v(J40VS0f~qT=qEwo9GRmi{8{MaO}I>~0bG`5@uvh;@i2r?Av^tsd%Ch@u21C2k{BV9xX5PNL<$ zJsO}E+5XW$pyiPPSTGDtCJjvvpPwfc<8*7?3cv_)k!{sis>XT2Ey}Yt4X%M zvg4CoI~~hM(3qjlauyHLS?1AMbc4_|@v4D(slVOjFEyDX!*Ws&$kUbikM|bR`X;wvSO;)s^SCBg{xRvjB2(=Teb>Rb<>8Tg}0ZZ@1fyY zy5fe9)MFPpmxdR4Xq7-uP9jy@PI7)dA2w(~iPXI7D#@`uZ`c@^LOz4jm>bFdgl2L} zrSTrE?nDKNs5`ZUs^>ha=40xw88Z`W-Q=|BJfNW1D<>N_glo;NF1xP63d*ausw&E{ zYV7v^wzoGQ4E{tdK$Vjz8K(CzJO{zA2K&NmB=I5-hj2WAg8I6;jFep@{~2r%A#cf6D}%$>En`VuzKNBGCwY)U1ZUuYuU?MCkGBVc!@p30 zQNz(r>CeFnaH!d!?mG3Vg~H?wgEpZ4Bi}^NlkBl1U@iZsT*;I;M=k!GLwI zb6-M#=2Eg1$h@~^BgI90FqIYcdyrmTQFHZ1DfEkXuqd=IG;8s1b+fd@+(fSoi8Z7| zCR(vfAc_#_5p_tgm3j|IHtb{_NOCHPsJIsrH|d6E*D7QvDe;ztpvHkcG)=^8B;9;F z5mYs*AmWuJD*j4=xZigcQQJvHEXD-pGYM7eIpKsmOEV^^KQMQbsq60>*+Uvc?+aeb zXwQ#R^x4WJlad?cWt-UiRmQFYh<(G-50~F&rS+pd602N z7ND(1$BKst&IID!pbi!eltdu$z5PYCV9k>EgGgr>>mxb>+b@Z)1PAkpuk;SM?%dQX zMWec&b@Xdr4)$i|zWur2D=e8d9|(R1AL9S@;M4e*c@zxDEGpP2^LtrOw3#gUkydv4 zRTCNO!!HH>2zFxKPw>sbK|HWnoQc4B_du{0NX7bFVeD|ME9g0N5ig0#46hGSIcB~b zT=5^3*RQ09+%sC`m7Tw9zYZqxf@(VCt5{u{paaQ87XAvD~LdimBbgFD`rRNoB#m4esJ zjtl+~ysKGU9--{Jn#JuwT?_A!L3@u|bz!@zWmumTya%zTs&*4%P!EU_jR+3?BvGaD zq_ZMdw}!H!)ziu3g>l6P7a73==(rM&i?h!l5a=Y8HHd!XN86~_W(V@!qu37A)yQgE zdd(YHJ*3t=FNP0=eJI!x4C~LXXlGyH8{Sv#a6Qf7ZTPaR)ukm9^~%!I*yYfN#Gdow z3O+HOXs;+$mBGOB0cboo-oDU1Zm^g$VHQ{Vxov2p&L*#a5_xCnxPBInYey&=u|L2J z(Y8DdJTO{WXR0Fs$|YyqEwcvv_)qv_h2jou?D+`j9@Xkt^#m`{o=7h)C@e1YElsb< zj@vKgTH%9(>!y7x2Gh$Q!w(kAj#YDUbX8}>eI1+*#eTJvTt;mUedDj(^nKQjuiwOG zB{&fe1@)mMcQ~p|;$Luf%Zw^+L4C!+6CNL`;+stPP%%@M4Sy96~nf*2>7W&$rpmu^X zKfMhHG55S3OuM)?#}PG!;M^82CUbR{r(h`$mj8PolN-gpYjgKyCNHJAAGvpbW%=rJd?#S{?B0J;beESf~kaPwN zl?Sy3{(6Nna~>J$8Z|h`X91E|u{6=&tJPiRA#wG=$dfRc(OU14?-I1hvujX5ZmO6p zQRTg?Y~fhvd^v-UChL0l4@``WQO*y|=7SEtH{%adpK^*U8yRq4EsSLK8D{UN1%Atmpq%<(@vFKypi(^91)ahr%&SgP9ip7lb+l)0C8?U`K>xN zC!>;s^t#^nI95GOaLI#ZflU_ns>!~VruEo=eKL}rAAcc9>#rw#W8Aea*59y(S*9|? z1)x~D?eFR5W3Tj{Qh|J{Co)B95Y|y$JiSpI{h)TLcGaLo5= zBU!r@8$vWq&h_5txIG)5vexljPhCu*I@l0CKaqPD%u(+->Yn4ZFihTNtad&bbdbBk ztEdFFL%3R@KZ~bDRop&sUd6#%9n1fMUxdP;g;GtEPju;9TTZDL>5!54Qbx^I_Dow( z%&42v&bb#Z79cCOlvf&bX>({~LVc-AW7@bxRMA?{!Yk>e+{7+SYTQ z>T15r(&}cOm_CYgO}CbvW67s<_QVK26Y0~4)#&ThS?&JT^okddM4vgTuBUPk=p&;H zxm@Mnn!YPsqjqszD;Ex-E@BV$xk`e*;Nv4*Y!u(AKC3!D6wjH&)B2dKZ&=oddjn-U zgs%aw@vT(u>+V6DIpp@ImV34RIfJal-anj9B<88Ye~FuWydkY9>7L7XSb_C-@aKdN z`14G?Fi4My^QrhHNpb3H z&qqWbxQR5OFWfFFyYC1(T+oclN*; z$rm&>#Gf+hv?ngO@vTSLWBqos0)`Lk1VT&n%C+o67yU4%=t{Mq5kW1g$K2zPgkzdbR} zc6>SGb^e@>Yy4G=zcYqM^LK-lUW-%vkGIN~6ytAw%<}_XglmcM*KdSQ&+eP`U4%=r z{MqI3$2_m>B3ylpzqiBBPKj%c6)rwSm(Om$wy-~y>qR;8r^#yf7OP(BWBkQm z-g!80OgkjT_)E8*ZTYmei}Edq@n`4jyW(AaziY^23s+P)Z+_klLz6EbmS0q4%)NTi z+^L@Vg=IcZX-ZLUS(&FSCYpkhQeSCq@to4d7B#HENSu(IJZ$73g|5)(a*Zz2XoN};35--;tMhr32F9n7J zq^4gM<&`Y-UOLRT(3^OvD^x^4Nyjjv{SBA*!;kJSnV367rD`}TzESCycbaU-)5!EII^-#J>QqWI)J!j4 zlv`AoZ)UpFC#Gi$zw)~^x)~FkJU85P&*O~3@|*2c$a%ZQ)f+XwVZXxVmBU=}zUlNl zg)9I48-+cuzUs;>@p(p@*$X^oK}k_j$>PG|`DQ^;Nv;oKsJEoBSXZsrS6EV9X6BZ9 z%(BAy#koaAydQ0t>8YuybJH_txH8h+b0=iDCR$GJ^cm^y)Vbql&%HKv>SW7t@{H7} z6EY^xjPy7?)7{b0otim$>Lgc2DE`!0u9R#Ytd}t@dvcaJFyA5!U2n=Uk`@pAQgVxn zOMGVDg52Wy9&=hY-+xXsy}6~i3qAA^v#{8loRyksmicmho`s&`(8v}Y&XtmqI_*1z zn?Ny+oLY1`Q&Uqij>kW>l0G@}$RVT_3?sUf=0bm&&s>nZ$YbW(l~Ph*PR?+fC8g%{ z%xf|y&y77T{Hi=*rGcb;CfV3%jh)@fohnYa%lG zUE|4exxZH|?$nfYIO}`GA@!1)nKId(o;mURMl^LYJ>dIBLVl*DPmJV)?^?Y^2TqTP zX8Y97=~Q8EUY@6{tcw<(R9IFfvgGI-EwyPFvHr@;;*w$nP+6g`5H9VqpH4{6 zNR6mI#n;l|=Xp$Tsi%w{-APy(`i2e6H;O%r=lWUoO&m1Z9G{!7q=3K7mKh~pPqA50 zSmZG;9$0qqXmenhF&)olv47z_M28kB`8xYXdQp*Qer}P8?DmT+Ej3F$c_pR!=EB_4 z8$G3lMBkxqJ1Ld+cl2H@{$l%7C()^NWBYJd{-XO=DG`o}Qph`*G{ znT(Lx5$xPCs~!2w3T4%!HJb++!jL|@(+XQF)iA}9=h9a#{>&}T4~H!% z%AMa?A5UH4^Awk%6pS`qS&X1=GZ*zBg8i+?I+h?@FVgkw-qe-9)Y4M=QeF{)Kr|ES zjUBx%r7XoIMlo8;B9BqFIM-{;E1W;qQ=DIzTWk~+`g}zm`^j5G4=?k3MLLuj-qI2g zVkM<>^F3?;dGZav*T^qfTx{IrDJ4b^8c&(e5Pg)$=M{Mjzpr5ENCV%w{vw~DG$eVw zFxT)G-&iamONx|aF-kq&qTD?4lUJJS%UfXNmKB!ah>DeO(w1l=(_aybCRwvPG^qNcSP&tqTWRd?y zDdQ>8u#x5S1|SEJcM@K}#T$z9w&F0GW5mD9VhA%& zPk7LO%IGnL1%;%q27p{s`dtxg1LEJ-&n(`N_`{lfhuDR`;alc?I>X^av=T@f^Ohbl zgYKx|Cn^DY!_WM@E`v}ilUA@Km*|C&PUwV;U@}d$Dm5(m?13#RX2MSk$wpLB<_>mC zL`9`LW$NS!mbNy;MEI5=?w6V}kWNjVna%)5(DAO6Yo=wnQc_jFbGc`@GE*YePkLum z20G3w?J!p3PA2=wL=F zYZ1|DMTY4-H_RY2`I=Atrlnt-`h6l0jUqaIi|1tI%vBTjTvPX=aQ`Ibj`=>eaGm7$ zm;#Et=s2f5Iv+^5PW0CHWL;dC>Ze0r83D`m{>L@e2JL?u(S_&~mv6zAqI$}P^5Kw93X7?y6@QJoVdPw8|@ z(>zwSv=faqQU^5(i_1KvYC`MwOTT7W%e>LEl+Nuh&Ocx2Gu|RkWU+MatsXr$bFx{G ziStt6%5tYqHRhn|F@MWW z5X{n?!s(d_MyY4MpEjK-3d$Y7}*29(*QZZ9ZIcqiD|jK4E|UVc;o1 z=vOQ(w7|}oXWQMz^}OHm#o_iPz} zaC<&D4v=S|1;jnc=+nzE8A`RO8LJ6)kI0vSKCe(|gi=EI-hNgC)qIi>z0t=qrYZa) zdZ0CQ+i{ed7pGnoofY8V%G>`a6+?Zq1CQ9@2HW%vFB~@5LllBDY+{N{6xeTUVoHHA z)BR`7G_< zY8a+kkGEnex3EI8_|FeN`llcFSkG!7KwgyVw_!Vp!=VuN8?dvRlfRL_@_X-*-{a#V z9iiD^lU%cmN$Hu!gu+r*jFHJqznG1{O|mE^U6W}^8S}BS1ttC>)WFcXn~rfB z`Wx#B#~;wjPB+nFj0_{&Q@XHF6m)dy$Z%7pr)L|z#^>hUNX_Nx zDYI`uVVTNK>1ee{LcV*E?tFGdWU%wFio#;3+UH^JEGwVGdL6+>K5rLrfaoVq=I`M3 zV1fP?od_NYq(!{5{d9(B;m_U$>uNo<hePYNG@tdUE zTqY5g?rjZsmLHkt$XHXt1f6}b#Ud`3EY#jhOLLdnQFRqhSN>gAf@lVLMY5{I%COE# zbo!mg>u29hG9sf58MiY5?%Y4Iiyw|i==BT zfA@Cczh@_IkztQS|6ir=wiY-=&*z6c^eN2pnR&s$vI}|{vpr=-W(nG$iG1j#vFy3> z-r%+Mo0vJ>oS=0@v((QbZS?BQcQ3VsAzj-TUs6IBgxRO*H8s;9Y3UbI4p~Z6L@%}U z$JoVIH`}Dv$S1jxpJ@&qy1-N9l}d^DWicB1P}7jFqIvW(CbFu+P?b4%S~lB-b48<8 z;UjmF(CU1w(G(R~qbDO~vDUyCzUZUH`MGQ)sb#-jiJ2uzSJYl)?Vzy0EN1ITmc9o? zC5IONebPf|WS#MN5=7k(C3yVhQ%!iZv!_l^9U{v}q8H0jDvjkYp2zYnqj~-?6Ke=uRC|=k2q4=5dOE7L z&N6czfmj`&xq7iaRN!Y-jBEgE=BH=DCDNGrg=OpkEERFQaG{6Y2%o2Dsai7*@kK-? zv)BZkoSB)*vbkI5mUTBfzgAx12$?E`I7HSeSznGSLAVB{rD1K6F*zly*M#EpDo&Nz znCR4KNfx79yPJy_P#K{ftJb>*`Cz$&R!)^$;>Mid%9xfKk$^jOf@^w4_FUN>R#jqqv`71>pf2gR5S_MT)kfqkIq8bwSByv=dFhC71!tsB%bq(e zHH*!T?8%%Shny7S5}9<-QnGkRS&J3l=;X+VZb`{j?owI#^D+KX|4Z$yF!E96MO7>7 zC5?h;SSZ;?b;L895fM3}*>kDg;`vPVRFH_8vsR|<4k_{*24%NNRZ_%ulkPU*A}M>C zxw6uU++w9u|EzX}@pH|2A!RZV;bSe8dIpijXoiuHA-z)Rv(nZfRTN2@WDFa2iT*!7 zFK_5&!-fw_xc1;5y^P6PV~2UHnTN{TXa*5kw3l2**Mht` z<`;`|ON(hw!iXZO7Ti;1Xu}~DW}s-A;q50Ws4>m2COg92r5>NZw782r>gkeg>BQ7S z%{%O!fY36k{URk|YdH2LD>M2xfeau^QB3ohN$Kql#m*%@I=R|PVV#3L&fL5Oh(T!& zLvJ+b2?*sxSEo>1-J*?|?DdR%*8WjGytyzxtHH|9!zw&Urx3{RrB{ddP0fg9b5$>* zyXg5tzF%#gNiK~{YXdQ);S1Z!3-t?CyJ}TYiDAK^k!nl0WfXIzUozP$i3&ec_GT?> zM05Z(1CeH9Z49|??^1-zA;DD<*$xgjuXLrzlBwdT_@_sdS6pRZkcps75EiflKhHx4 zkqV`5)QVktvD#Y+Z$y}d`Lb8cz7WDgHWMSa45sTXY+WFwPO)AU%e-M8)m6q{SsQUW z<&nj~yn$s#mMc5W;5%NUoVBkU4(R`X1DJMR_~y&bkGN&=>;;loqif>gu(h}~0gXT^ z?#3}f8~*KhV{r@bOsgJRh_3;t2g-qX-Wd^L+sKC%rdu zrxNGo#{k_eKNoc3w|^&YLvYLR6!^qI1s+=9!JvVzqZo{VO6_c4JXkNigY8%F8N%5k z{a6MutddLeL=(!7-6t3R3GLHondnPwrH6LWr7topFoKCcy)Pe=cvggW@x(9EDV!m4 z!)Fah@Q77X?cZkhOOuj@k2a^us(D1Dk-LVS`FE$t0<1eK(TF_@N*A)4Nr;G6@@ZST zvHD6aF^O1Qn2&*FsDx3am;Kvfwc3$iIA0V%ZT^gDL!pO7I2F_|(tNU zwhcNTSPkrsfDx|t_PMN|X5;6NU>okX+_!;uTVTJlpO1!5B2GVXR$5RyzS;%cz+krk1TwYVJ% zNd6=(sZr6%j-&dO|DuxlY-HNDwVhX}ju%hX{I%;AGK}{<*e(Gt=4*(gZMW}=k0&mp zK&LNw&J8+GD+}A(j|C)u$CFlMd3KUU`6cj|C(T$CB267PPku94XJS?~d1hZ1~9M@0$Ma$g?N+ z=pgMz)y)+;8^_Heva3_9j-I{ zUDLPgk!3t=aF$qW6Gs}U#O_jm4ahWK=?}{GHylKbj~%Te^p-Z;7)GXL^J(pJ>s@=6 z42s1vh!qFD_A!jLmI#$7WCx{GlaS3tI99{R$1eC13$6lB0mQ8ZJ7G6=wZnl6fP>iQ zz6QLG-SKmPjMMDUTE+R9pHCf`v*_<*tf3n%3_~C4M@?p|l_m+t7dLESiyaIV&{ZT+ zo>V-n_^{UBnSb>nA}v*$`kCq$JE@Q!pI1^uU3HPJrPtW{TxUs1{_XeDd{RIb?(B+S zO<1k|h=mSqE~S^1%t%+I;n)^DI+Iw(#P`Bx`sAZSIer9ezmc@<_FeI@#N~`gJCc?( z&0~b7lQ@{k>JQViCk!2FVti2|dbQXIQ^BeuuaJBnzdr=JRf!d&w zVud0P_v{pHKF%sj-hvMA#lHxZXt7{#)XE#y)iK6lU6$RC`D{6Gn1nJW5s{~tH6&d; zPV;%Zk*g_Pbgk%=!r3&Y*pfr}U>Af50%pNdC`>oQLZFi(s`{G5*E`a~MJ^20@yebb zD=rdVnb@(Cf1_lp(Y=-)N)1K&)iO&2M78e+RIxx^E<`XmHX!}@&C6`Dl>|j~He4lsdRsLb#Ve^V$ zGqJ?M+|?XAR)5qvH*-20*7D^P3@BUFjEQBwrLgP8sXxigWQjFgOe=$()dgv}xp4QC zV}vX5H}2<$+XYVpOSpT$#{$Qi##6*6aIF5t-|_lCQrzD)eY@SX{bkr5(=ZxuWtT&M zKG$gVyEdNX*JeHMx1RU6V+!J)Jc%u1KA5*mCiQ3d5!<}Bt%+<$%NNYU440UmiT&=4 z!U~|0h;zvR(O*q!iVT_Wn#P*8^grZ*chV2Tkj*nQ$EWMR+Z~Yp63Ds zR53$;ZXFjQ74hsiW0O9w#cb5LZNl@pk$zamp1*kL;>$;bHciDIj_oYV&c>CWFCS`} z1HEd0s~F4Yg}L)RL(AAP6st+ooKaZnLl#f*d&C?>*{-WGVW51I~GGrPkmXP{)q;T_; zfhH{#;or{JFt3cx_7fLIb5h!)zz2ZyER7o@o_){);wJBtBA^X7&k#;p8>Ar%`nS*m zNznGQ(BdY~W(2%B^iaFbNqB#6?c_u4>wp$uFVFzw0OBrw%d?0FZ~-RZwVv$~l};hA zxHW*|0hjeG?zW#uY<*o2=@doh&dbBLcm9IH8*VIGSX|=$8D`4FJchVc1W#;2QCCSCeug+1_MI@5pv1E2q66HVDInL@5H{pks;wd*O@au zy8n?Ap5p{?^((iqku{YsqbJNwot4GsFqzqN)uBGqn3iXvniWXe#k67(|2UM$NR$tP zgfM!pKGa@qL4XVPgdS}@Cq}$WgWh7jUjweQ=mi$Gxb5Zhw8ae70K$e24av4&DN+C(IJy6d(-{x4`Y%&w9Z?8X$4^wA>}m zr&nozk!jkrgtyyDaOmS4X`v*JE4>HVcDDxO-b3w8Jcs@7AD5d_lJ}PtZ;bormYmwe zU%oKz;L_h`o#B3ST=#E&@w+pJt{!vgwG*eyvkqhPk^S99Pp5W2$HILr9R8j|zZX8! zKP}Y^E%uB^NoMa9s9zTQ?IvX6YKrujGjc;mh?!~e48tqZ?OA2s$b zU$_rB9=!B-zghWu&nJF5Fs0<-{KONt*u%0aR@5IW{T~(gc=XZrcTV{7z_{QElSfXv z^xUKaX^U^WcFeP7x9*zU&mR>g;$b0jdy$c+#))B!3(}JfEbBeKx!TUp`uND0%XB!# zNun{0==1CvW6twjdsFoL*k|W;G4HdZpN(xX&qlQV73jMqH=;PktbWnYePi<1Y@M5D zhiQs=Zj5=}67%ew6O*5q{2OL;`aNTw<71x9m}es{I(}zN`i-mf`J#6IbMA_MHe&pn zG0**Do)cr9%VVD7W1f4)Jg>F%V>>^wxH}FfT8`Xf7WM1PQ#T+E5Pvcbh9!cQ6y48> zt`CRxEMesLuOI985|8}OwBAcx$MV}_g}42FVLjXNe-jhG?a#)47#N+u2d!s2yzQ?m z+#@FalVj5FDxB?}#;JF#QL*lWC9c@o%XxPg>ExGbvplSvSY=eEc|x*!Wf>q@5lk2R zIeW1!yzCT;jP;`qVeGU8e;kwl*~gjxXJYDa<8jts&H>H;@!x8kbWr043)fq?$-<5M z_4{%QJFW1MWs0OlC;L9X-ZAxaMoj(mx1MeOz0i6-R{p&;CjP3J_>Y$N6E2G8-;=H9 zW98p%G3jrQNq@KXY?m)KKWk#z`=8dc?f>x@{)i3#vzYW3$D|+YKlb^VnDASUGyL~G zAGy4xZU482!@0V3fa9cY5tSeNY&1%Mu>Y)yFXYNoW17ZI*0a-kw)sEHem}wTZ{eI@ z>F02a(Nv4=&kp~89DnBI==5TrGUZDV{dLe$EDB>o>gVq(U%#(>k8Q8m=PZPGi7XXc zR;aP^He^?MWOK^S3yDC<+ab)v&e_;_PcP=$2 z@e%)}tbUishxvm{^;wV=>ks~asGlGB;fMb6gM82e@dtVMgFO5}9{wN?e~^bi$ipA> z=O5+^Kj;HL=mVYV16;CnT=L;~{U77}J!)~_hllT91Mz$d4j2t57+K)j)3F_at_Qz} z@yj{TP2d4+77l?n!50A|pp(EWfidDA{A(Z$x&gcbW0@>*2e10EVdMx69(FEwenKaK z|1-cas-fG!pP6JqXz(}Z8^$_l;{wBYBf&79hi(D?1H092(2d~xF}m3e-2fho#mg7a zPH;Ik7sek>P&hLMyB+8(@YlfFwZ!Sho&i`7ZGxu*jnFyZM}aNSjo_WYHs}`cV;o}B zEbibZCt#Q$GmHy+D6xBaPkubi+u1 z&H>Nnn4*zFgZEFO4#iIKIklPE3gi_4Lo?dVLSz$1bz~D9=Z|y z74QnQ!2y&;XdwBU1Zp-!Mp@bVh!1iBu)>UY$&(BNO*PkDs~pZ9ypDE`5I z;9=-;@O{8K=mzjp0?>`%=LMjfz;6Ltpj*JLz$?&g;4gtDXrsX}P6oC?$Abp|&Cn)z zBCr!W3p@?j4V?on1Om`r@S;D`#?a;9Hvr?Gqy?`16a5jo9{e!SA9^i#H()}yflqt@ z%P;77@cakqr_f&TBESt@4qgtVLDz%5e>RK^@dNJr7uM{dP4M+=3}X&-4tUl7@Qs%E z2X6vyhHe6%@DMx(9S?pTSS{}0oQJ7fXu%%fVQ4S74p<9a5B>yL58Vd7?|-RV=mzjv zf2R(iP4HA80G$JF1wIk~;J?2LpFlT)9j{Z~b>souy$RkB8ay9xLwmuCwo*pua&YMz z7^DFSH5ny^a0}9S>geZ)B190Z(Z*jJu(8z)3qO7qs97JIOz^7d&7W`~Yo& z|NJiP4!ssU`UAdUgm!{Y`G`IY9S_dmOL~tI7Tf?NKnp(mbJ`2q1djnmLOa1v?&BG{ z5qzL$oRJM}oE&Gob6T9?g>C`wK0VH;hHe87J0s3m4V?sD2iy(a2u}Y|oN*s?7Wkb0 zyn{Bu^MFQZFSzooIAaTRJ$N6m4ca(6&iDhc6M8N9ZQv8=7I2Sq;*2k#P4uMsWARlpQ)AJo+bbMhmn#G|spf_yRf!JPOzk?F3f<-$K`eUj@4Vi@pH< zH_#ip1^f{Z58VbHIV{fT3+)7_1Lr_zfxUnUEjS1yh=1^qB-Mx zz>@!=4#9m##u;tUCiss)CG=XbdldByoduq9CFNzz%>lo86?F&Q0)E{|T|hU14~?g; zpp6vL1-|$z>4LWdV~D2(e7_qWfNlV%rNW02Klq#pamMq|CU^>vkN%JY{s%A%x)D4+ zjW&H4|KMkV-4EdoPE4oWNjC{xbT#FH_JW@TzI_Bg;PKbMC%9*Ue=~`CgKhv%n@pWT z=YTf@pAcsg_=+s@5A6h31K&c|gC7K*A`ff9{{q~Uu@Sr#sK>npeBu=N1owFG(5dhr zbQ0JLq(KXQ8EE?>X@TDYzJ+c9&znsoH-}XSPz{A{v|Mm`0K$N05^0KIN>_l0y+u&>+8t_WoZDr=2EB9 zM&NzGZfGMX&e#FWfo=hxnMAN*?%`NzEhydTKH z-6()JfNjtX;PdB`2k0d52B0_oo4~sYk)Kjm;Qs*4&~4yuH^AG_@!;ve2Xu)3stD%jBv|BMUhcXIY2&{(of)@h|9v~iY6Ho*#IKPB8 z`!jyPpL%hJ&)dL1DW$(aCxOQRIrwpc^MG^2Klm=-0rFCmtLC))7w|_#2?V`2RWi z1o}e9gUf(y=yLEkH^Y0>kMRroI*>*@ZGvw>{yYeugQu6%7yg(0fL8)TpzFc^21Y=) zfRmRY>!6+BbwDEVH-bmq22K1<@UMVs^40*}3RFV3fCIo9%F+f-s)#d8Xu&B!BXkyc zK9B+J1^)_I0NnuoAHWB_7JOzUd4M*-R|4hGPVlG8sdMtv1|G2jIUsTjTnsG1-3z`8 zNP=zvKL~8Y&sy+Ls?kZHlfZ|7bN)nK)i5>zPV(;r2Z5dNZ5w#){(-!KHvs|aqzU}wT6h@VXaxUwJ-kO9n&2!T zkvt2&=yCW8Itl#TQ^~Eyc5Pv!Nxec^Cd20ec zxS4t&t+n8yEwl@?7yQi2)U(tNIQdP=3+)7t+y*ZR4W81Be1pybk9vnX6nF3xU<~=p z0r%TMS)fhuy+96h1Nbk%66m$y!@vk=V`rQ(7^sF$0=ENc#A)n8#{imz-@vZ-=wr}X z;7eMlBm5+R3xHH?$L6@OhkJ;>Qbq30MH#1RlGO zz9wP84+C?c*MjGMNt;6FfbRhoh)e^&0?dML0#En~et^yb-wb%6%faRQX-E2q;3t8b zsh>vh*aP^1c7kUDOQhbwi3gG4&`IE0U>0;e_%5Ja)vF;1j>4eWByQ+YZqm zpe$>qB&&h2J2k+(*0rrFJSfONCKy8$QVY6Cxdem7$^@~sj4 z&;{L$yGd&;c*KR>j12rZ!TyVhANO)_^_Xr(KJnCpiKO0W?T`f>T}HjP8^-3;Y6*EoBE^JHDII8#)J^3w%piyx>z(s88JE!OMXR z=z8$Gzz~TOyujVf_=LQ9!TW(Ppp8`W0z5#ynczBLKQf^n{EoO&t`@L&0^x~M@V|im z(2d|GU^Qj@f7p8y_`0fcZ+Pu}hMtq8X*#C^G(byRXla_3QU_$7PN+l#WD;9swm|4WTY)wVLP5k(ixxqsI8`rRBcK-rwE`+4Ucdi;4g0Kpa?;QD z-tT+$z3)B0-#TkO&-$-`Lgcvz z_J|5sd>`$V1N+EQv^Db&`=;ftcn$o`us2nr4cK0=S6_fSVV{A0W|b?ZqFjZr_rZK0 zm_FF6FGQX>$HD&IMW_q72VkFFhjPJP2>b3!Q5KBZUf4C8&<~N%TG(0Fx?&9C$$=fc z*%eEG&w)L5Gx`VId9e4wRBT6DurJ(#w1BULJ>nKu^f4^#Qka9RE7;ZKv(Lb;hj|F@ zcG#bV$$@(_>^ouJ0=^gazrwr*_W-?D@-lqt$4x}9Wd>1_rQJ$<~6kGVb~WviM*jLYGG&WN4Zd+Ij}dv%m=>*_K#r- z;U0i}=2Nbi!M20_G|VM%_ru=yv@3Qa-9Ffle-(8IcRy_B8MG0`P7ds^!ql=JV6Xfd zaHxk`*bl%oGc4=_Uw6d-@P}c)b-)$<+ffg&7kvYL2KldqU3w7hO*iaq&m(WZ^ueD0 zO;_wkJcY1NegS-xB_DR=MbshqIj}zt^CsrdTG$VK2kiuRAMCSVMm{-5!2b3t7;oSo zhJD^qj5Wkl3Hy`pLFT~S1N+WDpq}CGh28x}#EJNOU{Cn~c|h1a*o`m;QP1tL?}d2@ z?q1k?VIIP}c^~YjVfwIk@!#d=gj^9SaPpn3VIr$Il0U3A+#ae7_Pba^buz*tqad6g zstvXWD&2l3h-clazz@2iV8E$#B7sn(fG&%d85WsNxd`S5YTb5VvLhn9DkDEy8)+X_ z8SW1rb_bl{!^CiBnMlTr@S`)tXs1ME2w*>2-MEGUK*s9Za? zdqhNxaApd-_8o?QU8jT2=H!G#4k|uk%FOUpIxbnCQ~mWB3?}P??Y0JSL_#7`Y+43% zYWvDEmkq89rf;Wb;xo4G$Ff$TKhdw4X|S!vq_ox8!Fe-rF)bQH8{6&w8J@8j_f=`)Hs!2M6QAujRM}bnbY&yo4xfr6ZSrR4J2jl?ALOSR<7eVY zwb^g0lG4MMAEx=J9v6(~fE9l_8JF6&Chc@syWGsvqfWbT9NXnJ@km)TGuhuwS?qdB z&4Zl|-B($1fZ_NZCmHDywdp4(n%|EtSEO?Kv{posC86H>`3_Si91h;5_Ay%+IME(Vks7ygyUTkLlu09UrN*l$nzT z%S<_sO!Utqa&8*wpPLxpyVm$Kb!ghg*mj>|m{+YZr0r)5nWqVZ^OPEn^_EWFrOMpY zb~b%}D8AiC43_0c%_sdhztJx>u2d{Bb{*LBk)586ab5LXVq=Hu>t;?%O_y=6v1EoF zmz}N&|G$!^sT(7EOj{fJ@3rlGq}Eevc~av{*XM_-BiVl+@%LZG$FXkmZpvim$#xTG z(?hvUJjS+hvb0SOz1vic|WT$*<`HCcGUV^J3G? z2g9ZIX%m)ycA6)GHoR0faobY-$ul^HGsf_ZZTQT`8tWN~eAZ8uB|{9BVT<8!Y{NHs zXPr|X^OHb&UroB_g&rq^e=69?= zzw+H^tdc?U`E<=!h7-Hj4Ln>pg9Jh8Vv#8}F%8?EW&~48@my=lH>WXI74wb=^d9 z(uN6Q(%M|S^Pe#||E!-|(!3{|JTs4G92wglJH)XLJ1kj|5eh-J24t+2x}7L9Qo}JU zja^si+HzzxH1g5m0sZdQA37WuQ0pLC7Nz!cQ^%=&((YFVV{DTb+BVLV`R}z&_))q} znTHcC**Z2;j9rWMg#&5EnDh&$AAhW)ZCVaSLn68@lpm}Ow7UbyZz_GPc-U8ve%67M zalrDOh`4CmV=J}Xc0Ji{6VCA1j;U#=x^7p`_1{fC*PAprzRg;J9B;1-?yn|(#`UP~ zo7<3YLl5GctyFQzpBA+I@H^naHrr564bruBbdTS}fi_N}RiU zq&WRfj>!=ili3)P!!agj4lX0>t~gEmm~s{%UcL);_*XLq^;@>%@L{3hRndSRo&9p$ zq>dMs>45HAVyKBDAyfgVGw z&!O6NQWolw>zQfd8Y)aED9q^bo{ffTOS`?(<<0QekBY5vZusfmSyQp;+M8ug#ZfL9 zxnj#GV$;Qu6&6`*E%{EIF)WvnCroFXmG^Xgi)*Pl&#rasJA zH+<43rsS(w_ovkIr}kUM$uVZP5#vpzOt5+dPX+u?SO2H ziD(d-83Wiedov(DcnfCBKH6dcW;3w8 z@T0ywbv~)c2cL4x}4PEr0%9Daip#$bu_7)NuA8RMZm!H!%*jvx|YQfHF7lGKr;ZX|UgsS8ORNTd5mT}SFTQn!&hjnrkN4kL9Jsk2C3Md~P0 zH<3Dt)J3EYB6Sa`b4Xo7>KIbDkUE9bC8Q1^bqA?4NL@kd2vRqYI)T*xqplxy{KRFT zVW_`Hy*<&4{KE9WP!~_?;5h-Qe@DGLqi4jXmXsIx|0HR`BQH;p=J)J3BXT5S)?2{Qmg z9W&~dQKyW$WYi%ux?|K8qmCGL!>AKRT`=l^QTK~FU)1%Yju&;isMAGVF6wYmcZ)h( z)YYPn7Im|zlSN%D>R?g#iaJ-+wW5v{b*rdTB~TyKr=lJe^{1#eMSUsiNl`zFdQsGe zq8=3WpN!s99>V3q%z&ZJ6Lp=aI+d%DDUUs!4$$!52zM~dOtld)bkmj{RYbM zCJgcufuTN+(c_`s4)t}Yr$hZ5>g7-$hk7{FzoFg@^=+tUL;V`+)li>?dNkCZq23Jj zWvC}Z{TS+EQ%{@v+53@JkAr>F(-7xu_|3%l&4-zXcwwlIPCaz$oKpv#y5!XTre1g+ z4E4#WYfc^T9+*NH0mJXJj^;sDOoyz%9{RvkAp~SAb>R6u7{3GK_h0-@jNgs5Lk3+7 zb09_Fh7TR4<_?B0dXA6=`iQR z)WNKSxe?|*nEfz6g83cH@ZSc+DKLv*VlW*rpM%*7(+6`9=BF@!gvtJ0K+J?$1al!w z8_Z{5cECIh^Fx?-V1^wHhzT&K!W6??46^~|2AF$bz5??S%)i6@6=vM;17bGJc`ywy zSHo6uVD`Yg2=gAyxc35LE=(0n3(UCt$i^ZijgU=0%t{U_OKy^#_a>m~&xP!ZgEt4rV*dewgpTyaDq8%&>S%u_H&V15HL`cDBd2j)DO%V0hWb2rQrFh^ki2$S_e0Q>U+Q2=v3 zOcTr%Fkgas2IdDaAHYofGx`I}MKGU)*$lG_=BqF-!~7N|@*(OBW+6-^%%w1&gSijp z8JM5I{26A{UjkwlOc_iA%+)Y=!#o1>0?Yu+2QWDwp`0)!Fsop?U~Yuj2JtS6Ba>nCd>+$O)$5^d>!WdFu#KdIzcfRW-iPkm`h-~ zVQzxC4`x5ii!iUl`~fE70uPf9Qv$ORCIRzFm|I{Tgn1U`yD)FU{0U}6ASh0PIU8m< z%;hjWFn7ZA!t8?C2lE8XOE5o!c^4)F``39er^76VX@|KP=0TX}VP1pzE6gN3H!p;# zf~kdRg1H>#(=gY-a@n0sJ$!aM}?6bzs4T!HoxA=J|_5fM?G{ho=l--qMu_YopT zj1;4A`uiB1{yt8O$NBFQaQ^!wod15DI36d!=ZO;_#!eDb#WZoUn2vMUXW|U_Q^hQt z0)HA#fzQV&@C9NX&VfH&ED&dig=mSh#M!tn;A6NW;9o?cC=$h@M3jm$ob|sLpMjQ( z^Thc$;eRPU_gpS2#RWK@zgpCw^;Y7v{?+0_agn%KTp~U$J|SYFR@8|#qFywJxM&nj zVl7VbzZCZnG~+CP-bK(ZF2|YDow$9V8|O=}$1MRH(Fd*&pTtStpB7h&9`PA*mH4c< zT3jQp6`vE=iR;A;;zn_k_`JATd_im$Tf{Bmi{e&s8~V*1;!bgwxLbTlY!&y2d&PZt z%)4J~6WhfOu~R%Cc8T3$kNC29P&_0a7JJ1$(I*}ekBY~{K#J`Hy#81V)iJyr9@pJLIctgA?ej$D-{$0E!ekFb_-WKnO--zF$cOMnM7w?Mq z#QWk8;*a7_;sfz#@uB#O_(=R!{D=4(n%{9;CxF-KkP~)>IT0u7WH^~lmNVSRc1Ack z&PZpJGuj#BjCIC2lt}~e+P>ZWPS|8roW79dq+-w8veLj_XUxKo?rbHOX$^ z<$yP!)pf*i(~~?mF_|^L$DkbIBxzjLm@b&b9~3Iy(SiEy>}qR|;Z{YQky>wM&+;6U zo2GbcyaPAK#U#iI)YdtOWs2^rJCA8sonhKFXLxqSXiU0IxRd|XoYog4gjw`$!%;$ul8|T>Ndo1qg+S4 zzOADn)*Nqb>ROuuX_JB=H31!>rLN;L%9CWIU9m*l;CPbUSOf0W^9N{akGJ|c@`f{C zq~xRt%2KtqG{CdBR_E+)ate9U?_VncU(T4oH_1p0&+a>4e9Z$Q3%O)1&DLC_bE zZqis|2Og7BI|Z)5Y`}9_Lq|b#!k&eg27DN!KQb^?M;Oe;!x<_8PabI#NyAKZu8lR< zbz;75SXb9tA4h$2)=i07qEJ-$rqnRol>I;^=&uRsm1vCN0!DPwR-8f|_s1)*0ZDxz zLa96A7zOH%5UV>|?3ldXZwSA&b;way-I|nIW2BTb9jzGlgDOJ$wqert6@2ipZUhU% z(}%)sV`(PM1nw%*Pl5Uw$qt0Bo$`c4JRgR-5f|TcVvWsp_7hanzoV@iG6)lI3vO6U zjg%4a9@MlRkbUhsdc2MJTFWGksN)^D26cVf*oUk@2Jgl@Q3oz|K{Fevl$tx#`{muL zbMldTjs29S3Ygk5O;Wg~JVyiCSRdQa)rNPhq;y`J=!(VL8f_M(gp{sB2v6zX+=j;| zzKsqF$;|j_N#e~_%_%;(VU{8!MS3P$<(&$6+`}mFi6P_TRhmC}6)bhUnLy;HJRT;{ zy;Y!2+~a^7PZRdMm-MxoDP4+bV%39YP$O_Dpsr&h`%=R+ujBbBfRzFacXcKv1`SAQb2On zFy9hxXC=kUml^5TfE6j+^gAewPo_xZU`$6{L&ADnNyrWp^Ktn42l;GAuUSLNeB(c) z%r}5RGT(R{L*^UE&@!J0{c!Hf^;*misN!y)2*gdy>-o-`;N0u?!7#O7efI_B2eMYgT1@(T!F0lng(KJT{w+Dft&igjq7jQ z6L|E}ONvqousc!Ibz#X84{FG7ldn$Hjq7p-=hQuv-_R{-MZiWIDuQHd;i(D_+P<#X zxv?`=w+5@Tc4+y^)0}2KDiQ12*dCXqv+>=n@@Zhu6BwsMHoH$ENM=V{n=eJl>}rcO z`s9$}V&w?J%lCZJ-73c`{q1~6$?6~7nl)HXD~~mUgG*5`nC;7$3hc|0X8E4~i z?952OkeQ+HkePv}%uEMnw01pT$3zDum9`+T;F8m}9>pD~6i9B-p{&kCQ!6fazg(^ssO^>7Zr1h<+P+)cecC>#?IYU$wYGz~D&8^L zo~rFaZP#eKS=(1>d#kqhYWtwJk7)Z{ZHoyyer-?HcD}ZkX?vx%FV*%2ZQrWx2ekc! zwqMe=sl(Sb{eiZ_6Lq@Uo~rHBw0(}Y7ioK$wpVMrR@=?m{-HFP(}8D<&w zMR0cdv?NyrM5$(^@_<`K9y3{l)pcf6+(=IK#?G#IOAQ|SiaHr9UE&V<)WlobE3x;9 z_#TjSqW-cHEVp*yJbt$v&yrYE!<%brrHl-eca|2HR9E1!rg$SYRnTSuQ0oRk#T9|2 z-OXJI!fM)9Vau)r4|d|&zy;m$j*Ym8RaOcX;$^Z}AAKQ^q7WiN!K$uil*lN&)X25& zFu5gl?Ooj+2#coM&?SbGSJBpXS$Deuqft9>n*3<`DAgEbb_}VNiH@%BI?crS-@)p5 zS6OSr@>Qd6|LO9lz?iH;{ai_u4%K;EQM)U=%o8$3z@occh-0E#Q3bfX0nmbX^ zE9;uO1SO&36}VJ(engkt_Ig{oS`%0W75M=yU~-K^%#$v@ zG5si@HvvUBs8$$82kW}p5<-j*>Q_uLHK^+3)L^69>=S1OvEbEJFU}2e`v$iF1RK5l zl*27G9K^C<6ZE@U*Wo6LAPU`#tpU*y#H$yUEb$Tm{>GqwXB9m`Ea5Vf;xp2PZC7y> zT`g_v;^MP(q5ML8G1x&xDse09R>+;(f_zs%oZ_A!04j2EUy!dGc;OZg1yK?8Yaw$U zmM*67C|zpVTRcuTw|>NvbhR=I-wk%PVXFjv{#CfJegoH!g6kShjlUIKU*E}%Vet-K zGW1brDI^iPU~$_9h$wsvf;sM=)SO>dwXCdSUV&8FLsrKipZ~X+md`a9HNpn`pWlDm8pt_Vm#%C_7b$+fw$ow$hxgy82J#Qdeo(9Jho1kIr1SF>|G!a5 z|L-gc&dJO{$q(&5y!*)RqqzA8-@LFUdi#41_a5o(-*$N0k!=Ip-rDxTw#fFJ?YZ0Y zw&!mz+`eRc<@VLv*KY6Ge%)X-)@ZpCC9zKfC3Uc=5?akj?xVLg|?cVmiJ$pCr?cLkAw}0>9y#srX z;-iC{eR=!x_Z9A|+*iA=eP7SM&HH-y_3i85Cu;HS6ynS4&F?Mjt?cdT-Q3$N%O~#7 zxxfGZ!}ydTXItU6CEF^ut=?96ZXYJ0lJKJ||*x9qQcjxY%eLMH>?B984=i!}4b`I>UeW3k;-Us>~sNL1Rt7lj5 zuHC!(cJ1HQzw6Mh!@G{`8rW61yK;B!?)Ke1yEpIdM>`C#9ronxDcn=Jr*==zp3QrD z_w?^Myk}s~QGR5Bf&^uo<)S>xxwd^D*Q7;;3v!YZ(DBgsW6rP zi#5i7K*z^VHq-qSzPjGv%{;d~9T+^7e&kYvPlc)YzHyoHZ(pp+GbRGH0W46bn&lr4dg^IuEnE1)J8+>1-!sB@6v_Dn8k8pdM?jI>A<^MRo>`w2m%G2L# z{PU_+dgmQ8e~&z7@a?M# zYe*IU?q>|X{Q;Gq9R`qMEBw}egU{Qg@c0})?N8yaecs?}cPl(Tr%n4)_&tXVe)ArM zKRqqljMvrQHu%FD|F>ht|7G07rrQ7TgDU>b$Bci^cMZPwA%zbe6Mx$*SMfJw zrcXfO_g!T0{U<8?pO0Ce#kC%On!;~7W`4Fb8hqhQh5zuF^>fK(2A?-u;lGtW`~Sal z@4`&3L~+Dfylh2Y$(d*7$@_ovX16SukH4<&*7(PyK5wEPWE~cYKDJ@ug4y(J%A38s zAa6Ew?mpJk+I{AkBCF)AIUVu#wmJAxrD^@_^$X_D#tOphrbO4A&W`#dH|e7P9Br^3 zd0IVIgj5fWD!vbbgp8V@><#JZMArG2S@ChY-B*PsB z9j%V8JU=WLlAb|@R_x;@g=PtS)wRiojMGS#C0nwFe;r_e6I`@mMK_MS_uW$YLZ`vV2)h z+3Ff`I2gDx96+Su%DGG0uvrl3311>g}*k;O34o|-B8krcK@6t=ZCA~O(iJJb>ZXTyO3ll$m=C} z7RfS@H%Rgvl8ZpzD9Lk4E(Up%BnwGagZ#WCi^F9);hSYjrQycE#xii9Bo2Wgq4vyPfi5-Zx4u0&59VWEcv*A1G5zroNT`KGazAl6H1~W?IYr2~}cE4or z4rXu%tQhOo^=oU|WIE4DpFZ1X5xymneg~xAe&y#4D;@9~(z8Fs(+hi0dLIgkz^d|P z#mkphh|raPWsZw4tSJ+r8;dZ;0;@Q1LpR|9R}m;x#OG(h!wm+d9*zi9RIXfJ4$NH~ z+K^LP3Q1Amx*;WXC|Lq4DwZ!>9ILFU65+WNUn)ZEXoL?)QbiQ_kP&4PD+0MZ?oDJa zDOy%qQ6>U6JD#8Nf5Z79BFdC8E6$q^DMN-+ zTnx`ag3={2E7Jsg)}0A_F!DoSL$RfE3lPP3JzS5^!0`wA+kpy&|QX(A-(%Rm&U4#R+hzzs>+Jy6(C69((p-mLXc7g{caUM>FfvE zrSyPk<{oY}zBc2a5P{1jHp`0>L#{)zvcvpbez^|aDMRN-UNUf(M2_(SV~BQ3);J>_ z*U50Xii|C->%2?^)=S>x@FJ>Nn!D=wxD$KM#f32YQ(_D)nJW z^^rn#?3GkMDU@%Yqz;opPWmJ@KngxEYcK zrC^ku-N88`Zr}ka5XUTP?yAP-xCrc$9TYU$M{#yb&e*g0WGiFfq%32YAhIt-r`&Jo zY%wkpcqIEZ&|{WyyF2h`_Q(tn_~2|EYC#ey&mfD-t81!?><5yZK%WGTXS`xOPIASl z4MrF%qW?;E5o1(Z258$SvMDyksI6PjPfD7|L)k4vE=u5|CVBcp;Du}omN6^w=s|^w zz_+tGng3?|nLbOXR6k*z> zMVQ})(N&BdAtI7jUR_yKQ?f)vNtIPqEw2(862gfwlP=_?yl7dC$Re>~+4;+suUaOC zlPE1KL8VlPY!c;jMUF(kF;Y1S#3<#MFGfqqLNP`$7K*WwfoR7m4qW5ul9OsKU8s&~ z)Qgxvg0tsDI;x8nl@(Q06YT8NUuaP zXfRyJ4noxgF7+eu!m6@GIBbn>RAX7yO7^QBlI0Z@WsA{hfBTz7EiI}(9|#p|&4ra^ zWPlWbSmnw^D@Ant*B}Exl#|HibbZ`PbX3`&qxW3H?iu43V4l8EgXDNLRlprUJO=c- zU2#0)h~8I(;8S8!m!qlk^7Wju-4|T>Z1gR7<>_e>JU)V*&;eZs?JrJ@)sz*Bla?9v zteQ9k!mhkG5G)XkF!YpIIYj`K+T#r+>Z@}+F+!X*#f^AytAl*N3S2M(sg>ee?nJ9p z(h~5Hys`}?G5{Gw<}o6icLFU7&4HL$h0s&!>q~M_TAxs9ZD(3FI5LE#`GiVFsR)5$ zEMgjjdaPbnnQ+eK1Ce<}UP?E9&elkd5GTV3r;twmrjIaNxOl~X52?&>ssb6p5i=)h zk5TXd(}i*vvQ61?O01-cgQ2`eWL(3yzDf-}n;F5++4|}zAx>RS=lMGTD2MCRR!LIY z<)L9teN>W#ARh$D6&TSmQi$0VBAZvif6i<;9)Kf% z0vuv)??|;Ka487>$`PF^?hP#Nw}G6yUt<<4h!_h@fzlMh!3DzkysQ{3Rv8M-poA^2&RAl1KVj~+0b+s;O8b8ZFue8iA{4RbZG&x%LP|B^1wCxDbyjZ;%+ z9@NYQDt2eN5U2Mc?8&k&Rff}$#C_E>NY#c+wmN}HRP)+Jiem+>G0)xLJ&>|<}< ztnpaQls{+dudxrKdh;&}d zsPHJ9AO1zBFz;FIs6dYAy{L&*Af~^miAzD;Hd>9qZdL=vA?pDhaQgcilZ`5VDm`Z2 z*wLyLn8Nf^G{FGBP9I?U*&4%yvr%pi{nUhOta#?y7$;xnZQi9C(#>=?X@VuI^Wo>3 zvfN@puJ%Dpl+*9i5aw)GddNc>!UBFfEoA0%RzhCcRNvyDJ||7DxSwr!Sck*d)V<;% zES{@gaX)*-zG0?U+|OQtn=W*(xSzeE4dlmur{kb>Y(Z#t`1hPDv?{C%P!+INL#0sf zmR^g3&WmVb3y5>4Xo3+i@RrqK1P*R#xHZVoTh^kZ{Y#ABht=c2DLfvprEEBjvLT8a zI+apJVGJKMb|u#FlrY)vrLJRKMDKqad78@Uc`$@CB987KK8};XX#5u?F<6mp!9e1a z+==J-=#F{tpUQ{V?D>eS1XMAj+>pSxiq6RkK`UyLaHf;W=B#q52SeV4Gb5&9^)bL^ zYN}x)PD^U;l+#>{T9rJGMmV!}0$h@h2W3R8r1=`GF|`UOpYq&eN)bO-vgF!xtggLX ze&Q*dd90+;_If^Z2 z8s}c|jZ@Jk;wH#`wKxxjUw+V9ke|QMEYdeNCN{(yW>a{r z8)nOIYddiON*tK(R;-yc&*t$Eogne@gb$886ZNy9Tnl~l&e=RAD-VnP&`@r|A~WCm z<`lKoF{ZkCbD+=KIj0j(MH^=~#Mi}}=TxZU5|YdQbJiqU=bU!h9Gs&tr>VYv4t5k` z*eu|Nfo#5c1#{#s#2lnu-`tJ$mTVVgWa%$4XE3&&)+kEOx`gj{otL1ybf9}&B2&dl z!b&z8tpr?7izPcQ_Q#vz9W(gB^~dJV6oIAa$wB!gop4UjU(}hfl=l2NTX7tz2yFm@ zj#n_;L+HgP@PoK#@v0m~pRPqbzr!o!ur8>^I#b8OE3jqYiU>zaG{!H(V{>uhB*Q;} zt{fp=^9wY8R2KNXN&Y;|znJ`iB!9l>w%UY!#!(__Ow$3(pcSP%^! z_8=l-ljgGsofiK_&1VsA_xQ;uQG{EqDEE30k@4PyWUYKN$G%7tsBnO z&Y79ch3qMr?)p4uF8*f(w*2}E)$!y%);_7ct-9>OnPPb6@ZnIX#%j87mg~<%H&0UW z--}+tpR@H;%of>vNphCc`4-wNRF59W6L`hx5P+e2^gBsiMXH&891O338qrKYQh_ab z;SsIIFR*0>sH9(hIOj)5jeXhOvTztQ!|`?(lOv#-sRp+6Ucmu@@Kqcvfh|3fMhu$X zd_~4{I`2F_Ka3HF`r(Yp8d@i72u=8^g_)@^=xxbL1f+6uvg(UGh{&kZe0GoqkME1U z!-9Oy2T@Ig*gvZwXCam^`yii`d7LjY?y?{++Yr_vTN;>s7Uo?)W`@B$Z(+uv64l5; zh67vjH74sj8pAHF{ISeb98_Nm3#Zn6Hk^N)s+6x_nDOUqZH4es{i2r6$#`NPc{dze z;0W;}V}$Mk{bSOYV{6$9&cZx9%CvMRh-gAMb@X`%#OTlI@Jja8tCsG+BI8Fobq=ua zdnFMWZ)rX&^G_b1P0}eV69eph4PgOC;NeRbG9z@nDo_dd1)9%Bx&ZGHtYb9Qr!<7A zo@WKUS@W4{i^un+db@@&)oVP6$OunK_N{v?{&>x2l>Hvx7v)JB!YGe;5Roxo^I4F; zXnsmT?yyqDeOz80?6y)};PHK__F1Ve^B^MYkd-Q{^wYko6JrjeIfG-_o;2h5*MJ7% zZn|&ggcu6YbG-Z@T{!Lf`*i0|VCG7((@y6E)uY-!pc}oZoqcAa=}D8&i!LW;GUJ*g zf6mr5T<(1w2qqcD%Xi+_;b5A#fH>hr zINqb<`*6&{)Aflzg(FVKFX6Zzj+5SoBe13K%8aw}R8vzLeG%!imO3}Eay?97FpL`EL$wdN9iFCTM13!^0a(i^Cfh^iltaXIEa$j&H9NI3uE9w zNqUQ*Jf8r|FZ!H6fo&7VWn%IkN<|^oxw<6I8QQq0Xmd>Sn>?#-}v@V(^PS zJ`1QsH$=(J79{S2a0Zc2Bs(;u0kK?fLoCt#w1s)tkMTtJVGHwJKgNjej9*%qKlm{V zjd=f^#f}{Vxc>ojw`!@I*iuvRmaJOpCbm>3NGaKQ!aQ#x@rNFUN-&*}nyyXLb&zUT4T zAf9Xwouu+j$RE=~rdf~)cyv**`(i1xAm^lq#4SiHJ>(h-a#ecBP7AU#J>+={awt9I zw-)5>^pMP{$$H5~vsi_W=#DzWg3R?pax|pOg4FmSxf=2b3$or1$^szeuol#&Ob2Z#obLg+C_utL#n}byZ+55TL5Hhhb%uQsV`%BnwK%{p6FERXC<8}9E_>7NF zOUk2t$f@c6pVfRyl2<*xujBs0g8U&pBy_Thow4L%O163e+)`vsvmj@uhm={6Po#&$ zEy!omL$0wPJJLgTT99w0hrDb-ew`ljwgnlEX0Zxwx_@MPvR?B25YzpqS&(W!#B~32 zEyy}QBv04wDhqO#A7Z+Hy9Ig14>8^UdJFP1Kg4wZ2Q#us^dwE~ zDQCBwr{Rp@MkQ4p|HgS5KWFO&m~hn)*v%pE3G`Vt1a`9vKMXR2LkAEE$&V!2sHyT? z%+)Q%PtMgiBvm2#-e(Pp{ETyEB)k7!+zG*FV1s$SunwROS%k1#)O&4YWjhfNs)1i=5q%8z~i%;%p*zG zJPq;XU7Z0YoM+8pV1*i0h&KrSoUQNTMy+9d(SMOS3~V{NX&7JhHTA)!N%e_Kh4TSD zCt<0tLpTQ+WKtu}ScjgH!<%>H>)l}%X$ML%EP*G0e`)z77qz7xRqi|It&D4gO7w ze}d+-!GG=XWsg3(Nz0u17A6~WjMeKuFqp*}!|_$%$Gj#n7(EwRn3aCan+DTjVK(_O z0|wJ$Vea)~-Z7Xh7Unq{gS|W!3)$IbLEiL1`0^Ed zsv%>R$^;X8+XwM#YLW%XhGGJKu}v8q}Kc%YPw?K#epk!5rW+&_6JsYH7*ico|EXX)WhGac-2X&7rvmj^s zA@W%PvBWLNC4NYjj^!E)a-|<4A14sYP7AWl4;iCldESCN?}x}I4#e^c3-Xp9GFitG zIxSf*nGio#q4PB4a~i_NImv^FjJvI%OFVu`<2-DETKu47<2+}9cpYOh6W%Ik@tovf z+U-F^#tO}6|Nf50Pszku3-qoZl+46uEYMg?O=&XW<|i{T+k=RVv6|0JRC)ZAOw6!A z>;0f)CWJTOl#SId005# z;3_&4M&!#6r^}Q17}$UH$HZ7pNn;FWl$b7Of8j(N>4@Q$PE{Q*<8ewo1^oLd*h4nc zVZ@P>Dw3ZmSLPxPpACOTS}x-#|El8ZIp4#++?q*M`_uyEPVu^_|H8LUDZf!}CBPVqyGz`xppEcHW-z`xgm zwEH1O;P1B}U-Uzaz<ozU2H+7r-y8?Am{lZW(eJ8L0bF}GlU+sAe;RVGlX8T zAdmSWW(d7wL4N3mm?0EBD_Jjp_Cw4NI@y9uKFL=vW(Ym4A?%IwJ&4G7(F(fC-s6LK0zGa)`h5^jpkHG_-bfGGX+gqM?UH)2Ja0i}ric8(f>fl3 zgw9Eps4YEYngzKfJ!F{$`AT|7vjsWghnU`Yg9Z7EA7XmrZVPh!G+(`#-uO)mQsjr2 z-uR{kY4Af#Z*)JFte4OEA*MIxS&%RLA*MGzsUhr*2Rw+#IAjI=g~#{x#vfad$jNp| zlfCiWWFAlTL6W`Ef-Lhvy!XdzEXd{QAv-O|t?41pTaYKyLw;dFev%#%`j=#h{+b># z&4T1jx9i0#(J~8Ck{)uI1!?p{OmDo-f?V&1nBKV4f;{AhnBI86g1q8~nBMp^3-YcX zVtV687G&%UU!hHJoKTpox`lp-*Bdp2y|L1Rpf_4UJ3YR?H(HR}eGsoVx<$zhJmrIU zy|KZ9yyk;=QtfIB^0)Mm9Tw!onRaD(u^hA@W$7VrT9CErA;IEgiEc~}nQB4yriU!G zAm2?7xy*vR?}wP)c)bM~k5?J*vCsXa>5aQA$XR}f>5b1@kdONzrZ>J}L3;cU(;Jf4zTkmk-C2Ja9m&BZ_ z9O%fx%<01)&72zi(aagZAI+TK14uLH15h;iJTeu>kZNnr&)`WjXAC@P=G=xqnmIVL zM9|E68Gkf$n(;?7*W4NsThon$etG?eI#1OV+A&vZ2FE;qNxDK>;+ima9z+!X|KKw= zaA>VO?-!?Rq@Kfd9CBw)+4$!?SHt_{{+J)xYaQ_z&Ipdv--PSjnB$MB0T9o&VCV6ST(F~36MMun3UqPtx zE}Ro^;E*@wcVRH_=WM+>gcBin)t5$m;RI-s`o6L_i4b>7t>((lET$^n+H8CawGIbJ zJJT3DUtdQwXi;AVagwu96O|yc5zR>GJ}(p_uCXv9Znub>hcyvHfC?1=8_OfH7PqB# zBtDJWvQ~_ET4OE+X2gpYk@K1+y5aLFFS${_*KDNDU22Rsj?mG#6@cfH2WuS422rXe zIxNr2pR@I6h(TA)LIzlh;*E)FSQi+GkDvHpu1fhZC70C`4fKCcE%bWcvhF4*&qLaC z9Bb|rWOzIsA{SrA;wnaSz_~N|U*HvtOv3+!2`>I%LVXkUO=R-R9cS!>Gr^^CCQX&YkSk(_Bt4I;@ZBg;4Wkip4E+G_HlbMWL7 zWk_rCA?-~*B+TR^fqL?x+nRhxCMO?@@+Kehe3K7n5!{G}y{ybz(HApty+m8Askv

yhA^YV=va(rGQ=uy>PjpooUB@~!7R0z!^s?@XCiHd zY8+7jc2L|H`G?DCd`&99B!!^vKyLmMg8Ba#IUGn4!0)pI-1cR(Z}1obIOGXn;$7j+ zM-K>MY-j;YrxL()Q2%a0G1F4V8ws{mJAAD#i0PEO9^1QJONBX3Sc@c0Zh^eV7h$* zm<%m|l~V~|x{Uy)+Y`Vfk^-1iQUH@u0+=o%fR$Sd;G{=V+Ljtbl2t~QPXLoa0W57L zfax48fWr)F31HHm048AsumoxWOt&R~NhSrbMR@|4JX-({E5l=7ki9T?&jxnFLFcf5 z;|VW$4vWo@=deU%9QUyg^R9!50mT(X&7XOOr&etFLdyr8(wf^gxzE=a@O;YUr2;#pLKeTxvFT#yZuF z#*mu>diF2}j&~z}|KxHsdEA~k(gZbnlY6o?w6upK=7Q=|O@rd$C!~)xbw4ZV+>k!j z)V*5Lc_DqQse6s2XM{@Bg=D(G*M?aU`5|?zsrxxe&JW=%QXFgQUKgGO--RS`tf_mw zB+nv=V@=%~BzX==9Bb;{D9Lk4;#gDnCP@~O#IdIC=OtMj(#M**H_MbtLp;{h{esNf z5)gBRyIB&IATT>^k;G~c^MregBx*q{5bhTxu@=M`!o5`z?I9j(>fR=a4Iv(D>fSDi zo)C{Ub?=bGbs-*W>fR}d%^@CZ>fR-ZJK+Q3Zb|gQCn4M~Nn$r50I^jPeIXoc>fR&W z`$IU^)V)`_`$Ig|)V)sanJ7zhtL5*3^AY`lLP9)IA{m(jRN; zenWZ=b*!m-PVy6E)LzHQy1=% z(9;YOlE6=*E zxHLQ;PvcUwn6pjY%jAF;A)I(*&Ng+MCC?4j=(A1T7Af9bAUFG~^~EiTVCbstP71|jrNm<`*@q*194ORA3)s$;LD`bnXD z`y_Rk6a-P9qy|Vq5YVcebhfgrp1A z*`&zQlalt%Hg)$)x>orkTTe;aJKNNKTGBnrA6fgVq&GXN$5J}V9_)xQ=#URcshDHV zHg$K&4hq_wZR+lpoDmi1w#d+t%fzubk(Q5yH7@6Kt_<&WYS&)?*8aK2s1YM3KR+a+gX{|Hf>lB z!HKe}8(srHld=gdMhqt1y;7g5z<-Q^-UC&X|YC+-kUbZyj!I^j0f1P)0nFptDP z1fD-<>tv`TPpsGe^DB|$Y-meO>cnleyr9-OovHH+{Yf}&v9X@3Obb?Eyt!KnC!boT zmhLkV$8kJ4tM5v2e6?nR0Su2~#A`!44iJhpbvD)|nsHOCaGLrx>Mt@I%t$Xj&dq}e zt;gNBDz{DS0n4T$Hzt3HK7iaUm0-v-%_~cUbJ^uUIn|RAElu*+TEz%#*?;9E9OH*u zY7?Dn;~k559=`@7TN6EAiJp3!e?H0%aX}I(YbtA6%cDzdbvqV z{=N1Zi5#)0o%qMs{cDfIr#1Ov^1MZ=YATeslMg;I?)toBETCq%>o&m3ch|MUTF9WA zbWnadjhM;$oMvrOtZ1OOMz7XQ{*v~(MS5Kj9(nzBJw2ZkC-iDQzcUsi*{-ZREjUhO zWlvgM9rIombeDIgal~LXP~SC2jDCzZh?6Nkl4bD4qEGY0V&IGukZv-cCvmJzwYsHg z(OJw{G%%pwBnLxqd2UO4bG(ID06Vi4`lv=vQ&+;O|4^YL9zn+piVXDFfADrcj#I;X zDBeL+FR|)HJ^Ux$K?B`51_aBj*kp0f--{OgyBGI@kp~D5{#WnT2u0K>`ZyW?bO_ym zJhngZSwXjXtfhyyC1Z}~58QPz*?-^h{K2^_TtFY}{~<$$^%4A`n;l6eA6P?gI(`el;w>V#XH(?<#n?N9XFAg&C4vo^(^>^6o;5XWY;6W@zP_e z2&XSVXv##EH=VBt709ybGl!jtJQ6hv`w7+wfjB~niv`Xe)WPs8;qO#^AN25b(#b3h zzd<^0f-}2aZE@ESo!t(>u;Rz49Mt;~FtGk_V&*=DaBgPIX2{GT5I<+@IILae$fRy& zQUegyIWoDMncReFAZ3y_Gs!BDBY&Z#-yR4AF=_?UGPkEDWSorkDa1Ou9bPvg#ON#F z79Amb?G3H+Ujm=xEggLnK$8|UvauzfRWym-k3`r%%ajE$6jOqY<#xuGP z;XoEw=}2W3vHRTB+!1e5)qrZk;a=JwA>_~5`gY6vgclTn$0N=2(m)LfOS_(-u&@fVuRC{+!{+}zdKfIHt~ zIO?z-4+@Vl@n~STnFswq3#UsW) zc+!%`bjCNtF>UR@6#Ac-rvC0(>AyZ784(pJVf97I@gE8=!2d-s!>AC3`ZUL*W}F8a zn}xdB6(4;wQ}OdGzC0&2OYwz|5BzY&k7&Ml3?niq{_u})I@LYb#+&hw-ih{0z3VcH zEdG}k_zxXp6EW;DZPm(A#xLuE^iZ>v)E!rMe7!A(So z;3lGSU=vX}u!$%k*hEweY$8eqHxU(wn}~F&O+>o9O+*rM6Oj&U6Op9ZM5NodiAaXt zL{v_-iAcBEM5No>L?q!YZ=Oubdj&2er8W`iGMk9Xtv3;q9?2cUQiDjc%EW#bqN~sl#;ex|@9ON65XBxV>2T+&* zM7U81H$FcBKd5gjbPdy;@(|drzPvDS(%%Rg^76vqpvwzU^IEwruzCX8BbZjXEvRlY zgeC9D!n+!@3;b_fNYuN{5PpL%P7J2rW*CaNavvdhBX#6mxsMRM>1?{y3s>;-JzpaZYz#vsaMP@yu2B$^`B~sB2caDw8}snW%TOYP?qRp2{V>cc@Ct2p5g# zNRBS!YE`&+{5gnNM3*Ky>qU6ccqSW(>iE257RxBJqD&z9su^A)**Q_YCWD*#^c!lp zT>6Z$d^rAOO?Qg$dD1sG>06O#jkn5ME#Z5<^qm}4`@u-g4q7q(aTGYu^Yn#WDm_n( zroOI*m&qun;w0g;brN1a{&7@EIKoOEkuu9SunlfI3jdsA%S)O=Y=Co-T0zd%k zS)NWc%hSbKUfP)DX>*pBHfDL+oaJe&S)ML6%S)a&%ahWxyoAVEo-S{eC*jTVB)nOk z1ZR1P;4H5knB|oNv%G|0mRAhS@{++>UU4|f)1_v4y1ZGQgq-E+ux5FZW|pVhH_MZu zXL;pRvpn5qmZ#gB>5-h$OAR8)DkIA`%ag%bUfODw zr*rTuKZ+r(S)R0~Dn!D}@)D?LdAhAxo@8>CwkwQ`gWS-=@!@ zh!A7&(#>0loR5(VVjHi!mCNrjH9=wl9RoC$=!&<**3HFDMC`w#vz$eLVpN?QaiYg! ze>_WMJYyQ=b+%49DRlc|#9APn^PX3+R#ai9XiQ68Q-a5tEmaXq5};)&;&u9ZIcNE? zqF#ppm6H(L*rzCpojs2*=CxAUNi9@`b_;tb(D^h0JAm)&))70$zyhB;y! z!#jH~NAU5n*m`Vi#AEoZtgU0Ca6*prA^5qdQLG?^98N~Lxbm3p5R+|=<5ZN8`qp4P zG-K^L#qxyX?81U}u3q<;r^3s&(e5>voQPw@6POA=6u{zza|#(~ng*`>Su~o;wC4f^ zT2~NT%iNtI)0zO+Lg!(mI&ngqaMn7HNoQ+(z5Jx3#gTPFk;j$@N7%~Y2)hl|G4x(a zoIAnT_Arl3b?8O>Ia}MX!aTX96PJBe(|P6$tf?H2?u9Jh@;VUimeo_9)X$I8@gSJ@ zswN6REI^18sHEGkmsL){c{+1Xz@EnWV#;fFsJAsygHUxc6i=E3l1IBt`Mvh7g)j2n z4Zw+fK067wSYO7?sV>aZvLUfSgW7%E=?7%0YQx9>go>Sp7WwYjA z0sgF~G_hU+aCGA4D_JX%d@<`??RBH{0Kf{wwpkKeE%x$TTV=deHzT`WnqWL(=pV0C2viSxa9->?@ z8Z}pN0{>>?ZzjD?Jqxa>2z1K%aLCrY7>)(A;MESt1+(F}5{|8K%wTV-I8QahQAYfn zb1~kHWXE|G0NIuPNC!LDgwwD^`pfeboV^yci8IttnNER@Y_pE65WUtparE3%kf-NvAo3l=pmod_L!iuWu^Q&Vy*@zFvG`Voa@Lf zAa}tV7_BtXnll>Zq>F2l%v-l+WC-n8cmP0}=%<`B?S0wILTABm!KZN^Sg;2cjkD`4 z|M%ewUIdrM*(v@yhEGAapqBo@3l#NGThQ0;Vtt}kw`~!|1b=@*4>YT)0lwX1dp2;= zbMX1+{Ej;q;f_yeE&jqT{_xV?3Ts$;ZQ@+CMZ{AOFxte^Fj_3Or%g-q-TGMrx*61^oBNZK(7KW!k`N1Rls+cb+ZaM7arc`Nx-ZEEm(%f~hFCT%LoPg%;H;^e2F`B!Nf{KW2PjmMNphpls1tw=2k{YJyIffn~MzECp zUR(OdAbo=kZQXpaNcnmqGrdahlX$g~el-Poc9_G$4L+41It6Z$e5|#2_dMx~#~KsPUW|9om%fwrgP4CA->n!=F_Pzb`a&+1o+n09m+{?Y zGRmoF(zJErE+79BR7o(xN)AST3HP|2NQPH2g)d?K1S)HmSH>#JR+d#*52RQ&hQhW8 zj~oCHGug2)qZrxvlr4g>oHB0fz}sBzF}4UMcv}R-W3BWfJlp4D^;T~Y(5bcv=;9WE zw6R4%n_C3Z#ufo>ZV}K{TLg5eEdt5&wg^b+EdmLVTLg4@TLdJ$EdmnW76A!v5l95L z2$Ta`1j>Oe0tvwufns2bKr*;Rpg7zjpi6BL(6t0>+bb$+!~_y@i+~Pmi-2T_S{R>9 zw{MGp48295oN9}JZnH%|x3@(=BDqCCD!D~KN^KF)Wwr>ETW=90J(BwYr3R5?m67G! zA|Rs#TLjWpTLg3t-XfUDkk%FfX>W^wgxMmHK)ppkx3xt;GPy-yQQj5-dG;1T09Q@N zIulK?M%>CQqWP=PA19#~tSZL~J9kg_zdg7_g#CRdrty>ZGZjx=>Pfd z^W1y)8ur?2uf6tg_H>x^2f*|n$k=r>?faNk>K{w6p497bK}PO%<~jdiOha6TNr(Y_ z@$CT2M3$($2Mz6J7q4=^^sql+(4!4|>Kr}u^_q)Uxnm59(myxoBMkd|LyLtqnCcNK z_eUP~K?W_-OVz-04ebSp%DvpfIN!@yqH^!^&>Fq8QkDCvhql#Cm->{d{Es}euoX%@ z1uUB~>&+C2vWCmF!d#taKBVwtb^Ra-lZKq^MfqU1e+0Rro&9DmD+JWYJHR+>Bnqnq zb6!{}VgI>-aMeuCOvx4iYxG$7RFjv0@x@2?P30_%LTi+sU72zyC#K)ZjChBbn^J8@#3E}-B z?0QY;A!5IPzS`j)p~Gz-vXi^J;4(uiaq(*K zr3N)sqvUq1+`S$d)rQyg%hwI9-Nmcir1_B~w;8nSmj#A)m5W!o<2>xUT`Ag)a~F7M zuX<^4w`LFRGgq8;x7;6iXvxUA$K`S_@z91Dnp+RL42|^wg9{E0dvScb5U>pJ`l&(n zt2?S%bg>MZ3_K3Gm?H1R)^t-3)^(b-q)D?rroCf`+puBv1BKlZo*h)yy%`u{;3SK2 z>Y-@Dn{Y#$`HLP`xE75Jzt(Yusrcj9$}gHK&%s&0;|Wk~ z)^1Ip;hJQ0Gcj$^7H#S-RT5<=rrY^ioN*&RQAd2iG407w|#o{#6GVd zs$6*X#Amih*_Tcwy8GTJ+q*Z)7ug%-l->$~ewqF7WmumPFo#xr=UWsMrRU|R&aJFi ziW^`~upJmNFs-qnX_fMwD3A(F(qNTd@u*29PLb5>^C-R( zg=~Y|fHNi7yrkD5aF#OrHxLpGV2n|VDc#w)=B{lv-(KxomL1LhHXz69WW1q#)!8*j zB@~c889N%9n+%~w2zf9;^@=v-s}-=|@Y=}CkgrZODhw=ascx;;vtadtDu#6rmv2?z zTPw;2WG0XE$;!7b`&p>30@T~6vOfC`=ok#(d|O9rTSUbTf{zQ#Tib-8Oyx=#s!sV% z$=(C*L=mvCesy)rO01hI->HJmfOZXT7B^;J$-JW+X?Fko!|90eJj=$nJo|67YH$QB z=sz5z@@N%646|kh@r!wp!5g~mA7hD{d$Zft?Z?s#&*YJQ%2|# zpyR-!to|%56{ioOX5Y2_8XM@|8r)Wn;D0n_%b#k=S!k zFEM*zXF~_N`PJ)~g6e%G7{Uz-G5A(J!^sP*}9{7QOmo)L5>TJ{gLidJbVMp-jd z+DV2M1ao&CQ_ecP>cJq(;E)WoVo%JPdQToEG7me9jIMAVJ`Lw#BJ*$_6wGRAtzV;+ zp3EY9pE%SAjhaH#tZ{f|f6C3rA-bli3T@`64-K1533}oplau$vI#!-M#(*zha0SVq>Vu;ONHb4)X_3bctZYD^H zH%azj%Jo!L?y1PiKzfn-(VZ*@#&P(38w5r>TTLB`ryu1)UAa(D@5HtSQSWGHi{Tl- zLTj#7<}d02Yk*wBEk9Aat-LL0sQ9%~)SVFLQ$NGl>boD`ti~cQ#y7`duw{o2pT+Hh zhB)PHP8vIUgEzFL-h01$y}di;qE;FtUq;qk&9qPpwz_JI3A`F;*qeL=?^usWN+ zhMIcm&pBrz+)gk3Ip@AZydJzd=M{nw9=w{RKWE#|f%OM#8Oe-iol7go`9F+jJxhPS zQkqDoA=7}q-Mo`ON(Q+849iC#vb=|5*xIDuvgj6|BBL>~35E~|;95C7K|E#NLU-T$ z1pi&B=b>eY!4@>`J5~O>Q=7p|L~TuDi}K$iuuT}yy#o0NwKjtLK7pfzTHVU6mj3$% z6$A>Mif)+vzY<&wan(B-gKQs8jyELeDb@4p;q; z3o2hnDO3I@Qhx?36#zye7-T5_uTu}ePUBR7<|0vy>}dFA7mjvMdwXo||4k|j#XTM0 zow5%x{Xx>*(&F5#TU;sr{4@>(W9C%XuEgm8xHbc&MU@iTCzblR77no0c{b$B_bE;2jZpC8Ds`^$lwX6I; zPh;(|W9Bq89YVWYXpS+9Y|!!V(5f2TOdM=(sBXm0Bz?1q{|X@o4S5lsYmg*g<1 z3k>Q#=<5WX2YbK(^KgU}XHl9~EW{Nw^{c~{*eO;j(3bc%rt5`ih?XQOh2!5Kq(U9P zJLyIt73)|FJ8F3OjVI-sgj}Ly9!kDh$Yn9dG&Bt_Gs!KM#~uGIlCdM)(%?j<^4}`R z(FUo#7*4)R(BonzudJ_KwUEutZGxE)6HZe3Zu|Y_JjMI(7JXNS z>u<%HYOE))(jt5J2(dASyBMZ4w90Or^=Qe{caYywqcZt} z{{tIZ(zMlJiZfl$TTZCr@z7_|J)rS-;aA@YeSyLMhsN7+HVzPfF)$Jv28wM&_TE&K3HgZs(?p9Jgh4Pl)+v2s$y+ zPKPNog_7c-cov=gvxJ%vp?a5&{YMM6Z^S>mQD>*K2ML9V-D1uWVyev-X5su3g%q~v%sKPt zRdBs^A!b~#=v;vV)#J0KVo@TI2LzPv&n8PGU(B@T*0t5Gs0pZ)4NbTMP4MW+c#O|K zO`tgVQY5+Qf=hJ${?O$7GemDUlZRoLnRO=A!CoW$_O3#U(|{@K`bax$WmLkV7FXJn z?nS3&Wpn~gZb46PJle{74EU5CB=#8&b0xRHw_Rf2?eJJgp4QM*H-D--185b|v#fGV zc5A6cl$zSQrdnA=Zz8D04Wqb}vnaWQ5mH`Yurv`2D(zgT zXB)6aM`H23WKgB5?Tp>FHvth0kRNjBL#H$;axd#S)UvO)GPwD?uBJb1)0*Qxjne zm06?n!En!fWGvDpp!3nw$EL31(&*_lZi!($C#*qAB8*!<7YE8tzXix&A|qO%GpNuI z@vk3JA!~{Dt}`hob&Bg4ud zc|x{=YO%I!XIO#Lu+p8=Qfbaz-b5vuk$J7tEd=S2F8x;Rm%2gQMZ<}U`i$5K)cB4g zAyR8ixTn?yhS%ewg$A{S(SMoFHs@LBpq-RRanetLlJ+MZjg>g*7~N`xcUkawHV-B8 zlEub`n%3&p^|(TQH8*+eVOz7qr1R@=?th6Ip3?v_z4=6l)A@dg`PNO*!*rFeKpCn9 zPpQY?!Fr?~&V1A~@Jj>rC@oA!!JsHGk>C=tTj%9!~dm{q)6!Se#-lHx_d`ceH z*51lXAp_r@f=8 z{>T;eO}L7!7GQO2?aCw9jUHJ<;)+nwys}VHTYKG+*jP|rj;mM44C7(WVKV7mgoTJA zOhgu~XlNgX)2k6|Bt-f!ekWsOvb?3V1XEru$7sh!9^^A86;F#Ga>^UC$zR#fbT-h!$mcO;!=0D>*6TX#L$2#M?Cl)3p1j3h_;!x}h5M(1 zKE1O1gO8wbcr`f$&ks+?MOKr!cmIEyeRJ1~o%1bW{k9G4QF!o^1y=n;ZpF`l;GV{_ zx&q#nk@)T4u_^*}Yb(skNP-Lu7X%u`P4vo0uan5N1T|aSW8e3}Jgg9z3yJCO7l8)j7hIwC zVb|n$+WPT=#A>$9?ag&ftu1Idwi(~pC+&t(HE`Vjrf)dG8JNORK)WsevP z`}%$H__fE*L*0wQj?>C{)2n#VX9Swt+=}){tp&b)3VMMc@XH`)yrlP)mb#>b+6>t%A>sP3t3(Uk$fW~H(=!I7{sE`-NMoV1k zV=}M^SDUsjZ^R*=2`*~h8iUz_-7oWJstkMn1ITi)NmR2Je9A%$VmiD@*%btQ0QjPd zg#?1ZR%~Of;|p}`N+RNdZ5_Nv1MgXMld>0)kQl@jOq}Fb_F}>*%E#nzhZ0ir?4Jo= zoz(rxA}9C}_@Y_RG4oI`QE>g(Y}Nx_hN`_!IagXwfUBqfSzYgdJ03%?g7-ka0;7(2 ztR+|lM85(kVR;J%UPGAgXs5)iFD8fqtf7Ag7H`~4s9)EDfqdbY(7^6Iz8BWPi~^y*d!u3ffHYCG9db;{za)^}+vSeegfoS`tY**;eqRiJ?Xhwj@Bgh@e;?d6Tt3dVuo$7UhGd1GDcmn$px88G#9KdbAHU}mMy-4F6LsD4uEbBTTf z5G#F&vhtYkXlH)+T0ig;U?a6Y|8t~hcQz)V)(>JntoglsRspXLPDGtAAa^1(DWE2* zH|l)B4?s(wi8_CQsTcc!I82>)6P7yP=&AEu(oJCt#V_jo+dkI$>MWT5dr{|G)}hje zuG5u%yp)MjfBvsm`s-N|JudRY)`2!GX|(g&IM5Eg$j|P1kzcs09|XmHixy(bV7szM zzXsucUo3F;*yB)?ZYTMFq~rfJvK(##K87vAO#p##$4{VJ6F|gan*b8LO#tC=6F>w1 zD^0-H;EQIl$IL;&B%wCM_CWw0f8!LK79CjvOgw7gC<#na)@W9E6~kMHC%D`` z&gj@DDFcQUT(~`!Dp?N!+Y3#_*v}BN7sm!;1+^G~$3aWfZN-r^P@*0e9Ay))2L%(p zfRIGA4HG59&}GtZLG7)_gH<}h67=JKsN@8xloO-Td$G}M@@H()8<#2C7XUqm9m%j-(mmrq1c=Np=&IBUZSl^B} zC!jXwu)0M%>X^ONGh-!z<;h}+0S-dI0>Ci=|@g3~O)r zY3ykpK*e#SLapODNExpZXsupoY&;X0_NZRGWe4+^=Fcuj#N`!rN`9P8R$^6Ka|cs92Hu9NM&WT*yxGSHn5Ahe!*l?txbis|ydD7=yQ;Z< z7T4(P@4mQj;tw0Ixij+_*WsZhKNq3Bb&KoYC?IETEnarQm*CXA3n~Bd>jr$mSIPb# zkL1GpE=M3A;b~rEgr~gf>q68HTKU^J#0&8nXit;aeU8Bwya_V=)GMmW7)n`ruAzn- zLs?yCpyCI5qp!2_t_5<~9F!}To_TAcAg&Muw@U!QE2@*{!V_=-WK9Pi67rLQX$2-` zIkvH>2asbAm=gLGQksi~Bn~}mjGCb0%Wu#PSCd9sC2?}! zT^ueCj6qWzTWjb~BjPVK4;o4^IWY(Ofh*csV%pR=^vE4}eH>;Q+W1#spUS@y9>$E{ zYQ((dO@?wH;6OxxKQ1W*m1A!;?5`qKwAxgcvf1!XFx)EPS;O=`m||Zwz*hi@bPQ{n ziv6=e$D-EoOfdvm!&Sn&2FOvG<#7PVenHMQyL97vkF5)B>@k2mFP}Bkp z!%!z09b+nntZE&A*aDLr-)x@`>9iC&vV<~&XMx8a>0#mp^V*y$VY-*;E(6>K(Q6D- zJ8h2QRI$4abu!X9KTK7uu@yA8*p2z{*5{^83%Z=$4&qGhFfVoE5&c1G9?Ql z`3-zxr*`i&{iBj22N!(1E%hZ7^Qp!h6w7z_G>nzQhGsqWy{f8}ZK^TsHt`}n4x@wq ze`r(xQiHo)IU{S^pn zK~y6y;R5spp(O#F{BOcjR5^t`5AGnO8!&)1>oK1|NZ$&SG*_?%ssI#Siz~nI@T6iG z&k6nozp>0=%%21%Hs%xjs8{jh z;=LK@$%H30sQCOkIM8z}dK{lR?fX!?x=CznYH7vT zLFTzlUQoF5=|UTH=o>K}1MP5c#CQYv!@LoL<42owSSSi-fCDrA8*jw;mtTP44@&Yq z#$5mYYcQhRV}Y(&l<(>((7C0DX{;{3HX#F}WePa1Ue}*8G^QCYcIEh}GT{tGy{!ds8gu888#+ z56%Hg95WqX1lQu%w?l0Q(x-|---E_Od)FG*j%Y--namvzrTN)_N^q!q?FHpN*WYsr@Uo1PmW}{VVi$&x&^THv{wVk)zy2Ea1zgsr{t)_3{nE3lSGNNGc)(=rL8!&g zx)59`vfJUmxFN_1-huR-;8*zl&$~J^D=bF1j9`>MUY7GOh0{CTynlonvTIW8bBj7}rN(nZK%n zy9BB>==~EBL{mLqp6%i2!0oLbu&#M+lfov@@-G z5aQ|-LR>kBo6Qh$DxUW(cOaB76an1!7>NfKzT77<9s{_L{i5|2fZlT1g8e%IRPR;F ze#sKs^v2xJ+B)36so}WZoNsWU#NHlKN^k6Wc-eXv(lX%AKf=E#@ec$<2|Rc)N&6Lx zwB)L)#^w^P8B|Rvo2cyllAbdfmQPtvkfBsg_}lLa2{M@{#9P_miFZK9t26NqSY+bE zTvNMVknjnEbpaVLqVq{86^j>9n$-!?Olf%dtK!-HCT83EEx6P1!ht3UxabT_;I>e& zjCC0INeEgogLv=rnJ~&2tXNuDhbu#)hWX$=UPD7jW_GT`fJ#nl(W?U`vF`6 znf>rU-k#WxkI{)LbdjNc1}Z3WlauP-x@O+d%DRYF* z^^q+m7ZIPj1fX6xy692BuMyToauHP@yA=E3>(_DPj5Ked%xqnTcztWDTlof-OIX;a918>{pyHE6*xY8yUvRz?FzT+sD<+in z6Q<>K?%X^8W;4J|oBLuWUw}tXL~K072{5{f01PV7+k~2+hd_Oo0iuQiRRGFs$8{ul z(Azsu)~OCYbgQ;~{&=W;-7Ok`CFEm0mxcwYLA)7d7vid%CyjL-bdMuJLa{iQ-tUL8 z9+Xu%V~l`apwAV$yaFU=vBCENez^y~-owAigWu}mzu1G{X7F^|TRiyRdH8=5#zQ-+ zRONi`N#svqqRL4zS*KE8M)28_41N&sId>aiG=M_bh3Fc>ZQqsS5;vTMP6kpzJq{VA?PAX9KV? zaI=GZ#bj2b4zKNrm!|T7;d-!-R>ta@4gR5RCD=w1Z}@92~A(pK)5c&u7;kg$QMl-9yD=s34_ZMsM z*dGfR=C&>Y%r;+>m;3~pwXV^HpixfePc{Jsi@9*ureeUbnMSO;6e6@qG@|vVSgPOv z&PtXH<#$0S94kd!*Xi7~skjXaXz&-8Gd6^2@W?9wR@a>bda8`5envz)Zs#}fk}CmY z?2u-$`kzk-?8-`)A=QIdi~cU?bne(x3=hr_pRc(V%=CE;UP=&MScZ&3o+Sh`X~>7c zTyZsGX39Y1Ud#=`_g(Oo8wG^Ynw)ksVHi<^b2W%8X!w*{NQMD4csb@^;J1zKI5nv; z8MkYzyRg%FH%-jCrWx+KL!#8;^h#q3FLlPXuBeu%=y#IPB5Q-$V(d?WDXGCdNUPw* zv#kg3(Cuf5bcpvl5BaI<06Ixw0BJNP(iPE!MPq3}-{r@+Mq3v93i~ zcR9OU*48yuP0j5bne?%L;Igjlz#(_*4(F*yP27&p2%A6 zJnC|M9_DB_9P>5DJ1)oSyO|1=?s{0u*g}rIc1EJf@73TaBXT(NxR?Cuh#w~>9^pMep?Dgzt`;C=A1 zdtC$k5K{v<#!2Wcc&9TIg@K2^bJxc0K9xPnaIlBYS!Eo&5$qE*I|d!#j&=qw*;~y# zsqD;O>V#zw^_1}{J|nbC3=A6+kpPB`8Tebuth`Sr zK~cSuw23(Q+Gy}+0AFJ89n7=8a}O<)v&|E6u9rc?Uge=S8tP_7$5>M3+-9iTApGob zqNFkx&l_qNs5=c+%x$Bm%~@@#2yOO^P^*1^OTXSiYzHG2vE4SE0W;75jIsho2>__+p8^Ihb@FE@DR?WZ36CWB|LuJYh7 zHuyGp)h>gVC&i}>z$e9rU7>tZ^mXpv7^Sjb_cB`#=$w#wzhQ1qR5@7&zZ3aCsPTMe zILn|}-k}t27AY`49Ejz8iD9@C4CB2FGFHFZP-(ZthDtj;Ves_ejxe5Og%VXcb4{C1 z@_9nmF7SlG?*aZs6D{Hbiyn*=5-&t%wQfgZCwTC$8a$0&@4*5(KUFzx3xpEPsF8a%E0o+t5L9=x5#d{fu#_q{SF zJ*I8^7UE79o(hiASaLlYvb#62G4XdkBW}|6xQ<6%s2-GSQ7U8zS3|x4cAYJMJ@78uXx0-3CABAErN|tujz3%qSX5 zmGi6_fE)l}yb$=r>9qq|^6WCxDe;*UkD(lg#q&v!$IoP*Elmwr-ms>=O%J07Z3G_s zRF>-ABc=ji{Po~J4}no?G~TP%u%f-b$xOo)*jE7`b2@%N^5XCF;v1UQducDZwDLRA zJ@RW0wR^l}uY4ZR{Mv# z;GbW6oUJnO`0P_7@-XfE-EHVFiys}U@i@E3xD!vC@iV0WivAauJO1+}4%`>W^NY@i zY^dy6qxqKEb6+b=&w1{r!R~kGxd|x0%ya)0p`br9&rLYa@6K}*O7xp~ZUQNOndg2H z0&wwCuoeG-$@uv*zQNx3L3Lx2nCB)f2JhBHJK|&UI40yR7+Yde zM*~j)h{Kda9$CiRM?g<}4rGe=6R{5DfjmC+!2N_EMxZIbA_O@C{aPSA90`>A0BCsh z6d@-Pz?0`7O56@0{ypOnpF(K-AAhSGSpo^)7yxS(>J=b*u{TWY#UWp!ijRI;v-aZj za8!`?hze3_B5zmb7mY&i?yufVTnaS5XcW}uL98472Y#n@LvMD{3)U^mdD4};NE1!o zDsx%BN=+RMmB00N0K7;AH!ajwt*O@c)jAn(B91Q@d55V>`3!iswmB}+>GuTDJ+BxD zZ$b6daC`p0yn70l=Rll4$ZZAxdF_j;YG~$8hZ27liVW|e;t>shA8va9P>aa{e_y5) z49F{8l|P%L#6Z<@T-B!hIizI(;xrMxI9JhVg>u&{jTqAf-eGo_$PgZ*)<;DI6H3Y949b;l`;ex%6 zb($m+PX_yRu0zHo+CSQXf33q-uMPtE5@;*zOKidP3rfpAi<l|=iDJw}Z)e@r!~@wrohQt_nQ=P~uzYY`0E7bK%QjBCUKWv7G? zxG5VjG)#5UyLQmC_<-#TFq zu)RNJUahJdB2n?SA8Q$5M6N|-&NoP8N5zxdsy-JOoOS9j>DC?q9M?`ItU4wo;VOu! zXIv(!S*_)d0!~h}4jhCW9Qia24^~KmR(w!$Szi_>!BMJOnqwSEIY*(MB+VuX|*#1EwMV8yX64 zkK_xebd!sPQQYYxc|Uj%#8e+0*|M#(Q7O{qPn%aUXChzdHM7zKE}U9fb#|G-Za!WDHgh4aLREGcPu>XL3FC25HTt0Fh$3zkw_>e6NZTlqV2#D9Ryfw|sdJ}S z&fp8i4n;1Uf$RJ{8W~>w#?qb=W(zu^j>}9m{m9od!sHnfE0o`>u-zQ3Txqd>2Q$_-)N!}kA_3zvzoA1f79cUBRZsCABVY=^ z+Lf)?{)&kZ$jNA5+1$~FlRa%{##^goGI*(Q_U%qm*0B;Jlu^rff+_1b;mXT6xuco0 z(Z>r|kb$O2);vxSxX_z7L^{!049lk{TKk>#%v7YLc=gZl9piT)_wo)Gj$Gd1Vj`D! zxEQ&-!vlzN{xBkZd54Rsa4+w05psEl3%Hkecwt`N;f3Y$4i~Wq2j$G=9WKgqc?WmR z@RivYA59zz2gV=w)H#*Xam(VKld2))_IgWzT#4`?>~2eSSYll%u|i01 zxm5WZ>`E%kQJi&)%`smH{(h^321;wPOH}fvunrnyY1~np;-IE%kDV_ADV^MWydS_# zZoWe$L#CBlDqNwql?@mwSjTE8tjcj=7>$bKs3VWfCB{D#=Qs|>~`_&ORz}~`HE;2`InfdWr z=17mskrA0AJu-EeGRJC}o)Ut`w^yyhMK{$@cWc0U2x7JAwg#BKE~%{nF`bmm`2q5< zWX=yTcLVw27wdum4Lxux^Ke0cZDRgU$%aSE=K{>B>K{UrTxG1EFOL!-w;jcJW{_ae zbn!{!IYgDFD_z0K8``jZ2mhWVrSD`VAm>$Z@JY5fILC%lZSn7Qz)lmckPPRs&Ikbm;iYjQrLaC+=*$rkE z;b#tu@N9rXq!=}fJqkmy4*s>su{-MuQEk31aoh-eV;`qo34|krZgS z8)-P9vACxo=@C-P?~xW{BjAxsOr)2ghgaxYO2zXVnwT+mi(%ps7JjU*_plg-Z4jVc z4Zr#rk_t@sKSs)W>_cu^W28lS2k=nw)yX#FVk&s^sC(#{Q|wzIfqS9~rNx;l@uxkE znaTqu*^nfv)X9ighyrSr=4TUF%G9$u&vcRDn6YRFYx&Piy#2`2cEo{wvFZh~RWckK zkT!wkRS(PU9u`f__DFrkP=g^Ozw87Lm7>EGT~WS71gR*!y!MQk^Eqpa5%96em(_JW z*4k*!=d4NS6YfOLTys7r9mvc_Tys7rMfVxt@@G7Hv_Js$!x}?*{BseToG*A+M^MY= zc&HKWLGfxUO%T@TtD0MJN*?RzulTl@c$bBh=9@7`NY#2p8o9-f0+t@-6=@G+9&?p` z#mBbl9KeOx!1AVWzXV8o#6BM-;pzvL?H?rS;JwiFX_F!iN=-YLnWpFju$xCTPc;yo zTdV6D)>WD93>$r+=d~%`4=epI>vhJ5r3F-PxXBqdrLHH2pWfamz5qPsh6aNm%4$BX**eDyxBo zwe2fWtEP$6Z@{I>KQL@84=xOLs{-Z6zZj`HTo`n#)OLesgZj3Kbt}qp)wcRXS_Z^;w+MU=&SnPwiokUU3?u)MeL%-uF=f9sLO66mUaaBBBzq<4e`mA*g(mcvzZyoq zTlRG%MPsz%cc~Qn*M>@e`ckN##Yhg6X#^f*;P(hPD2pOKhO`?Q z2WY$-><5r~@yWn%14D5g0`D_$3<4vcWA?xKeZ(WUiGT`)d%W_JS0dC;!x>R!^E~)& zG1O6!fr~rTVUJ z_~gz0l2^5+qalMItLt}}ZnJZ%*UI+`r)yMHo_ z^xfNpQ5v5~Ul}|rEh5K$Vl64{tFNPBCHVwL#=14{#>SsSwHQTir5^a;<(AlO%*U)x zq9XPFlPEUY&mdR2-hUazat+se7c}+$%P4jMMSParYQ!(2CH;ZBvf!xq0l(yT2<$@O z8V0UL;9~|ZL*R&)IQXWu_X1+Qf4~TF>wVd`)%!OLBi->uB-Op%zhkJZ*&hg1*X&-e z>(XY;jz#9(Sh{9s7%F42SkM-DExE#2G9wT&jAur?72Pl`nGuLsGDDsL8<9tC$^PwybX&D!p@&iKQE!HaPj;43(B#?U9-MhPFS``k@D3WbiD_ zs}4zPq@hyUeUVsY7Z^NCvs+23@ti-|WyoiThcZuO!(88hH0t*Vq`_{x5h&%`K5||` zpag+aUqe$p9)Z%i___9V1dc`E00VUh48XFYG}X@<@q1WG$2s+oJ(*3lG}BALCC&71 z1k@M`UI&KKRs=pHs=RfdHU$lMF-SCfq~+e@q2Ae(T6WYQB5`%byGj{4WmC|cn{Q^ydU^sM3j7jQ0X`L+4KhlqA?!00s%ZP^Fe=?i3%5$kF_)SC8P6Ue`-%+ z8}&3aqoy`#S|yC6O}1l_t2=t6>}w;=F2 z0%gDQ$cgwKB&qU~jS6(lQp6T=co2HJhdNWJdQg0&2fyNwSRZ(j`=Lt>4|@-Ks8_kv zaEjR`Yt-jHPl_W9o;~54I##e<1xxaRCHclImbT?j0aFlW&APLRjXBUkWni#QlKvId?>WRNr4v*U_&0Ueb(tpEVz+3hK;W zGV2w=`#waoEAv~g$)vZ_xn=Wov+&qf%UO&MgJTZBJKLb*P|D{8=>G_EwB~dk*fdd| z?!OFjF>)MaaW+8idiW~HWx)#%0L6Dmx8uF`m_oFosq5*V04p=7c*7^(rsI$1wB!Cy zQT2AADOou{3sTmvVmZti^BK}MkLJIM<)gXN`PWTDYh^)_OnNr#z^0K$e5g$;&*yUt zV4lyhDSJ~C$8r-emh*M)+ys@2SlT!4*O3$)*{X@Y8L1cF4SXw-ExrYTod}dYX}H{( z6+X@^;l^q$q~R}G$OHOlYv_Cg8Gaag-}kh9Dt5HcrFhDZGkDs(#f^v3 z_u8!d62rvac$>@QQSLKCXQQ@L=vwI(Q)5Zgyt<1tflhD`&2#$JX05%KXKwu#PT@LVd*7 zAGBw5-vJvtY6gZ=oDnmBv0G;4fs^0ZnKQa?v5ia8+h|qtU?lWiZ%?h`)wI}p*J29q zXmm{c95Wn`XaB_ws!s4aq~Zk8h^zm6yIlA_4qn6XFKjPcjDq22)z`ruwO# zSrsSiRCa);bENkHvg^zNCiZjs+4x*QNv53{nscMiqY$zixq*0Kt#dbrIqx zWZ~y7G{3zDAaH;I?jIcU1p*@wI2nP&?WU}6@?i%ST4fFav7xG|yHca6)DFYCLDFC< z3mr6}7{dtpdWcJwbEBh)FZu^S^y{Ok__+Y$cyfOX1*PDbKmsoVoyrVcXGHH}FEUOP zPxumx{)9#QV*!cwcQZikov)z%3y0C3p2SqrvE1KUUoS0#H7oS7ZjjJu%g5@v)hIuU z%=wU(g1x)5iERatG0sG|TN}pziB)j~B0E7ABrJq2G`M_1m)Robae|3(3h4Y;UDqON zGK4Oo(3c=Id7%LYe2wH_oMRZVnLrIjTuT_?9t~k`OThYXK*XB)68cbY47gI-T+ZV) zi3L1d zfowDV%qlo8zt~osISc>%Vjpql1pM=hJ^X4=A_j$O%@DZzcio^#x4<3uCST>~9r=0m z2&n4Wcjb`Kb8>W#+kw(h(_`dzAa-dnayt-l zD)u-ORz5;;yd>6A@oP|B*zNFj9tm!@LqH`+wzZr3grpXf~N7x*gII54qEaLLBbs?Tx#D4q&Gs;3RHDYj5V+h^c52EdC_x zopZTIGi>fD$Ytc@8be7&)D-kxd7>A(EFIv<2ntByiTr#;f`SnZeBA)BG}bR~$IG@?qIZ{gALjwN+D)KyAR(ARXnXSk z8SfFqV}pQbt!u!*=0a*0g=&(?n?M8_GlUQ#3#1AO;fcPgwwiaM2=eDeK;i|H=$IR* zryvJnV`nC=5x590p-v_MFWgQqylof(7)qcoO97cH8U#^V2E=N-0!`B!1jHsv1ET%S zT)ncvjea{8t}@ZLOVs@YctSnH~L^5Ks^aC_* z$&&y`$qRTNz&^OpLEm#`-Sgh3W-zlHcjHzqug1v^#N2M}{)fTipn+bUQ`RVZ?w1DJ z)Er*TE3>cu#$X{A`FPRZ@`XXvbgXWv!WK&FLG1W=v>KVf?N5!kP^}8HEAYRj70~%9 zDL<`(Y!g!LY`4;a>LHdx8V8VUmsYgZa3mvcS`djDig<-CVL0p@mc-bCO; z1p1LH;FfasxVbc&8jz9$h{f|W8c9U4{H4u2M0g$A8 ztjXNcJb=d~RNgQ{T!9t>Tm8s?#Mj!yWh`Z(7hf0C;T?*rJ^ij@v7RHHeGlqoW3KIZ@>=@vz?GvMxQ8b-2pk>S2A$ zWu1R0>u8mKgJHb{3iy#7(R0@(B#N}VHmkggKhqlWmW%wY#K6v$Wkr+6r9j4X^$^QV8M6TA;G&eM2i|5}6I3-nGw^HeY=it_LE z#Mm8)@jFk9KWelOF_<-f=T^M@L*+M^a(o^_qp;Y3+#^3=2zKs+=#45@<^RaT6Vf~) zM&-X?C~qS66b}XQtr0A>5|#g!;du`{T=);Cpk?IEG__aEJK>W_%iKi=F5y|lnF5D$kR%Oq59BU21>Of?*zLB;^XAtvGz zX8vMBW%ed^qp~RL4AntZtuoX$N=F(h|13}3&EB}a&c|6%E;Dp$pZ}JJ`KIp7;!T!m zUda4gFFl-*IuFNz!*Xmg9L#D0rm(|h#aY|@zZ&XhPzyBG_(8O-%}mM!6OS?eZt!&3 zYJ=CsiHUH!U$mnm_JVy*^D^M72v(6yL#JTwDuzOaa-^Y9^!+BLl!{v?PB0BC?eT_T z=w7gEJsb*?=;7RkE%rmhL3`wQIk>ws|6)UB(T_9KP2s}*jiJ(&mwMx}F2CxDy537P zm11#}whLR_{8j_>fsw8@%%2Fg->HN z&o7?E3$MXHzc>e9xEcTa;<>!=$N1+L8@>zA!9TzD5q9Ao{PSzi0#^Y4{LZusKL?Iq zoWC#p3;y}Vj_|_Q@XxP3(Js6l|NPoh?7~L;^NZ*H!Ys((*Pd<{_QF5EcDY?R2><-z z9Dh;wqsZ!!AfDFL{Rw zxM!7Igq&4!0r#wu7v@kC1?H~WI0+tUN{RrVlhTzTLfA%S3Y_^gssNkm-qA!n7GMI51kWmYK=)!|&+L>>?>w@*zf;HwPC`&_(*P_Z(X zAo+}q%q2)RW4S?ta|x2SSTmO(8H<&yr4I#C(RvOt(~$JlN-F0*sjnkUI=P z?gzMma1EIU0@?v6S@LA%Q#ekOa7MR)rvndymSP^@2XpdlJ&yOL@YzeCqfw($@L(ap z_BjObNF-4EJV0ohl{JJyub2>9gis+jK({y z+ES@Fkt*{6Yo9g^CZ}$y+Hp+{cHuuCuN%=c;IQQ<+qx>&AnHWv6zhQDNNrxTyb-B? z(WFaHr|P~=h8SILGYjgPmmjlzYL(|T*3^vB?C*@+q`L7#6;w^pNP%J>8D z^J<`VX1-DM7?>dQf*8$O10c)Qt_i^9h|~xDHpVKMJB`*G7~>kF%{c@LjrtP(6%X*b zj*c;WreoA)>?}8XOoF|wn?%UVw7~$EfT<|V)JN~}$$G+2uLAYxL#SVSs14nzn^jgy zFP+_65%)*ksZg%dP$~JEZqzlP-sg$?a5pN3@>!0t`F)7{YM83B#v43S{5*_DUNDI2 zd%7t#Ca5jJOtxe2?*w^Mx)Wpz?gZ(ePLMU&39|Lk%Mfww>Lvl1&Esz9wo&(_Rj~)# zqk!&Li}d*QEeMt2k6(rB>GA zZj1)rNmOF;a)!=|+I}Sb;d@=F{&_ueR-(^lUz%s_L~;3WBSoGBFdotYyfFd6kCA6T zMh5v3z<5Ri@THN66>zs8n#PzCwObACX)~+qRTOft0kP&AbLJUyTE$aAiar~p#F*3Y z8{>RqW*;w)Stqc1LCgQVb9hzU&k=YC0h3C*Nd-@t^09_(Ln`r1C7y}I zQ*vxit^|q`Q3pj-FDkslh)Q-vmGl(TlS9NLQlqFA6+D=AIb!yv#omJsNvQ}Nl=o{y z`Y0Rs*A=um}PsaAx zX|S}v+mo>ixlhI}9CR^9`-Rb@IP;YfvTz`5`wYUSzxx;h;~Bb3X>lQ=X& zc?@8Ye;P^^T`QU&IH+!UhLP0MQLU~$s7?ud!W_oXpq1!fIFb5nGmI+vNp$C|Ya%J)u$GADwkH#^Vm z415jdyAVj~86%k&m!+PJd})c9sahgBH2GK^x4RNYgG(efF+ho(2qg84Are0ni78K} zX=%Lk8->HX2ZQvyR6ahw1Z*0&XL&~M&S3jVpfm2m2#a55tgY5!w~kM}Rr)<>_{^Ys ze!9*VS7i7(?Wk_C z95b(Cit?XJk2J5n_Me9}X9#x(-~ZEve~WlmR@MB<3Kdn#EJw+eT7e8J0V1MiOq@Ff z7Y7E;w@{rhQkXq+VP)0Sxs?@5ar@5+b~K%18djB8slbT>so*3HR%s$K`XU8+A_kUW z;1Bh>Pl*MpDk^7JO|F<(Idk&F*;NatPOiiiWK~n9PFgfwl?0B@9t@`sR<3WUSAi3< zQELHB#+wt`n_DO0*gz%D4%E-YT}bPoiI8oO8`>Lcs~Z>A*S7NwV1cUay%Z9h-`ZST z-_|y}xpr0C>;~NO6R-ih24N?gOC*$?AxcUzg453B{dB`}g z1Pjy(Sa5i4X7D=0K%Hn*7+ly=-C8f@6{r_fF_b!7zEweBtyXqQeND#-^jFO)urB*4 zsIP+5+o-ZW`yS{R3|7?FcC@xdRNNr=xZu3CO<3};TnR(fslX}OkAXW;1T4ffY75?e z4s)I==nQDr;AU}S_D<#veAA%1x=aXiOp=nJ0a zL#FehwGX(U%&a=U6F>!5Dd#1NH82=7Gph#14l~ZI8YnTynNlHvUk;^+d;Oy62?;EcD zqGu*22b_0>r25Q(zHayOBt-CIbvc;L>RSa;Qmcj6UnJs84T>sNMD0A@HRui zvi+5ajKrdyEzjwPFg5Vr2z8H3-RV;EA2U>LyOoHc4BdYsjY01lA_(c&Tdj|{T7z1g29|QVg(EHuvRV`dB zs%VSB)2kLB22|&+lKlpKv@Ve3w$0k?WqAVzC4PSJ;K9vVusLh(woF}8wPBkFuob57 zTOj=w31`oTGG9;?Vt$BDPE`GciM5TY-uh=()vrMx^ogN$H!gM(89Y_hYO3N_4DJNz zNh`1Jz{`{B>U33qOPY%;t=|=4{XT?#Lr|TCJYub-hTxrGZ_&(Ac)%Z0ZGfWy3`PBZ zo0KaEuzA+t%LGw4``J#6To1r(p8v~ZNaj2uFsUZM?+9@F-~np$1)yQgu1fHrqHP9P zg&h1InjvTQn#2$$xjV4?;HQR4OM`-28!+e9hd0{pGL-yqzKY@2ePf}}q79ZRNkzb# zpZ}mIEgB8=zf_w^+i0q^koyeRKxCC4tE(0pSju1uO}_#X%V07M9RxHSPdn2k?g^&= zlD>k5x`@zPM4Tbb)vpCaObz~3Kt$DG(y3sE8D~l}*CG(2YVaNn;`vC!9|{an8cf>A zxZJ#};SmBuv<8=G5G}Qa_Yy{#%#wEZT|%bFW?L+?_)WlI0ZK!Y0Sz12$9N8kiAHN_ zUOR&Rr44tpWInO4=D{?oe5|ex?DU|iG<`h;mBBbSi#6`qj6~=Qw@Ty-wg7CwUR4b~ zs=+XMCgz-m!vS|m+-m?G(NY5L+pHfVjc6xyylz}au4;@6&5gXrdXkapi8mwifSwF_ zbj{~M$scE;vXwT@sfuchqIBnXAqWIqc_I}8+blZ_l@+4s0t2u`NPtbWjH0~;&4y^Q zpciD}Vy-Or`jfJ}ueO2uf2U$&URYK-8{}q;}mP5O_5hJd;G!9u1yN5bpnxRF6G?hCSdZoczT(+Cxk` zBv+pF;dpC@Axv>gzv~s`t?ww1Vt#}!bs_>w5Xd_kfldZ^q-`$)H3+=R09Ri}Y(-!_ z0<8@E0D-8pU@q7bFNR&Nt6aH^)ee{xo5I$dhfaiTm8MrB9&M|k6wKbTtr{zFZz6;$ zHBQECeX9-UJX3?Pn1=5c7~C3sQ-fi$eJ*1oVND)L&^>Z> zl>Hd2^)^vxku)^yJWGwFK|eRy+sB@9x?PMvF=9O!#H>F>pny~{>05xrq*>=9K$FgA zfF`|#0h)9_12pNn3uv=pi~8xpWVOp56^a0?KP6)HnljUeUT9y7D9a2}pRmmbCuy5s zD0Y1qg3FNi3+)g%dT%q9+b)*t(jb~*4PVxYE$cXWw%z6sm?qGn{lL=)HB@>bAXJJU zOHtiL2s_s=wr3$u`bCx+g+Xx@Fb~^L8|6lCM;1>v0NZSStQ~gWTY;a0DB7LehlVFa z^DX^#_M^i&+lD#&vN}k9LbBe1h|Jm(lC^IL>CF}zapra?1~2%HNaG|v)qGOaoI(iR z_FKuqc|wDvX9RqgAo8c7(8YjISDzJ&H4=hdo)rsSO9*z+(1(CV@+sm)qj?A=Vg23C zhT45!1peGh;2%Wxe-jXfCp3#cS7&oRnMXKd!JI?0s1XzuGE}s-^0D5vPj$uJ32_5@ zGUQS8YoNe^x{My4MjW*kN1bcU6W7sB78tjgH1gaux?ZB8QNJ|(Af&O{9_<{35+3mr zM2Sm5=pAsGXY6u$GUY@ICRuP^fdV4W7>2q~mf(~%Isp=*ofh+q5y#Qj@Dw8}T9xzp zvXRp<*2x2aMtACRUJDIR1ZvDkNWcHA!H?2|9u3n*d6rkK9OU zj1=DLX-#z!Fm{Y~CYbR+^dG=T4)2SgtVs@UCWIbdx#N(nby(6fe=(KTI3Cex#`$*r z7qiD2M@uRBiP>!(*<)ko1u&~m^&WxAjqmylXPcRO-D5oM3rrF5vwjNZ|Ne_>uli8> ze?Ge!K90^&_&;9@(I>|J*CB^d-dQU<)4Bx$0&=!+2}5$WkT?}Q8ov+V8=Z+COT~P` zXK~Ds_JOU!`vD1<{eTA;$+I7ja9nslAfZHeKOlh=y&teY1aLnfQ<5Z0fsiB-n@M78 z1Zh}@X>*(7+<};!bBhi~x8-AX5u1Q&l#6E$brD*H1bLyc>~a`;sem9d?S~1iF9*a- zj=Bs>BIfnCLdGV)L^LmX6!B5>u z!T{ZjHo@zYjyAvs0KFkKnTHxw%Gn;YM!^y^05^10V`f(mW+t&{_88tScjI6DZ;5IuBE6h$#S4SAkI=+#{E|3Va5bo%EVX z^GvAyw5ZJ^DbN(0D&=DjH5nuCc1@Wr>f?P&wJWvya*(|xPn%GgE-7t+uX9Aovlu?eve76CY;>U zNF)JL>lujML3aSaBq{;)LbmH^M{7xHEjr#6eR#1T39ROyYW9`FDt|Hdj<_@!HR4Y&XO8;fFp0lP2A z5yF4oY}>Y9-nk>E`2CUhPB}XrN#LLE&xRei3{YPe;#KWv%&Uyus%lY@5-G$rAErR$ zV|Bfa1|`sfi)gGw1{c6P0;oiZe+Mx48US#=-n+m&@LB*o8Qj}qO}NfdL5fY{$}if) z;OZK@mIdx;5Cze=0PsWziIID?Qki1R>Kb1Amln&yi`9>}=BBIk@nFS;oN)v4b@ezK za6C^Dg>e2TuGV0$@nGZ8OpaD@pBvK4JxTF$6?43`)GCeV{k`o9e+8JhO6WUCr%?t6 zSH1c}Ghgr{L{HpFnEPaWLF(JP<=?sGW2qAV(#;*Y-F!J2cJ&BXJeN{8(LI zfLYsh8SVNy>_xjSqg~UmOhvm^GinV1+O?W?y$n#wa8yjImKsDm`^{)FWe|~dbU3?n zZfYF|ob^=wZNx~}VA7wA9Hs3rz-~}sLQFBkRA`!E5Zn~DISMAheJEkc?W&}>z*1?+ zG!JG-&;h~uRUn|^b^?Xq7ASg4-P0Zth z8%!RXn8yzR=~MSD^vQx70m2$5lk+A3I{&RY|8JT6r{W|;eQQ&7V-;=H#*&$G6C%wEfPZ{hZDRHm6-*pnbqK(y25LwqV0J+EYR>g;=Bm zQ4(JF8hA#JxQw;Lf2wLzeGebq7o=15qRr?zG>mhT7+Fhy3^Rb6_s+R=5Y!J? zfNruBClef3P}?EyfmO8ztb(z5slo!TRC`~;AQWY0_dU+O^RsxSf?t2M+KX<=r|uo~ z-FGMEN-lIK6O1MPVf=dhbX2eJt~=R@QvTj_C%)h>VU;NHpzb{j_FftjO3xyzy{;v( zpd)50?rg+k1YdVFfMESDZpSq7ZiFB-fLQEU!p@?E{@sa#kfulAA_!|Z{+Hsv z1Pt;%l}43ttC4UEd=@q+g5+NAMQ+ZmQginhmMKO#EOoFIk_?wH!&{+>WVnPGevl9= zZwcA{0Vr_^TlBI9fav&Q@%GCqi9DQ8yK-jbjEet{y*B}m;yC)oXQzc2NgzPtwy_1qH%J0w z8_=#m;*?fkNnE=ETO2x#03q!PfjPB;*oosvzT!BsgyYywVu6n&Ut(}#=d~RR-?>EW zTuuVH-n@w;obyfM|F62cW@ZloCcOX8-}AitfTp^qy1Kf$y1Kf$XJ$dc`~~wteelYH z@&!v*EK&H$hFJ$~OkRm2WJ^ky2Nk$XmmP)f|l2QQZtlo;uhD4K?M0uly*5ek@YWGG;UkttDT8Y5N4OkwLe5aF+{!Jzr-_n${FQvo^PF+SR`tU{MFGJO zSyWQ8U=cd){r6p|B?Zg;z))0|2TK=F29icf4L!kH88yfaPbwYMO0{mo-!#%_U^T~M zrF}tSJ&wOa2X(f(~RpGnOV(?y6CNgT)ZLChzid^D_%@ypa{NZt2iJzc7qX|D(o3|7j{}}o9 z@Cw5403?d1d=xd6F=4P3<*}pxfb7UuvC?@5z#{-KlgY;L=C_8?+&c-8%*m2MybZod( z>3n*%0Uk_D5%==F2@$7=I<|3ffT|?5%20n5Wbr!S1JiOOsC#T5kJs-ER2~zs#lQEQpB4YQ|rQq z{(?BorB-H|uts>4GLi72S(juR(dFPHUn`q{7sshSA$rtjbH{$NP;!46DCvq#^yB3? zNrTRvCgpj>M{(xE9NSqq7RT2329BlK?4>#6?p5Tj2A3{!Q_?&u#*j>=I@KVuJ^>Y! z<4zzgDBG4Z$e5N%)#nlbLze~~G6qw@>AIy53?W=YCw+)N1hW-Kgmf)cgH2?jO9h$k z^{xy^eWoIdCC3a|&1}^^>_et1ai)#H2=^vxo|cwR)p<|hI3=NcR~pZ-x_E`i<~qqa z1KLVlWZ3ygWX^!>6n7&tjB#VgaE#(1KUxlXsKgj| zbJYkM>(q@=>(q=9%k(j3ou*;tR8?WTV%cb1M6~7ToR%3QLJZDnnTpqmtjm)~$%y+) zB!Cu8c4%J+b-eU)t#w72l)Ox`j`{L(oAp64)m)*O#;_;CSLz1oDUE@}<`Y4F znlhx3l;$&)&1ae|A(sWxLv)Cig4X7tj?77c(_KkOaF`>7;jF7M|pEBxjJF z#8_AJR#B!hp(CT@f>GmWV5}SBYMg9#5;uF0>yC0pxY?wOQPZ;Jo|au!Pjzgnnq1S^ z#~DKQ-C>C27RwZ)CPlkLgB-Vm+#&LgXcooLJ$LU20|5Qwc9n+0?Xex1^f6Hm89r)B z_`@AWFbZ6Kp&Y49x8pR@?Kq9H8zhB2TGIg&)PgbEg_8HiI`>HPra7HMLLK539lMF}f!P6zvUad_1Nwk+ z+9kWArj-$nI5M)eM>Th>?v+fQ-bN}PYLw%ujb`_149|RHqdAPSn63$!`qSOpNVQp?4Z%8naT>of?3f*QoaflfDIqi!082TGqLFi-vUgz?5~nj0xsR{7Q`pHcUYP^OSVB; zCFw%9249Bes>PUXFR&O>PN^Evsc!X6W9bcH=?!(SneY}-E($e_713}O(FoTaDWVLv z%Vc(l5h+q$qJdKy1!Q<&v-$35@MSNg-~_6QFCXW)fcCm+obF**S?FIHT>lH4A!3^h zEpd2g+#zI*CXhm0!WdBhW4_Gyw*<4c^16k~XHjmg6?bm+n@bUI%T z!OM9FUg26tNr7Fd-1Dp0;e-pQT+k_sAF`I@_{kL>)?o^?9Y40jaBrf9YOW(FYUeap z5~7$+>|kZ)7=jsYzOXuTnxn?-b+Kdi`Y5w1JU}PWjGI(5$;(v!#%5J zI&=_;R8#aQ_t0|tmagHW=2;$C?g)j{6BVHVV;9(MmL)FK)#;%%A=)xU>BL3OJVWE* zVn=@|ndNjjB`I9tiV93(6(oJU#5Fo5J8F6jM1?)a?yn*UZL*T(FtfWk%a#9 zU{Xf$YDZPbPT(_nQQC!!1ZLAQkJ4zuV7k?4kh@EhZ80j-?(`a|j>Tp*g*7f!X`Ip? z+jK#Dm~ARHRJkJQv8G~}(>nNTWVS}cnTQM?_?gbA)JqgtOqaw*I}#tGK*$imt<&_p zd*Vjlx+iWVFW}CijvyyZcj5$BC`RhqMeHqHOuRy6Tt-78OjO1U%V?Gg86O$raz{ue z58Rc~0dR^dT@X&cI-P#@n2F|ow_Zr|f^aAId9<6yL*L?|pAxM(?m#D0fE+%T(HRnL zZB8@CI_0EGuVzZ9iL(S_e^G{3l#6t{+Bo@M>cc4(^Uk0UH9$d}mokWwqPcg@BBwwa1n z0Nb9!;d8o|+U*RCMCz`lzSCI4^H+`ZQ{BT0Yj=0pJejAs!S*VbaFo?gj1$$B-j-$p#U_%cXl9$gl&uXO{W@f5M25 zs+~a??$&b%0kW4tT(=Pa9}I!5-8JrOh3Gm(mRAGRDK~p8x z)owwN@nz+MwvCE5M5EcjKJRH(&jXEo zsfBh!;)hM_Zi3U0=-mV`=~`kF^C>)1NFJ#!X44#7K7@zxP#(hRYHSaSb@7HrWx&@x z{Qz?t8P`^cv%#fjy4dEqx(!W;-7aA-KpUVBzyg;Xq?(s(OFTAwN~W79C6cL&AtYTf zOEOcbPH&LJNwD^A-w>C?bsU#EBHa;w%*q8a)uAH2f`r$}N~>nN%-BANwt65iDhdO0 z;b@)lLG7YjJ~3OIXWwPfItl4HV>eX|m^9TLAD|;Y0As2*v@i#|y2FYRN@87hEAVNe zJT!cxlqp77Zcl*30WFDABBbr@J}8ij$stNKL!)?2?A`ni@#?4_>H2BSiH?AL0G^#? zgOu+1nvAult{s(BCBrm(@{#LFUKq+i)ljy8>1+XqX>rQi!{G?2aF{I0u87`A$N;Kd zP+-b&qGLRbjnvjdlH!dlnSjr)#!X~w|?4k79|?7A{t zN=|SLkdE#vPyS+;?%DA+#2Va;+Ac0xvPrILpvKsiwW~pLvNP5%WsoM&%iL}~k#WLr zam%19dD-I}k%*rl>4=1mK~nRkxRPLl4odJ{Bzf_GJ|N^A+|~U@$z09oAYycy%SVuX zKV3No*YFZdhUG{iI36JpaBPB-`rw2o{x4Y~I$ z?0{=bxlICXj=6L=c5{rU#=$%ioYk~jy`%OpW2_wF=XT#ij;<&=iIrwQ9k!s^&z>QN zxipU53tJi^907bFUxQks0`gAGAbK$~*jY}&)%hpg0HLl=A}3sI)`~Qj+n-5i0je@FLs3$PuTE4o4+rIgUxn1cFO22=NB+ z5-5gkASXNb6+H^f+jlR+t_PU|2PsC$5}ej>jchut!9y7Xor4MBjyyB>X$@%P)Y!3| z%`1Q$HOLX7r??A3^D5jjo%I%hd6(ACaF~rUjn}%EL3P(T1K@h6$;6jFLPZUq#Z^#Z zHnBlKo^xu)D<>%A`PeMx$63rdnjyL3R6=$go5GPPSM^}5P}Qkjq~STzjy)3jfvlSn zoy)9688w)+ILYHAmQoc&G8AB+fWeS=>C8E@oLG`GpJ|%52dyH-J3eyi#CE=W_Hm9>MNi$lX^t|a40N8u z<=DiY=U~-xVjFJd;qx1=`Hc>4=qUwb);4zW;X8`*bFZVDT}nkt;0`v?uyyzPXm_uV ziJgX^O{$m2Ih{COjbi1bU*PI9ePoCFYy$NeZ=c(Jc5#$Zg}kz&GSGVyo!(QH`U5P) zqh){YPNkB#GeX(u$`Q<-q)fo*I>Rz*@}Xm}uKtJ(CcDeIhBNwDJLOUbUEvn$#Z1@W zf$Xr9Q(dD^=)g+wG<W)PGev_K2V16P(&2dQ zfr3BqoyM~@WT!Yru$hzu5qG)_bCZz4RaGv*=`@GA0T08tCS~nFOIhOJj(a>i$9AH} zbF3@Q0^kjXSlO{|$U0azWFks8TzyP3I)iq&Ky!ltyF5xp%2+R7&CIbNWwCQ1tt?w+vBP@Po%QZ2zJC;2^=j_ z&nDQ%?$sVB?Ck{ho#h;=&JkhF3G?SNo;X55gCTwrs!jqkfuQb9{sZ zCyJE#RLuxrxRWznNf5f$H5{ah$)`X#m_f{3@1DYDy3ys6AZ*--tJ!kNf{6yp7_L*9 z5)NnBPiFX>spza73HPYsz<#vqvw@LnWU=a}aH#JL4upFod=LZUSa=eGYx{~i-hCWY zX^@)Qqjod-2D}F?InomlL)>tHIdIJRusCj0gRr*h%eYOO*r0ZFdsEyI40iVAI8Tdi zi+-GibZV$;Xu5Yu)Gonr+y5nMgQ~OvW=UR}ry= zoM$Mt*0|1@Y3C6g{=dJ(5;%(2tC$AfDr|T>|BZ-;2R~p^dfx1urs~EmIr7o{soSob zF%{44Ppz#F<=~YsPObyd{T%!^P;z~^zM%@w{O4?H-rjuO426Vi>&)vaL5ZkIy4Ot4 z!Dk#B!d2Bdjm=dX@iyHJ=T@9boddhNa>D@MRSgYz*%O+MmxwjhZ=Q;W!W**dARc2| z{pQUffOyFa;Z@f(s|1>WTS%+q`gM4Oytzsv;#E3GuWPJV>1`o=-$|F_x0K-yo*Hjd zpKMZS&0wQ`y@KIZo5t`L)=}4qe9!9cJl`|3U!FF#Wy9*bj!v!3J)UHWcB=~(=pWm% zC0qmeaBBeYcLw(Z?rCjXV@(nnT|selk5waHFudZKJ#_z1N!hr6$1VMU|2epr;MQ!> z8oKKqWb_XXA>%-6+e$Gc+nW5jClCDcWicTX6i@Hz6*GHJ<@s{0oX&kEQ&vZS{hF-m zE3L%BD}#xJr(3;2vCzsu#$Jo~_;_po_v*xsE|Ge|$`Nz=9}Hi$KL>9^^dx5|KO}|+ z{&wfFeZJ0u*>z&=kzoGbieSmHslMExbs!i#HPu&l?3i_d2wHvqa9-_oMb`Bd*7PEL zNXFx-K#!QlOw!m`^~L)a@EO_7c*XlR4QAur26!r%R5LWSeseyFl|+1Sq!w|O=P9w{ zNCWX@{Zjrt9P@XO6{Z|>Q6?_QICY7V_24h6^dy@Pi3|XPtP|Fe zWU~i&cb_fZ=fn=Hw@~cpDKzi*WWIVY#9e6KlKH9_Vr3t1HnTHVS;x$K%#k9sPmHv( zMFaki>=2u+;=A#?Q&oSfM^#S(OAgSVWYJ(2kUWybNa7LcUNN;xtg?EL0>|yDhv(>H2aEja1l4+W8#;3 z#cH&Ak`)j)b%{#@qRMKsR<@WGnruXqmBN3;@9lT73dQ@T z$75z-M9sl)F^xg^8#lVn&Dx&xkvqs_sJZ&g&R%nz;#(?6dG*NC(uzxJP!21>qs&Ug`p|F4VC zsNJw()4F>4Ozs(E;LLF`0wED(&DSCr=~?p2oG&cddgGsKADlIfbp9Ir5j04}${WMg zqP15JgzRK7%<9N|@4?}w2`Rh}S(wJ(29U@H_Z!YpHMA=JTP}lJjUZB6jR0?67s4Ai zo9N@*@rrag5KQA+1Bl=pSUUG{Wz;rTHisJd|wD$5SfC zby!m>#KU`fHXg035a|KY+86$M1K<|ATspBUpY1!S;Jj+oWwR|dugdOuWkYqe^R z@w%+!sq-tMsmk=tVpFv)fAA}!Z(Sit0)&>PQK+%k>P zP@w<&rnj-VI$X77YEv~ncA*;7vQ94}z-5%ZJ>95tDbpF|u=*`nLV$F%x9gtVNNOD{ zweK1pF{efp1jHOGtHL^I-70=#SjFNidya@#j1aCJR!PK~^;9I!x6!JN9IVP;Sz>MS zzh_P!D_#adN{85XMBKY4ATA13i*O&j#v|em)5@^MijiI9z#R;Vw|8R+@`$I;_W-~n zo5kpwS}P(_JC=x1xH05N2|O#WSl?A3QnJOi;_F4aSG0QPBez#9#s8n~KJkrPMA*u< za^JIV6Mw_YsytTVcb1ABy&}77b)C4dU({N?bz%%0G&r)&5z!o2Ek+y>U)gQ-Hie7C zCpInt_1o~8lxnzp`E1QhbyJgkqaK#rYQ;%vb(%3luYg~tSGS}I zYfJR_`5C^(Xs5fF8OUk1gfY?y9f*ZoS2%oYm*!W$4v11H7C&`B}x#An;3N6?kLy183ifJJHD ziE#7UEmzmxCboNT^_4E{_PqpOS|ZgXi{ZVe#P1C2#7*R1Tb1Tiu(et|ZyXVa_wY`iU*wghFbbjFIrn|)O6G!Vv8^k8))D+A6OEVQ6Un@KQyB`WO zhxsH_*HooC{Va#QLZhizjqlhI{Y0tm$DbRXTVJ*ghI2db6s^S~EfC&^QQW(2!)h_S zSTuE=%=1mlDS3HYQ}dGA91&`Ru-B}gF2)y&`V+6TRERVTq2^*N&0iMb{`N`{J|V8M zu&S?zRmiadm7=&uWc5A%jDN*Pn+|o0Eq&s`E>RN@4v5Q9?6rmUUE}=Q`ZhdMbUjN!NBE29;^Naeiw%$2k(QBz*c?F?KHV2fmmETcMPQ z3_#X0tvJ}mO7XNzz4gi`#n$YxA|+(qI;N$w=+8&@EMA-QdT5?l-Xo@l#4@k&g+ybI z815C#mUjtItVxU4Sgmg$z*H>fgdG%X@`~4uw*M0TVllH=EUuZe$|6c)MqsX3(l4&@ zzKXG2j2A41#OL>9iyz~UP^|V=2Ypu&fKQiw@=JsrWUh!#9o7mnj_JU-arx-=RhdF69 zG4j3%M_KVbhKbVk) zDwMn}xWlxd<@9oG(>ULb+Pw1Rl{JmiaQR7sTej%H5 z9{Z-2zDq}|-g8(hBfNokyjN{*(#sf03q}C5V(d)P!F_Xur_#b~ZJqEJ)wcL8{~^&5 z>J}Soa;BS;GY_1c-Yo+i_sM3~;O}{|_NtkR;Tok(E^ejvJfgK{64sE#;BmOsUwNz> zKA-P=dW+>?o0k9ZYAy|wo9S|H;*e}lI-Pdj;*-});+k!(()sBTh? z%(pJLYGp2kkZ|v+5v#5JD#(T`IfzM<0$BZClseT+QxQREuIPqPyGOjdd?HfaBJP zH?<7JWKVDHD&Lx!b4eDpC+TnJN$XDYvQe*DEjO(e4SoOmxfpXq>(g|(ZSg99# zZds9Hy!n_OCf9o=SNijUa+hq?58=T3^F&&&Xbl`+ou5~T^|f3ki4DaOacQ=w&z>sA zhGc+MIRiZ(lGZjfS66SmZiX5X`Ze%d@QG#GPQ`@j)`zt{s_ElLj*#8HZ>O6QwwXTUAd;h92E}sLjyLAoDx?64g zLx*FB@VnghDW1(mVteuY|2(uTEXD`kHbGXW>}&A2C<{BFxZ@54; zgCb;gSh@F47sETmxKPW!Iam8@4~a+i^zJGUc>%GxO^ghLeMR{d`#Qz=Hs769!3W#L zXZK)}v87FlYX2Q_!5FEuNmGY$MeE@Il;)(+MADw%C2vNkMRhlgspzj zY+m9KSx0=U#IJT+p>ak2+YT+O4T=k`VisK?4O zOEW~e)fEwA+eDpLjPdS1{Pm`1o~F6pliZOE^~gFDnI&!?)ON_qX~!=1%VF$rmwUvC z9sMGu4H9gl1z1Mk{+~T)J%du_XUt17D}tiz$hXW((&=86S6tW&+k*BCq4;3;zExsa zk67F%re%w1HSdedy^*^*#Zc>r^@I2Jh?Bc}#AiHh?cz70%ev&aHP(80N=r_+c>NZu z=e2h07q=a^{C}*Vm`S6z+aD>4n3FP#POkc;^<|K#5o0?JS>^2u^A6=7T%5o7IvK8P zEuJby9(n9gFt0PmynLkP`)sZF*zPXzXRIziy1NhE_X|%O*z3ZI6M3hqgXZNU#EuS8 zZQ@(J#Q4Ye^cXRhcrefR{uJ>O13fXvyRkEDow6b95zaZ>EKcld6Azf)2TxgdS#>#`C!58{wr2lSd3Yfik+pir@!~e|u*bwH ztfmeMk$!2n)g!*+>B3sPLwsSkmGyY!Snzo8twRXr&6(X2vGT1<@pG)gyZ5wV10U6U zAA{zIi;91^?3(Lu_=^>3_O<66ip<$iU$MA-Uwshm?A}G^NPcGaFR?Ns;)1qFM<|# zz)2T5HP&kJ5SsrpqYV**Pa)d~%MW6;y5_E=rPyoisabGwwzduD&+sCZ;I5XEbrelfNeBO?+KquYW+5*;VL zhOT++5T&GEw-B_q&deE6eItR%IL{-m;-TI0yhA4f+f?*N9vsP$(C2pJw2#j7)`j!B ztxoZM#7{*Bbn0DnY6sf#C&Tg{3i_KnB_dAhEY*{{ynMt z_q)40#Iqj6EPt>IHtHo$uNZ1x<*{an?V+8Y@QHR|)gUmmL{k4WSQdBfA_MS1XD77! zcd!BXc=|+bKzzaMi7a|twiX;bbFA8TOiZw{{rkdJP%H~r6VY#<*&P6n2X}`6zk{!3 z65J*39TXD(0bP`bev;{IiYHlg+;W0|sq{yl0qUl)zFPb)DPT?B8;Klx>~V1fWA3N7 zSlK>l&sO>m2OA515IiYv2hTtJez2oPJT}NHzK_B9 zUQ&nn29)RST_zU8-nRP?=OU%;+GU02TrDvM2k@ zZ1Li5tF1k+xgBl#!!A0*)oIc(u|G&1?KHjqZgFZS;$Ch3Qn4i#db2xZ3ICt^llG*wBD-RbnVlE9f{7JO-V;ZNpUwSGz zGt04VJ5RBXe`kGhZYOiJ$fLbEc~Asj;jUA@`q_B9#JM~w3BPFD27F*x6=g39$7o`_ zD0SE|#)|?K+qAM+R=gAzmbJLjftK}yq(k~F6t8N1LDiKSSJE=i9&K) z@<&8U;N@EM^_OZ9jy^#L(^_y&0e(|9csLBd4A&kpIwbLnt)Aq!|0q)WUwT;tPFxG; zZ(c*>B~cAad;1<(CmeMM71QjJ(l2sCVs*B-H1zA=i8YUi<2V-R~8&P`O<4o-3!+&3|pJlREQ{Yoh4d13x1byN3w1XJdPT{NRq)58Wz;N!y?7D!cDxDkdJ?)AJ+j4l5?7SRD`F zifqqu`g2S?y9XVRX=NRM34SZUZyEjKGKhPW3?yMD>iIh69`jmHSp0}~v>|)yfq-~! zXU8x6;w3?@?9;HYF9|Ppv8{10z21qVE98la5hpsuZQJ1^Z@0YuqD_ce9kTMp$YSfx z#TD?kL|RAty(9H%0t#j>zcdkP{+N; zUb05tEYd?a{oA}2d zOr%}w(O)7p8*Y2yT+vbk9kjwl&x({2f88!d_KAk#%DjT>ebZ;c5r^iM);=KCbcj#3 z^nXdbg+2O*TiRMyE_}wyi-^019C3v4)D9BH_Xm+M9@`NBM8f!Wr)cQFRtKne9>7|J zHUx(T?hzl^Q3LF~$%MTZ*n5+`uTyWpv-~J#DeN7dfE>l--cC`24Wb&W^*5d9#V+v@ zxg1~K(ABX*K^FFN==7>rq-TH9dd>3f6GM7G zXN~;Ld|;GYmz6*zQ;31CdqraarTx~$Ry~@Kb!wk)RfTwVSD$#$L`55m#V8CAtAD0% zKWfG@PwF#4lEQEN5tj5`}SK+d17>r_>UB; z;|O&6tIc$5`}HAY#hz;JD)L2;{PqwlU|oKa3=|rY+J~%t=>hAT;^(`1#Q!n9;^kdk zw7^RTzc`{BxmOJJ;$TFEc+qGRS9!%sued5Cw$$8ma7zAlqR7g+J6IO9#$k}%lXsQK z=&`PY1Utl!(4>DFR$JtrMcah;#OGcYDP6~`F~@3OdQJQg+iedI4v4o~JB|aevO2|^ ztsxBXfcRQ6IxVdOXEkt6-0LfXSZ}<(pmtTa^}5ta%X`n()4b zD+WZb`0KV_(LT5j%gTOnJ;-e8wMMNF-`^DwhskNXphNrtD-Q8VIAK2~;M>4^(Ss#z zwz#fM6hjzC#52hu@yzzN7V!%Vga;t*Ukt){eqcw}7fS#_cR=ks7|4eOM(j^^2gG~3 zyyAAV4c8i6;q!fDck!3*&BLjZh^X!n7kD47Y!@BLSagYRZ^s#tD%>pb=GG4J1Wv5H zxz&40{O1U=_QiFgspf{rW-J=4tXi0v8u15_Ejo8Xy-nJ^PlM#TTj6mmYcqg*KuG3!%SrXWkvedadJV zEi6*se~9$9I@vP|;rNNASWZje1_ru!L#nAgL_UHRSse>$k^TnBI=ut+;=~R*Gp|ov z0#gvSYJ#E#%O83zPAH2#h03j z#cM-DxFRa@T87ne62};HHYfs2>YnD~oza{KiC$qfgXf;P!}aVP%~R zVwu|`zS3|){5IX9JqC|>)$IT6K3Y=4fWELfAYR1{k&l8uMvOwdx*HDvV|Wr_U4dBG zwX8t=r|7!z5Z1&;#KXIx9*g?L_stXgL}rcHTq7QUZQ61|T;vsdJ#G7ZK^fe;S;p|2 z&$~-pMO!v!;S@LiQ9DeRdDc9WGpjXxjlW(rg+w}ze$@OjXV!tR7@94biVMrFNKtz* zU(~nZ$mYnE`H`Z+q4$Z5ez7CFKy2}f5jFLBB}H?tZudQT<#sYUB){L#A33p0w|OBY zWoSWq%+mLg4uecOUbGn1R&gicCR@F2$^N{Gr6)yMvB>qxVne{cw?d5R5cRMOebz%;tS57@R^R8Z&snu9 z(peqJu}=B+ZOh-A^XAvThynT5@kgvL;E2EFwU%7HbgGLwf}ldSzPAw?ps7><9Wc-FwtmEj0nNQ1Y*e!c)W6 z8?+$HTT(as39<2r7*%}B&;1Br9uJmW-I7ys=;$Y{8@ro>kz2)%wwurseWE#3u?n7_ zs)Iu&<(5}QMv`!X5OZFfj~!tAw59t%dE71(9H!ec%0`vbEO$#?<*i{l=z zT;@{THQmat{o}oGa5urX?C$J_O@*Puq`xgteMqDf<1}XEqu6_bHnm%O4~k|ighHaF zID8bjSk1JF-|xb#`%|;c^6&FSR{8e7d#m_3LJDxCipAGFnAe_wV|!shY{-s0B_8$k z9~B=rth`@ zyTng~H$t4<*}~^z9&6-{zG}Gn)^xEIp+I6m{K8Nz&rbfVSk|NX7BB8ZU0RUo!RXpoyaY1&Z=vQKB$I-iSY$XfZPq{U| zsp>odtqMglZK{gAiW?XBsILXqE!NAZCSYAEnrq0Z-r7}hbc4t^;wxEvsPzui-taqX zqRe+9MpP2KsKS%VUNgwf80X%N$KYDy>PRkTxQB(xP zWeE3S@SgO9tZROm=dYOU^KYd1b&rgFet&ljV4R$T!hV0Z*MCg>28XS!2=DI8vR^f6zawZBDd zgf}qO@{TF;lRqSq<(|Df;*yk1IZ1hykX@IcM{$3;vv}sU@&HH#qu4aoobR!0)K%f} zYJLWe{FdBI-JYvGeb$9})~P)6%FH}0_$3?br4JiA|7=vZZeFL)$Z%W`RYiMP(ye0l zay)<8@{z+i6|?hk)W5A{>CDd8i++HeMOxxe7_R2%$<9u3V^4ck{ytxO%i`cv>?K^> zg)KF#bo#{9BO>g@%DfH(vZsAzKAv8#TU1N6qRVEL;`3e8Q z;LSl%X=N1oYej`uT;{FcS6d=h^oXmyVr|e3FLo^Dcy4D?{@q9L@x&OfP7nl+ zeuO@{d!3U+hzPq+5+Uh4XNCkH7`4&#(RZX>x`TLe)I;;7W3*!T8lKu}-x@Kr_-OMJ z6&Pzjl~1;Jw9>@tSwep-xu7^oQQgre#LajPrDu)xX;DiL#_zLecV}N~&y8P%_YGT~ z5xRC86-tJQT8p62#E_^A<%mmQ&xUtc$Mbx`Un6FPd}1MvM`s_$b8JT_#JLR*$Yh%{ zM_D_>kp5tvFQ-0?m3$9&yF&gVKwbn!5L7{o1DUVl(DRqE9rr%AHON152c!f`_hR8CFA8Ri=BcEvWUL#%hI!^S z>~wN&YL}FwolEJ)Mq?*mq3d3Q>9gv2fm(O zT~t!-&kf1}EW1eVVoKg+E94qeE>go4)qcbbeb_>lcdT{PXlMBQ5tP}7_*KT3vImR& zC9Nw@eKzMUERf46wAffv=YOX4j^kodhqwt-V@>2P|KfrYKV0X0sZJjuV!xz6F)LW< zb+!jr=GV3__W7#!!sRWtCgzpoi$y2IcEp%_!WCgW+!7LtIz%W0-Kg1FREDr(>6J-B z^zCkgCO+@)@E{0cQX`ts`hX4dXynBxlRNVJ-|^D;^7+$Idz?)5m#xJ`$o9IGC^`)8YHWN%tuxotxw9!=Y{ zWwUc!?72&IZ)A9An`Kiyb{}T>nwQ*q5KGfyYc%5M4RFuz6PE<=I1*N*2qpTva;B1& zF7NQe0QZ>OZRVyy;YY*?aYYDXdraUueJ5Ew%!VbW-fGrC&bGl-)hOGY>&c1T;7FiwW7*YwazKcM~Bq z1%W4;woT(h(iPhvemwD~qJ!t&6?3oDU6JYW=S6b2OO2%US4-gM?dBz;q}+;=+Yha| zxn*xf$phA%*4)0k!r`Jhv!>PG`Dd(bHX=S$p|%VWzy1XdPKgo4@P%uNaHvJJ!khQ4 z^0h1wb#U<~Ws4mrq%03hSqAX;JZ++%yIM#2LFe!|KEG7x99PdJ^y5HK?wx109CR&M% z?tSmzl#=i&k=c)|Wi&hF_P+N6JU+XkX5-f>F7O?{NLaI+Y%TF_TR@356rh_ z4H;}5)V(@`o26erwM3^2(uYUP`RTd0q^1uqcs|`KNGno+zJIsAmg;hOF!}T=OdtMn zvoL+^?V=z(>p)UL`W5>J6{P33Cl{p8j0~QizSi8Dnm!X0a|>QbzoOv9^sIt!rH?Iq zHGO#DYw4Ch&HUnNZWpAPdrxzF0p4g=qS!DxGE}I3mTo8by4@^DAA5lK+E0A76JL?! z`RS$R=2WorJlJ^w?7Wyh7Ay@1OIBf;FdHdH$D%KW7rss{BY8^t7byB&XOicl^n-(N1URukaVkjD%blR;eZ|q6PY}O%5WgQ! zDonrPcH;K{@w=b+ZMO>27e`VSrN5IT?lIFBgYCIsdnVY<1>0AE?JTf87HkhMd_#2# z>SFo7d-4B_e7w3n?`A3bsaihh-~H6T?bN@KBuFL6{0BPqd35Rv=+qZAhx2uLW0ETW z9W9T<`td{(c3~K8yO6rrmTFSPLar1KSaj>*rxR_{CI@N^YfG$xhET@30MZsoPLrsLL7i zRXg#iX!(O_Urw?g$Zk=&vB`$PZ-KhjDc4Blh#$JYR?}Uf??X>?KZB_)sZKX5vCI0X z+;h4d)kD95_#nMF2>f?6exJma{WOq0Z`?G1IfoT(9N<>57QZn?*Z154C9nV1_3?Pr z<9Xgt@I=3X_@;Ry03GJ{0Od$*jMMboa?BgWX-k#n)3_zPclG;%>NQ@J9IIV&oR{X7 zDrNxnBR+`E+C_?QxQp^P5Py{aSKv2l{3I7X<@0-X-1&+82WsbB=mWoDW}T+v=D!qq zYc!s*Sn*fs%p<4u7dkxVzs@k_%Nmz!`fH06{lB^GX#Bk5o(IvF<*CmXyio9B;j4wO z6~12Zts#SFE8JDr~bUo4@ULVnK-lqG)N)%2d!{GcDCA7_TNeOQT9t5CQtc!h>=*f0saLL9kPBRy3P+A@?H@95zLC+l0kL9ynBg4hqr9pUq1CMW#8+{LfU#D>~ z5yOx3=jzvN=xN2yU#s&MD0De4h|Uu_zf0$XFSq{y`P9S-qc|p~FwLxpmLWb%26{xl zbh&Exr!{@(=^CkwCg?(2i}gfI&HC8IRow0awbQPqPXnvWGgBt&32S2KP+ciG*Pa-=;`S{d@VZU-i z(>WdfOv2Z1PteoBfb#*-sRKU0G~!J7)UNx0&u?dVNAsigwb6trk%}(0bYMND{(Oh{ z)bCLEoTfu7F(n|CF;F{+kF0e3e^m8HezaX_H1E-TkP*UfAUX}WR|h)$c7SZh{-2e9 zH$Q!^$9(@R94S2`4#WrLzY9M2xqS9(2Es1^e%3I<;AhycarjQ`e=JJhJIH)y083qv zMs}6x4cCuOlNbf4xckYWf|Ly0&xXx>UK8*Oy`>2BJgxV~3-^ z^fRt{**akVk{`Di`1}O)1YIu-SAd4zK=sf(x)=iniw|J$`=b++r0`RN@VG0{8=#hoVy z5VeQu%X(7PH(m2h{Yv?3bw1l$Z4c&}&cr86v}^o#HU2j*P=wBw??pJ*yX%uj%fryvovMX~2G`es0C&$WL|M;Eb!&`h#nQ={b!* zX!qMddNCRGzKeSKNu&3aSm2khH9v`oNSiU~XGpv^RX?oKcv{}MaKfee^<(0afWBX) z={M?f$xge@9FKvCdm{Dp5gBeEjT_=`@3$3y{SJRIegictD()ajupIV&N0q-{m&bS| zw+kMt%2=-J$@;Fs`<+wI0Xxp;j;Fz!Hk;XzjIQZAcFY@8BO5 zzXPwU%#Df0Kh;m=v-(x}3#k(PNDh=gSLfg2=<8YgY2qf&nZ+P$8`v)(KJLRum7Y7L z_?tCK75E_ivG|ii#9~kCSybi|A5Bf9Tqs0~B?v5W!dZNkqT zkN^72Ub|vrKzx$lTHrsY@o#hN{8{P~{HIg@{Y9phBJ z8)E8pmV@(c&&2QIfZK13SLGjc%E#?P$#_oU?IyV&M(ub))49x{Bimo8>#Wl4eMjTr zg(vbS_4Q2qQfq~U9zX5Q6#FM@bUni_RPCyAuNCEYs#s`L)1)n4b_jq*MSRJJuBsz_g6`gsm_DK3V ze|=1Tu09xbn=3z&e?a>21cHrxkZPwRe|x>$XdZT1u40Nk+h%Qk8p6_c3NhB8D+xm_Vf-W32}5^U6H%D9 z@bn18C%5;VD^zUV}e9;elMC)Ja_GryhXvPb;Qu*OmsdilTLFCqfoZ#F6$tLv}9_xhT` zn?v=Rsw?H!EASoMsaIA(e$m;IWPJV>5=lIZ12RCpQwtdn zz*`*WU}#HYHTuwQ%Z4qRH>?ZA*J_JFSHYxW6eCX7m3Yy&(v|_cdqL}l>c&w0md)i* zvZg9yaeZxFDL#snP!HVws?}?G$+8XW8XDHG+py87TvQz@T~M@XU2SzCzJ6ddFRR{A zw7F)B(Nd${$Z0Dj5OI&Howo&=i~Ra6>nm%*n>QptS-7RCpsETQ)ohSj;nZbgIIgZO z4ORSw4x@4*KKNL=K-aLKwHimKx1e)cL%NaC2!-31uG>^?#7Y9y$m$FmXw(#q_!V zdGj`w;u6RLLN;pb9Qg{@`s-%c;%wrtP| zyr61BorKjBrBL)1)BwG%Z`h%6n%t!uw`{w1Q@DYNHNjGCVZ!w=e55iPHZ|(3Dw_p7 z(uxPybhdiLRVQ53n!}rzmP-;*3>T_O&^OiVHW@AJ8p72^b!%hgw)(129qQgB-!$7$ zwZ5T}K1^3h{HVN|Mw!!$EM-vX?aBr?#!IIiB(zMIixLR2BVQd4*%VEiKC^N3kGqN)yxVj%r0Ihf5c?hPO0Tb8ou3II0RIEvQCSeXW|nlp;IA zi0TBp-BFd|z&L7x_;vH6Mn_a5?D7NFtCXu@9cF-e%Oppn8Brp$i8um}YExwcJ)u!m z-3U9N4Cngoq3X)@;SC$BL!@riP55|F<)-yY2`e!=PgmeW=k)w9L$(BT_|)L@e;%Wh z!2*rsF_sl-kXHHhLzV)ZzoilKf& zhQYgZmMY7s`)$N>1|PMv)-Xt4@S&e7%c+m)TvVcNJAdPwRmRO?u8CGzf;N!bjSRZE3nbt!z}($wOX)@inML9w(9J34(qjY| zeAX$;Aj?#h z!tL>tuF{kUjbW#g;;1v(nc(2@KQT#1%p@GS>+5Kv$Iy5nXfYDE5$Cgj6vo^jdxBl zGcXJcGBdEd3^FsoV(^$#!(+s$yg&FmTmnLW&03|^(NOk-L%!?W#@rE@j7%*kSKrJc2g z!FoHZl)*iA)*1#o?W|G;pR}{qF!-FERm$KCcGemO9YM3nx4ZLAjs1JOR5^ox&{;~! zIb|mCXeej!Vx46godKJ$2IA?LC8A%}9Z$b30sX2o(+?z~A4otykbr(&EPYO|vUR7) zVEC||*K9DnSqn{&W#Gh9I@2_o42J(<=QSG)!;6qVS(p>6Z0VwA4S&+kYc?4Em7UjQ zF#IWfnobhr1V0%@+zj-)({9>UgW)`zcPMhq}`gU(V$k5ep7I6Vxq+!P|GSc*VokR_xLImImoB7@AiLgW;;1BkJWxKd{@ zOCDn#^TBYOVY_EgKv*0KkPbhX2ogE=QH12BJSycaS zeD!BhDqexkrm0V8CH!Cwcc3zXgu$x%fK*UDd1zQbVrHx^pyq(!-ws>kiqc(vGbY?hJR@1g~JU0*v{J- zW_alk)kz5zfEn3k7u;$v{3$!H$zYg?QpYjut{|@CxPpjHtkq!HT`;cWxFFYzj$@F^ zCGNO&x~8Y>8sj^Tahf!aOYb?0nT*nV&SXwd4zGun<0W=Tlxndb&{yhWhF{Tn@Gsuk znarsQJRw8B#2uxJwA$ph8VoZ5kUN-|Tzt1^GF+6#6T?Bx2U#12-MqzjRUEPHHnD(B zEMze3CKhK0*XjbFvyDZh+U(}$l%ZcOero7`4|VI}}_9Xpdb3SPD=2pbH$iN$r!v%0`f?1J%~lchzy zQeUZa82+@*gEV1rIQ6g7bqw({5%I(OPg?%^gIZq<28Zk&2R=O$EYCU>z-ZmYrYXY9O? z!LXZHoYa^Y*Gy7l*j+GALa_xgea4ncJbijcD=BWKMA-sl{cScvg$SG(rZ$muV@e;+*29 z%i^4PLJNnAGdxb88dt?R^}rQQqsut)Wt~aI86K@gtBP}q)o{OIa>TT+1)U$+ov_>CR>}Pb$hk+Z?tD_z^pAm%+TVi6MFn^UyGjT?WH!O9+o))*ixRn2iSEG0X#l@EHEG zZ9f_fhFQr7kKseMZEiFec9d|J>aGNT@ua@|p$8ePwzHNoc#qB^x1qe7Q;#@^3_co# zs1x>u$<^BhOBuY|&RWJGSA+dFn}PW{XlRwbf;NMz?W|=y zX4~zoQU)ESmg$@Jg$Z#hv4_fFokkKy^PX-_wAj?+NO6M$Hp&_X*XpbxSfLN02QNJQX26+n?^Z+QUI&rEPemc>gnfx;r7RIEW!>?tlqF)NtUI2SvP7)J zi!+{;Kq6KG30MgvVkMA(l|Uj^;yWn5vE_+sD39w|F33WlIo+1E1{jAaV%LvBE=Ii{ z&lO|s(}ZB(7-Rzg`_?*Og|)g|sv#C<^{%5-H|H^d1n2#9DMLF4SV)#LC~4q+f>MpT z*n|3tQVjAFJA5y!8h!zWx6i=!c071Gf~DMKQ;#|#UR%V z1Hd3xOH7n?bBb#QB7+VS%kA1Vz)U=7GZA2Lm(BVL2DxTv1%q6z(h5#FHS(NlSA0N2 zT#ZZio9r5wF(GaOuo!e`$BDF0(|+G>O(}y8?KMn@&kEwaC4;Zq9F#KXRJX=%g9c)o zLMP3*S-mz3WwC8ZbRcb*sqjbXYXZ0CEq&{!4hnc@MxVk6rtt2 zlh{9)^j|uARFX}F!3%X(Oo_{McCk}}!Lr09R_pA|PKhlV{J4|F;N3bardq|G^LLq+ z#LJFESV-e_o1iz3YLL%0L9`6^>09YWbCOFS-JH*-7;t~5`#$IY+^L0ym}R%7oTaqF z$zn0Acd{5{$;9%)V!F>M@{9(1?W|HqC<@xIMbcx7W*LJlEtum_HE)Q_kQuI!jUH)NBWlL4L2RLe%8rEIQ&+{%SED**=GjSJX~ zyWc@%kefrS1iCr(mV?M3H%B3Iid%$fmqBihLgW;`mJ)~zx*HeoO~*Gbn5c2V1dR(O zYFscuZMO;uBgcjf6mUEX7>`aOn3}W(Oi(IS*=bd!Y^w4AKB${yML!)emI5bGkm-41;s6Z z7-g=FQo34$8=WlO4*T+yuIy|23RyAu8#`+yv*c92(x#vReuAXiuB)8ER6V)Ddti{C zBq8fk-p#4&97G0Z+F9ic&eB<`ET;+v_TYZ2S$f}Qt+ZCt*lCk5QhWlNBqkdo(k=%#j036Cb3n!bo}F7S1l6Nr(*d(-IPq6TL1( zhF^12hP|hqg z*esOCvXEesMSKIPVxQ$_+s$QC`3;E#G%OGRoWgZik#wS7OABg;f5$g zPVqxYKxD8o3XxM)Iv0ox-W-K!cdrKGrBIeg3T55#QYcF#g|hB=DU>CWLYe&_DK{N! z4+gp2YMgOujor912D#k|kyG4sP-M_8h4@8Eyc7b7q!36Tg+L-H1QJLgkVp!F1X2hj zl0u+6UJ8LkQV4X%OCgX*3h}F%ceURB&C%a~X)xIq{W1oJ+F88AV(S(YVAKSY5aSNk z02G$Ni*=S7D~!n3EDcQ4R}^G$y3RV!1?OtAydXf04DLT|jf};!0tzz71vAJ)yu`}~ zN068l7xgLCl|=M4fi2^jsx(R>i`${^b=hRf8GP2xTF&4%b(WGPr(Saq8GIuOkyBG_ z6_HN_&Eayf%#I!kfQsep}G z#vs2MAaV0<)&*{}3-VC_yLr5J{gRDhuT_|Kg672%PSm{NdZb?IjM!-!oM~s3F}Ol! zsfKXs(+;A|u?84rpN&#_K!Z*xR${yGe2ua}UlTF@j=smwcw+!D_)mRHamlH{LeYoe zXONxh#Qic_7pSre#u>A5`W7$HX!9oK_y4i?=J9$JMgISDvvCtZ0z?QQN=O1CI84H# zxDo*c5#&7E<+(eHC@_Fw50HB=s9*#H0vSbRJP}a=QKBrOFd76Th)Yy-Pz0l*prA4c zf(r7h?o;pTlkRf^GxPoPm)8sWQ}t9=cUM(cFXueZ-C0G3O-nM|SWDG#&(`W6H#H65 zr#9NG2|E@w7nhHCqMD3MUs{y=9SsS(i(xMw!u9(_D!?yM| zQ@57b-$BnE4ZkkOx2k+%IfNs>QWp1tLmk$OqzI9!lLoGoTChx+`ui>CGwRD z;Ovr@8aY(hDJ6HDT##IC>f69ul{H1)8$Yc!J6F<*=M_z~Ze+lXjg?$r=v%S1-L05+N2q=3^3&A0U#|GvkWSzA3z=DjtX9o=LJz`t9q9w5IHR`}VJC`fhH(Zxwyq8M1#m1dq) zR|j2GlwbNeDDDEcd*O;L13qiRNuu!_{pi0;Bm+KUtR|4V1~FCKJc`cOT5jtD{&&;V z3;ejUCf3gA%2z4z)lyyXU7;@Uo^su|AJEejNLPUijFkb8FjfbP+?7L|YjO?Xhm4g0FR`j8b>)h!*g_GRSH5Ssm$GO@SZGI;uuOvj6op#- zX)WH*x5_gVZKGvZt#7Wvpr|iZ)MpwZz}`k&1DvcP)w7HGNK48DmMf-HDXrM4s+jI- zsJOKP=_>FQ%Gz*Ok(RCk%N57(D$**Ww9CRzuU`!c?L30<)- z5ZlO%0n$vd2tsAnXa`6_mAb%kKgM?#PL+y48kg*zfoa-xq}N9OPU}c7kk(ygaJeVx z%OkH+B{U(crgD;kEs?|)a6jup6Zm#xWx)3ts|h^OSQ+qB#%cnuG*$!n8D$j{59&G- zWYo&2)rhsdO~m@eu0qC4Cr$}cra=K?4z(K8I^AkDfM+Rdnk*o@%|E#|cizk-rH`o$ z`Cs}0+`xcVX{`rBqrg{dUaQVZR190%I`GRA3S}~>fqzn#(^b!*wwq{zz)O`?2twT) z1cAR=PY^1+!q5Vihmp=@e6t<(*i@z_@DWo#04%HT ztx(V8)4tYfzf<%F>wO0NoNaQN!0U~b0e@|sXwo<~mlFf~gzub5WaxhkqU*4T# zCYfIvK6qc{$pNCH5No+%ovOUD<-nJRsz4^Ws|x;65X08X)G*R05IakUvm63L`%ypy zt1rsISYH$ZF}~{x7~^|=5Hl?d+e9YL5xK*X?23C1DVZI7l=38`fq1N|HcYr)R;mg9 zSf~kHYpmh>6yjD<2IMiU8z*?4nLOJ`Ax@Q=8}cbm6EU21m^o`0h=1I5&?&X;6Mso< zytT?|XTbZ6H4NlcG_e~HKZ-6OZme>th~ZGYNAEOoSV0oJMvXdIe#!KZSvlm-% z`AO?>9mx2k$8?MKWkYOjDcD|h?x>~Tm_iUxqKaT4QiOGxIxu*qgJ%|6w>m&xC6iwv z@3PtP{U8U#q+TxWEh{j}Bn_q$ElFFfK)<)(8zjf#k&15-tk%ZK63(~a$4t`@5RGCO zAj)0McqG@Wz4_kQ%WEgkSTSkg?BXZi=1nSgP~CC01)37xWT~M6e2cQ=7=CmP!FPkI z_eYDh$_Iir;2({Z0sp3~LKoCOf?(X)RDB)w%SyWHIn)Kp)wqYG0}{SKT9s}8adESw zss*jGNdSJrI@Dtv$%6EzsRipgy(tpb;~N*Oi#I7sVf{dl zsjuDASTEN*kufbr>ie^bPan`ySa)q(u--7+Dn6lSzIW==E0G#ixGb>Vy|L7veclRifYqK?G!L+t+%2YhbpUmv!2)X z+N@x?y%=~WZA8-3ZEF5E&In??FE8-jT8h{@g)iT#_()g_6+W${YrwExwusmSg>$rY zVqkt+OT>230W8&0SiozQi!EvfuhtMDR74rk@@I`2r|cCPHVo_jWDiDcLO}5bw3I4*hqY(MaqXFL zV0$K!y_tH?GjSoI?U`|GdnS%0xIHtDZqJNOiPhd=UP)X~vHURs$YWi#Aruh|(%Nc^ zjDIuj4IplksyOK>TY-ksc``&~JfIoSHvkbPPlI&$9?OtJq`r{mhTf;sh&(3Uz}X>x z4W;>OD0Z||jNL3O{7I$~R_sk-#l93)>`7t8eiT;hMf_2k5UWS<2$uE+!`7wPUp-P0 z`>RJVM=ADKk5t6|>XFzazM)Mtm$N1C%!=4wJ%X)DvA=pGwwA9R+siX!i+N^jGtV5) zYJ2F)EUQy&Ghtz|9W{jrD~--UqB8_yvMx(S0`X;<*oDR7`suKc#`YAcG{gpDTZ$Bx z3{f{2+fk&j;%%C1gcaLRSg{3#HJ<%;H2V!O`-wUEX7@m9zX4|LSvG42FxKnL zSOd)3)6G}|*zbbCO6@n0+HW8=)<9~k0gS~~LI#u?YalgNa!opMqr!Ysw45qGvD>}Z z{O-MW%wf&ckK~BCufl^(T7F%>klsf3vuD~yKVzf6k8b!y!BGlFwDdnyUMPTdd5{KP zp{$9uB@1$h>x?OXOAF#hp)&9fCMT64jPupZWrHkDru9i6hGOD+1SvY*pZ%m>^|mn6B5lkf5=!NyMHI4SL5 zd)_QQDV6%cHu!;Ui&zi^|Ek+yVpdpW%>C@d)B!T*${(XLuQCsRVgDFfqW zw?7A8X2H;p=l^K_>j&a0SCf4>2}v4F-Pa$xPo&shv-k-s^<;nQ$$ri_tc6k$=i*7% zF^)K7BsX;2i{qRep2JO!7d%v;6?#bJX29u+uLc~CYl82n4`qS8apXrztSd8d-!eT2 zx!T~zjkhodZ#=!|iPs3Rr7~TY!OP2n>|9tld~Jx}#RWMSZ#s=&JnOm$Zib!zjU(** zzZLe7H;%A$|FO)3;GFGLvPM0xYn1OJt5j)2b>j#`IKVB;D>hj-j&Ry2pX$H_r*8&= zU770-_@m);a^naDXG13l{)=ATIGcgl;yO7n(d}D?AVWDp@U@z~yx{#x5cQr3!4z<{ zS&Y}{7SRhrJZN_S3-WZbEUk z2-IB5{=f@DaPD@kfVZDhOb^#eyp!;indR&$TxIa>TGZt_z+ecD#9Wt@V~Igk$6{F zu~UT=yGmHGQ-l?pT3E4Bg%ylhAXc+~(S+!H0S+r%hZMQ5?rfYGxNWH{o$Y6kT!Z6BbF1-IVJE$4}N}5d)IeoEVt3TEu{Fw%t|-_zq)bz_7S? z$arC!)`=H)*JPa9q)Cpj#H6s8_XMD@u9;Ir7Xj${8vWaVyH{HTY{=c;vF%X?{GPI= zxF7s`Vpb0QWDq4Xp11p&3^>g;R}J9Xl{K+;()1jn734mk@XN-^fL~SCWa-O7`HNvn z5{9x({hx)}hb{U#1kCTlmK^xFvakU3X7*4c1I{v519*tC{BR)-4|10%yxmwC@NQ-4 za3Kj~8SeiqSl?;!+W{V~tSRz()?)dh1aye&#s&hGHBfqzMrRfUXYJz}F%N0!W&?PN zZVBaa&7lg1jgl`@5Lx*?>UT%}6{-p8XTVN+f2*~rj|AA9qp&Jl9=sE)qX{eE= zp+@XzS2OnX`_(C*Hh*P6TqI+-e*_Z`nu#-D$;9`Muq3cC_LbReU~11~Z-KEr6Z>H@ z&x8o}%LsZhxtC)f!Zh$q_N8n!Ju}{TcqUs9a=d3^>DQ_kWc~m#{^Z*7=~L!Sf@Blv ztH&D^&%{+5&ndhiI)N-AsuPkeqp!}Ya=TXd%tBN6e_QWrxC?T=2eToOiZ_msk?+^( z{g!>mlKTVfaAqe z!13a^cDy*O9WRcWQ*~>!Ov}yvS~%Ceb93Lj=D()q>>6*V3)!@}~tL*=5N~EI>9`D)}3Y+rQc4)U03kS%=$xt9gpT3yhVKH17||^nRXiI9}z8&0Pzjwq=a2Ndsa z%+n*ae|-~zBr~D5$X@8+8cQbbvzBlkR=@e$5M&%z8_Zh)Ua%qyJv%}c;uP=Of#68* zt3!}xyd(tgeRxTTSLt&WFG*HnPvn^u>FL=K9>9>2+}SV?udDm|)=8?|T#{ z6sHo`<7Y1zClt@b{oKNMW}H$yGmZeyjALMiZhg+TEzltF%f@OmlTQrOmYpcy19Eee zebS*emD@n}Nt5J{mu#0W(#yzwwVW)Ei{w>N$ag7Q_KHB_rQ7W{R!kD%I7x^PSB;P* zR#=wEfFDzqykR&ehxmMu1AZ&Wb>(l?8=}L)O%Yz_B2yk6UZDwy-JIODusyy`_rlIR z=~ix#d~%wlnjYZ$ja3J-+=+eyWwK>~I*=`#NCDYKyI!!VBf8`$!=8*V64pU;ib#2n zmQ%z-+lkeo*_2hhl>1w~%waJSZQR^&j1m^`U|lb^l-3W4nDDiso;gkz-;AF?uu@{=_p$1F1Izz-`+-aTHLLtLxO zjpV&d_hM`ggI(9g@@moOlzGL60rKU1cJSUmxLg*dz}!>11|}2yRHphGM*MZQs=b~xAcH{%r5WV@eG0| zwz6mu=|rcn4$@Nzi-oXQ0XU`$i+BuqJ9*bsq~hc!EFzJcd0~=x!XizCM<-2e8VuNs z7aFOU8nBrfu$daLi2=W7JDX-aV?=#w(`IVZW*qENF*S1&GZWh)6{me+5#+(7&BUbo zVhEAzqIp9vh=gz+#PlJY2Z0A_SUYXt&285`h&w`v4+3}5?CNTgaf8lhAUIhH1INQnDEAU<+6nF}~eYT_j3gcAb?#|_4g z+t3>$P+?snpT;-+6u zDWqNh!OTN>xCmrAIx%pVh68w$XOB`7*98aIlVX+u$SkkY>1OXVLYN5O_h3AoyUd9_+jvJ|NM1 zCO+WmK`H~u{?bDhfRd-4tGLjT9#(8opBt%g-*a|D&LZHu!%7f#LJc4>@8v4o{M-m` z4jZHfu;h7hmU{elExpFr^BYz1(2ob_|&-5kyEX-vTBrlWNC`sVpEJMA(FR@u;J&|wLFux zgk7I!G7VTWJTqPvJTpF;d1f5io=FT7R-Q>P5d@wYJKr;7FMB2~BBgsK{$gk7nfQYI z?V0gDQC_UW52SQ27pKLC^l3j|%8;}OeAd3l(FbHVFRE6L#FM}?WBoh{y4W`XRATurQN zrWKyy@J%Y71oGu7R~3AI5KC<_fH!z8LHYs2D^3~sR(mcquv#Hbb7HC222!sL5QTf% zQ{)aakjdwi#p%}Z;6AxdpD$-#HrtFN`(=)H>dg_|4?!pM`_MRJFwxg_-!eXTiHGk!ngMY7K;fhh)ChvZOylJuJeL# z>!~B_c}hBGJ{lP#UKp`iw!=ZA}m6KG$5>aZy_u~gF~9I*jbPUgcWZrgca{A zgcWZqgheK}-C`@r2-mA+ZZHdGK#b-s_~QO)->v?+H_T;VuzMT32P4~6TQG7vHF7&O zayvD0n{>;3l*_o($nDg~?bOKa)X44B$nDg~?buk`X@+FIbt^Tu!QHyWcRcVW%9Du> z#De0Cb++P?DqY=p$#uNg*1j@^=f1`XvTEW1F9^YE=mcZGctK_Y`P2z=Cxh1<56m?2 zm17@zCbI@_y4qko>jh)qdS>ih&tyK~XQvWOTK0mm*FBTv7XQ22VD|A|kTgzII6*Me z&Vm1daT_B%u(J{4kJYFVO}hMxMZDv9?r9t=vql+)S<9Os(9+%IDj;wh6q*SQ(IcC7r+*)9v|VlLd+yCQ_+; znyGu5se78Kdzz_xnyGu5v3su4?M&Dq_Fz&rF7k8*7_8ibm0x48pZ27Cn4WYG)06H_ zlD9ujo?LX3_s!%55#BP}-1f{pqvCR&n8De=LdPRyAfanz# zp-Ef{i#Q|*g_T-nC{FAmMLrM48sY+mAQUO=M-U1twjW=R=4&C7YRgxSCSThvxZ~A5 zAsml@sGI84t(bITZ3olYrPFa*ZTVI5(V|83x6k2Cwy9bNVlDYS8pNHpxG%?QALzi8 z+LK2=5(^296Hq^%+<)n$d`Qd9q6D?a(&tOMf!^P#p711?CW)!t8TNL z)f*4zrbMI>i|nIu@&SvN2Jk#(>6ZZ@mj%i3lm(GaEW+1tf=CvNG_-*rQjbOM)06Y> z>;#=O6pP4@Or?K8A{N@BwnW|lFZ{LJ{3Vrtb%HnXhvyW%8pq3ge2j{1TYAAf1cZC( zydn-6uhx}6$<+Wpqo2u(v18!^(2= zc+s2Y&swxY4(mdbZU8@(O2fLxqz8aMH|ZtlhV=`Rt^-N3Q{{Vv+7nna%mM@0DOg}Y zRat=r`mBu%NN43sH%oJfTZ0^shP@m_2tD)GEbCY@jp@aZY3~JMd-=O%OLK^C200*h z^l}iP7roempPiTQ=&KSd=*1DHy&p)!678WE*9SS%p@3NuMB2d6r~b50{jnk%{+zW{ zXK;@jD@kaC;Eg8IAaX*jBvaD%xuF*Dqso#;4~xK8D6jZccBrR9WkpGGsfl!e=oI}2 zfYDg|IT@&+KN&R*jhg;mAUZ{V21cXP-)n!QH0V#_Lw^w6{-mwT7H`wGaNOqd-P>s| zjLqs^Fu!}jj?><58_}a?{$Gr2!`0+fK#iX(@{ccD^dG6oo=l!~T{c8o)!9 zRYX~+VahxRf4Q^{+|zV5fv+v;s^?HWK@eDOH2techiQdnRH+e1CMVWT8_Oa11DbMf1J2bxcsV*YY#r+XhQ21}W%_!q z^`ZluV~Scp+9>8OR8ZfF9eJ;+{eh{^fIm`}tS@6pydm^+t2YQ_@N(S{x3*Y&e697o z0leE-E#RZZY5=F(pATtmp>RiIHGsXwY5|WhRv$cYuDpc>q_*pMr$SeH> z=FjC!sGU9sRSd$(#sBETxz=2g>lqDyn8aZ2+I--JWp9g>VSGY2mcgK@fQKdV=E(<5(L; z9r$MJT^smTWyzY*l|wKZxgG%CVO8tE=Zw_`)^x018^m_X6m5+Dmw^R*+*oxWCXkB2 zMP`jU5Nn9kc&6wxQ*?j_S?628L(CMXjO7q`QLa1a{70;(E#M`}@_%X!0>4UCV7GSP z9RwH>UKKGQL#jG25Ty)6&b`1_SjU<``s`w=H-|!h#X5bOnrfMr{;#+}Tp5_7`2ji> zIxUi;$(&lOLLUi!19nekPBnqkl;wI`&!Og;U>&%(v6{fQu2(mXgk{?Pjao{gKOl$r zPwQL;{B~JxJY|;#p@VV=G>Bh-C1nRC7NTdEWkT)5>EO?51Cl8@wpm}OMtty*~&7&o@>bIA@ch$%>mo{tCdY+6fov;I?TR zNZT8@LO%`42jUT;=m{I)0C1kYGTjF5Y^)COcw@DJXB#U!S7G?xX&d-a{m7?3h^aQ7 zHn482CPN%CRvU#*NoK!@;p&8BJgGAiww8{3l8cyjtHX$9%ZaL5F5!w zF7OnUnl8UEG)I0T^wiqirM0;uwYm8c{RD%i60tkqJ$}FvMiOBdi{O*pG!Wxe#38!R zwm95B2M6UHlm|`8_8Lvpa$l^Ct5tp37BBDz2xQX%eAs-}20pH=Vv7LP(L1Dy6%h4r zH(hn$Z;jOhL}4-8p@RCJ*f*%(!*q3kyy7Wm7GT4qTEMol+)o-UkuwJLQ6|~|9%C%~ zw)Tlu`$VZfJBL2iMC-tFjMaEX;l^gR#%mPr9$4cIH7M!@{@QdmfsYxh4#b?!xV<@4 zFmAHZ-C1=EYU#oU%&_DV>H_`v5^Hh*$S(%UWB`6qr6$&vPRJo13Cu3*8D^?Dm+q(X zztM7Xt#w)VW!;dBcyg`b*pLi)x;wJ+_ete-{mZ)f1Y@Ya*ads3cNUqKvX;W0z=~@f zrXP)%NFDeKV>N*fDXW+QP=7YTI&f2a4X6p+Oj$+UxF1VY$5mSTEeOOHt$_@9b6IXY zW&CQcC_5;JK!a>SfF)(=7KEN*mW^Z!vSO0lX~6h*?aD^75Ah$2*BzR3n-MTgS8Yb7 ztHpLVW7dIxFjf=z_%aqy)dU`4tUBdA) zqiIpb?Zk9 zNXt%r$NCY}CwD2Mx)J}Vma@D7b7N(|D~(kLUTdrjc%!nW%Y}&BEuCDOD;p+x10laf zKUqDl#P9TzziTO*FyJOO+yUTpWl8oQ%^~&@zo8-4%fbAd!JR)f8${|h)a=_C~ zPA>dMmH1GQyIkQHjMW6LQr5)U$z3_bO+oJG3V&;?3^+w2XJT#Y3;AJ6oMI6+FshK> zDwO;I{CJRBrSPYL1>|phO%=DDSeq>y+?>Df^*5C+eFTfx^4*Gq_ct1}1dHqjf%sv% zT!*@MNFF+5{;u*f!}BKQd_pX5?&j3`B7B6oL@$tumg?mbCS8SIKEk}B7x-~CL8_Ne zFs)PqVw|*6Y^g4d_Z_u#CrI$E77T4hiQFK zPnG4v7J@JrZFK8z*3%}Cu$65WaJrgOZdkfn3uwv02UT-D@&+# zU@%#->g}$>`-qLao;tN2yNuxey$1O!YbTBA+fa+1xxP#ONTG!FoE-&j`%G=#gd90s zE!|DyIO!X$P-{YMH_Pjo-SOhy;q$tUsd=bEa=vsRuC+kzc8r$dHQ>%$7s65txSO(y zeF@ZigCOvI>j^^rBM8R*c$2n&v6gN+fIp_ZjcTXVrq#}#mBYB*I^6)?9m~R)HiOYL zex`_@gSuIK_c~)*ntx7$hYFiHkxI>ZfM(Ht->36@pN|3xaV7V0TR5G5|K%UB~5k&niAbUypG- z@JY&(Gj}{PCl(LF@#rrR;dpV^@bu~CusZNeWl7?HM}C14zYKCfMkR7tqW?=eq@S7l z?29FgR$>?T?QJ$}#vMh`J*KDu{GPHlmis>YW2bzv;^`nyD|=ci4dCmQwVsN&3$Ioe zyu)0P0aqHUmobE?*-Ow}Weq231>Kn`>IXKAl>rY`)>KKVMe@mE_320MPU|eWm4be+ zX=wmYFjjV|!qcsGai;}6W}`~`+|5{R;5&`g1P&Xk1w7JNP2icvYGLNPW?|+g@W;k#1NSy( zG=U7e;$ECFV<9>4&-tV_eVcWm{g}dyt-aP>3is7=Vr`^5hd9vW2A@#4*|zk)HK=fD zVEu=}+X8Ey!e@o->b_6vARM>~E7H*%+|ipJNML24qQ)8|)i-8{a1l_rJfWJWHPod@u{0e0`F+ zz~8VC*0o8z4zZfeu}BfzTh8bMl3^y+ z&YX~wTe>X|^pRUgBys^y0y#fOU9J#cxmQTRUk_sVZL0aLk32Iguy#_2ODEL!%)$KG z9q9(?=;lx}O-FsCqnBG;^Z^f4mLEDf>bxLFj{03-k%)G-@aZFbh69V-ba7yjo4y%X zfN?G|DDSYQ#x!xoG! z!uX-UA{hD8a9DI5vHCF0WsE>3xy<<0Hse``L=O0% zPH*w=C1bWIh56mj{0`yMPx!pSCTTzWg*L`alQ0pIY4w1 z+7(~6N^7;K^{jQE1w_$=+DP1djdVf0N@LgpLsYa+t>Y}SWWb=Pl`6{O_R}-rz>A9{ z)0rw7J2lzp0T<|J#a#}9l=@CDKao~*8z_A&RnwbrQN~qRO+(+Y&_J1LT40(&wd7uL zzSiGaOVJFZ=khxL(wt@}`S3ui*8rYstQPQGV|9QRDNBAHU@V9DT#y4^Ypi6WOdpOk zkvj0R#%cpmSX^2`1@*}zvs8Tt_0)E{IyqF()zRjyI8o6#)~^gmZHXBZSMWM5X;$8M z0HW|E_W)gZ$weBNhQ;}9ZE{dcVbMW`=W6PwR;1eH5BVgjnyISvJGsYeHAYww>#J1c zRxQPJzKPd8lJnux9Bp@MRX+tF&?~J1X<~}IhutIncFS7TGoz~jQWg02 z39tr%?^ITGhtW03bk%_enyz7BSy%ey+uv%xp3%~6gcSZmOL=u^26&O_Pcq;p+8e$H zEKkvZhge7ZfTt)+cD+k;h~+`#>a$)Ond z2GhR$y0KUlUc@i*;0ZWl+WS!z`jo60_?p%#-s?c|(Wbcf6or=u77%N8*Oth82sl6fCh*7HGmT&qVv>Nk-F zkbX$}_v@z*X}NLjv>j^>~ zv9W0c@@jaY5$aieg<3QMCvIA98fvm~MG!b`Jwd3ggCMZ2?|T+aLv3kqNcI4?S5_ei zwefTt3~*Ov6@pN&4T8Y^*As-Au(@djPE%H)5o*662yAXqHV@P}$`$hf?_N(3>Zu?I z++Mf2I%=iP)lxJ9FJDg(>e?U(Z0R%lLL=0$az!KXl`k(325L9uiXiay#%dHb(*N(T zEXhj1t!(xT0(Ul6A2abg#u^0v-dKIW-9uu(dXy=)>6D^Tc_;+j##nv8U5qsd+}&7x z=@9Gb;0n$OHpC8)BqJv@#`6*Ddt*1}WgJmRSZE;0=~T2FMmS*xVifGMnW& z>2&Z%Y#t5(e^i>Vot$~NmCc#~CQ{47egODSWw|EOpda{%hBYxQ0|gS^t|pj>7BL{< z?8Lytvxouj(`a{Mk0>U<9S=-|OI6@`8vjlV{6m`)1Hg?n)SXy5BL>oN8FzUiM&zA& zUfNA_&21t=6G|zJ+b&i!eS1XYK}KvJv=TlJK^%b23M-$_R^i=et9~BHm}~fP}>k zBBZz>rof*p>kYBkA81)`D4hXAEZ~2(1$-!t_MtSghltodOEp7jbPf@TxIlUzTb`e} z!OU{=x^9$(tf2%9Qr3PT zev}`NT_?W~>%M#o3)gzRIJaAuHP75tiQR3j%ZPD;z{^1_Q@K)OLiAxyp6i< zl^b;Rs?j*F`N}wrue^CCv;Ig;1fF?fly|Ou$jVbwAX8iF0`W~z7wSx#nu9?6PzXXXD@7xaxmgH8 zG3i7Q$Yd)7q5f%y%RwN=$wCl{X(<|kc(xFPVseTg5FZwTP)t}61meO%5Q@{92m+bP zg&-6YTLgjlzYv6C!y|$~rhFj?#g<0|fuw;#5Q?NAf zEmh+kr?AY-3f`eV7nek*{G7`sLhydLrY=dqaWtl1M5yZ_pdWKxt#s(*3X{uc~_L8Si?=&C=a-atNls)CICjadpA$ zQ6|(D+3A=C$;pA|zpUu{M0whhLoj)z4ImT8)dk~xUl)Q%aDrfFmFNRLZr5n?3a(4klRrARt&doxYp25`S97@xVW@c|OE_ z+#gD9fLV2Y8xX9MzR$^;X-DI5wUR!XI!>>G&$A~)88BCt`;O&FwO7e+`b^t%((D}e zWL@4imk$rwQ3PC3i11Ojt(5X>0T3L$CFcN{$Qy~OIiqsAh4B+rFiE}_x?K*%)ZVDJ z{82d$ZH&Sv%rQ$CdIX7)37ILUxNG1gF=J_|GU>axtqQvP)3DjD7KC**&# zbGRHerQ54UNx5X#LJ{fp*Q(IWw5?A31-28;*np1Ox;ONw!Y2bO&du>!=B67l!BXaU zSSW1wo0uVN_wC}C%;svcx#yQR*npa38`epu419@Y7P}F?*H{@j zWWJ3%+f!lKv75n;H7UFM#c?91l=oLb|U}uG}eJ;Bh%o^(}vyg_}vy3lZNvFsreZ{0X zwwf~IyatHd_@SF<8Il zRT3cEYTs)JW{Th6LlFI5l7zt_-!tQIf2sKaW0hxq)dY_9Gk2H<6V|4_Dni zK0F#Pbgnil8;?YNZ95IY>}tP8awp|vuvAunLb5vKSmAa2{E$Jca&to8|ir*S@zZB1^Dq90Y1wz zCW9ZZfAHhw3_c4Q2Tu6dFl^^ejw7YU#_3|+I5}s7**1w|?zbCh2Iraa$XxBX_l_6$ z+*gjf?F8fg5n}%qc0cPz&s2g3AaW`P(xEA}Q{-juxjClg20|KMXV(!txImaSml23w zE+3X@hD0>JRS;1&84Sxe#bM!SO*EbfK`N5UoWwal(+)J}X%UT2)503hYHTy5)m5Vq z>@EE^LM@4Ty zz>+B}GWWr zNhFuqtzpTF%f|3x7QDD@j3oTN;KgNQ72a7k7C)jL#}UiMDjc!QuEa}@ST;t|DLG=< zScM~&ja4{e*;s`mmW@?7LPn{FKyr;YQoN*jW`%c_jm6%Xr^ebxOJ@o&Gr(;kz`QLX zkA5%?iP}|-JL0Ow{cv(|H}=*k&WlK{9+>TvtM?X7VT4H4{^pmO`<}J5m;raUmjo7P z`MZ=jrp&xpiH~Y2*$?=cvfSBv-}-wkMGp8!WlgI+y~XFdp80auGqoHZXFm}qNfJiF zIzwmkMV2b1o0lqajg}$@dwY!Rpn7SfdLd3oxv$B}W0glPX zyb~6Cl;7$Uly?HTPP@*MV;gvbu`(btQ*^NrAZrSX%_TpLEi7P<-D+h(Zg@lr__H7d zBv3_)%(|aF+ie36FjfX6^-4u<%-C89>ug;B*@}pR@F`hAq(}^_%{^`4oyN+5Tbak& zz*)x1faDiZ&o%~^3yYg7a*MDyUK0hv;);BM<`rQ9_b^rlB>RXI35XMsu;NInt7ST2 zivTRyFRt|k_1v1^K_JeR{I(|9E)b-gr(M1vUM>848`2_>Lz)u?Z zdECIs`%D(;Kk#OoN*VB8V+{bg(vylnrj+yyxZ&9~%k4#Fw8-F z0um-%@?Mzqm34(FB`hFQO1cjW^Tyr?W3os^Ag@tKMc_)CT^W!WB~n0Ul;{F7lSC?> zNH5JlajpOD^pmx0)#w!6AH6*6lYs2dy&S}AgB)->J+FH?2>vRQOc5aS*~`6@8SMp` zzbrbQ8Ba0KjMom&WFu5HGfEfOt48Ax_qACr2tvc_!(ZIPlEa zr}0At5juN}>l7YAc_sr4TXK=4YxK%X#%=KMp9kw*wIkwYr`0~CyX+_S=8#M;L>x%s zFN^P~3&4?fBX=b5JY{VvSNO$Gh3`K9q}p8AAGVJdmp_KhDza&9@o1?w(ZzFf=^iTs z%Yv|oA_7QQr0H-%I+6rT_7$o0&~zl0|Eivk%A<#eSHfrO_U63AldrDYk;E6FC9K$m zLBkV!vzH*gL_Bsb*M1M_`Bvs3@V~{63e+zLehX`l07T*64^_K+M z+EEA=cFE*GJmlrL1za93`+&I3%i%kou6rg#Sch9c9PH)rGVj=WCd6}g+-d>&D>h;* z;MR7`ZUMJ3Rt6-7WVFD=D&^aR;P5U-7U0iKTMNjU-5VZ)Erc`yBusr1#43U6nGl4k zR0eY7_i_+~tH=SLvD1GY_`I=NKw`S|2ITg(qi6va8mkU`ov~WLw-~Dq#_EjM!+djSp+)P=1 z3=m9w(FZK0@wKB6>|jI=_}^uH5bR+@4#@7r_YZ=dzQ_SfOVrxr)VqNULz3|NNfZC4 z>0ddmE8~BIeg1dGx*f#PL?Pdng#TjoWn&&!t=Oy6>Ite&9$f-IY^(v`M~#&MKcOuD zdq5C3202Am(BNUp@$Z5{9IH$*;&lqIH&z{Zv$2MNKQLAu_)}vI0WqyaZ)%z(dgGqD z)97KUG<39~94k&zbefhj7GP+$CcSjCDK_yecBVo2^zK z@Sn<>SUY284#8t=c~9}`(JAw0<~+<^r>V(4h`a375X)@FO*-ys{Mck$f7qKRe>R;z z*f?*}Zu8v%aPBRj#wH<6w4d6$$oAOdLkTmJO7}dz3zG}&H2>6(?3PGp`Eqe_C z7wBfR5QO?S9uQ zdV)~h_Vi*1xLjF1mck-?;%EI2!uKkLBT%}oQqH6=IIbEu#``B6if zL#L!dAhqNRN}BEw4kfbkAP0Dd^=c4EKb&=XD|(fD{f_YbtVL`F{EVp|LM_oK)_aWx z!UxJsUj!?YqGg+=I14M7In$ygbXkd%sq z;`u=eNIZ&E9EZXp2(Pdp%z%WQNCj6G=wxMlO-q;m!7MT|=;!p~nd%@X20k!24V!<& zY`-7}e>&Jc%@SEWdtC#J_cOs1KU2u~rEA(VE8eE4M@w0=C*%+ecZz(yV2b>?Gw6dY z%9?3XY!Y~%vIBaPZxhyRR80m?WXY@H4D_`YQBBg}@qtBf@dC6|1QKk15D+|jb?=^Q zvLhu5E4HMt2(MtZCLzJ37b&x#0&GJ#hzO8yC`HB`i-IQbea31rW&de*&VX~&sQzFD z@kXSs1Ent#lL%*GczE5 z7H#+J3i#(RD}cejt<=BCCW`4@a%NpUc3ud-GA-r@))uLF zGQ`Gm`3Y+g=Z;6`+Ztbv2R`3ou0ih!M<)i}!ba4HgU*Q&fIkUh@hF{GI?M*cWQmc7 z$^X}3&MXZR9Go=FFqvXS<8d34&mWI+obQyjCa4{4B5-bw~1yGvw45vtGZyZcL(Ve?WWXIvaHGpdz!cVj z2Pw<{Ia#_-*InJX&u40cjcMs*z~@`^H5l5=Qa8Y_vTiiiYV^eFMwy+fFig9Q?}xBHIs1Tr zXEp1rRkLkjs_&|h-+`4Q5b*UD^rJJtVQbhqRX_fuDQf_k8WQp>X+JipI*`QRI=h3W zPWCtMtElp~rE};5^z$jTCDR=r`ki4F0gf1}?`(x1G*&M#WTQT^(G4m^+t4gU(sq|? zdx}O9(I%q=o@PPT29oV3%gJlXycz6-PPRbn0LgcvkNoznAO$4Vl+wwC8iBHe0l7OB zDIg*1e{N-_W}9uboGjl|Ib>E2xzLhPi}jHN>b#Z4cO#B(X_)-P*NLTjz`l^4fQK8a z0X)`NP2h;J8bI=gv-xhg&LZCA)vZKLmE`pBgO_&E*-8Hbgg&T}94cGPCxuBG!S${#K9z|RjLcDR>z8W@B}L zY&s^^MrY=6v`Cu-Z!p<#njhHhTVyeRIn%kg05e8;M0(vA1V>UQ_%Th4SCAl`AZsYo z*4Kt$zPj2R=(g1G^MVkwlqrW`AQRlnL128R5KP>A!8iptLEJM_lbsi2wPiCeDIIuE zSq_3kB0U7+P}c@{U-hJKV}B(Y=H3iQ4)Ssk_|z!`lbO6A1Zm0%nr{`nPQCLUEhS{r zJEJ5pMz!{*v~-%mS1C`1{w0MxP!bjs^YgkJbv41?upMfp(Fp5{)jqB&wz$=J3v+Pk z8SnS?IP4I7OJAgJ3{X}5JF)6wTMIugE91=+g!iwWZ zSj=|3F06Ps!qU!L@d_RMzi7Fcy}h>E{3W%yd(1Y;2=L%THf})TNag_$zsqC3qjQK~ zt16KLKB6oy2f-h05xJ;wBVTE%>cAb968=AR*7e5du$R6p>Sswb_4;pkK< z!6%`+$v*7$s=m*CMfo5H8xp+iX~n68O-z9rlS@HNVkpgB5+c&9Rp2fI-33bnOs zR;1=+esWoZU{C%$=^TmX4Hw=uPHL~-5n70<;E}Mq3=_^7-KJup%b+f7Egm3 z>Ly|RR3XC>7Q=X}T5*c}2ApgAol1AK6j9(}VfuA!I_5;79tckU=mgW%Q2-gpMlMc_zLG+mY z`+@H@Rtp$h(jU7-(lp+|9&$}!Hc)VcmP|6K1-#Nm)B>(Gmi>{e7mU@$UG!J1Go)P( z{cO=soFy#+LqA*N_48MuIUvo-Yg;SFrpO=ngAp2S(s+vT4l+KIhr$D9yPgUYL1Li zFSTjf1db`oKNlF!F>DFkk^`PFEsXd@pdOvgBMcmO~I7q76uN zxZ6iCqZKh`A)|GD0~0DD1|(qofgK`PsJF^Ogiml>vP*xBT44{fMzRomS3i2tM0$a< z%wW7Cq%yS{wSq{JJ`iDrkxU5uM`#Pk{!YxkG=~VYYOc*S~kp>VD29rbf7P=By;-1M*y6~r>rY7-a#=-bLvyLkjYRzGuX zfX_DGZi%j+=x6IpCjEK*SY|_gdqVZdpPu&rT;IT37%v?^?||*1GGazxxMFGnzpGM( z`=IuiP_!uvKE0qkLo3{1>YM8nhFZz}%DyV{Z&s`QDTP-VD+AtZtTsL3uXM^f5B!5l zZ7Pow`HJI-wYjj#t}{v>Pn@HXFqcnvvXQodyBRA3hLN?g110vL@0-h$`=U4VrtLO= z;q2Xa$Yc9dh@g$KPsfJ6ob$h|JS^`6f(lyl_k!Cth6ZrdSWV!VvI^%zeb@vW!1LD= zgu226o4_lTwUHcMcAvkvHWvm@HHxO9Ue}shjlN3E0?!DI{J(Ga6je?m&ZM+LkE_hQ zO6z^cI@bXH)mUxdKa7Z?U=!>C){T`! zF$1E1a#{jX%c)QAKhugGDl#xvv6Dl+(mK%rmRm?q%ioG@?fikU`ElfmrQ%ktMsFmQ z8PqQLw?Vs<*xdTnqO0_)A`8ZylFe4!r*1hx7Z;QC@(akIXeHc5;q08*y5@7I@%{&trl==(|$^o_GGdA ziT0UZ$+?d{-C)`i&(MLjT3fzH(G9*YSRoz?)ewKw!#40gZ2YH= zY|YtF@Z;D4CS6(%Lj2Io_%(pws+r zyqv1i9wt{#)M9+%zX5G4j4Rp8uU3)!ZBPy1uZ`6M{EM+N;2e8E-vgX)ti}!sUu~=w z@HNKj0q$w63^;789^h%lY5+%!)dS?0A!M=xKN6%aQW#zc>H*$tQWE$U zH&Yb^Pi8>eSFs%bUPp&JWm}bYvW++BhTBPipR|s*r>f1jFxzLmnL)>^_Jn`eK1?u8 zt+Wp<+RKB~l?n+1iJREhYgG4-%!{(Uo|Qx5cc}?{z$8z0l92exKgSb3^pVz`3`m5_ zBj>Ih0u#F6km``w1+{Vi_gD2aS9NZ`LuG!gWtEJ5rmmS(n|9)aXhlRY{+%|y ze&F|v)e8*%?x$O!xn3Z_RM7)M05?cfq>2)M5^i+XMJf1a*2}(!6^35&vW6KVQ;WUF zjM)HQYQ{Y2=p15&GOLd*XnUV&s{_jw(-ZZvT7fswWd87b{j^*$rQ)7eoQP@u%+Mp? zsIvT9JP@I^WS>YMQ7QFi<`C5Lb5(x3!3?Yb%k*iZ6KW^T0Hat&2t@6)+DS`SOgd3s z`k9?HwWTb8-ou#z#)FgHoyff81jTQ{ z+-=$#z`q--1$^FE8E_YS54i>0U0D-r5`y1RVx7q~fVHW`*xah5aH5t)phCT@Bp8{4 z{?i>fDFEq)OinuSJL^QK_xuAWh|pRuaH$QWA9#sXmDedC!f^Y6H(J$R z;Mc9{8Iy8|Fo5K;fB_t0syg(QKQ$pM5`74Yl4bHBRj|Yq)yEWG5m>Q_uhuF4XPfGE z0+wj4IE_<_+#xv~7!3%LwUSBl&7@W*t(6#Pt=9Ub4YdLMjj|+#P0As{ zNE)g3iC=i)dY(C+3$D{nxK#&?Rpnw<7Kz33S1IApUU%&j{R9sEp5{L(mZi8O z<Dviy!0;sj%!wZwY-u}~RE z&*hb^B{{^sCRYdk!1SHCG>7GX4?9wMfYWGpz}ddvRve<;C@ro2BK(!7!ggF!R^aqJ2)POc$Ec5 z8%QVI8_@AT)c;j`AjAWRm<>-B?*y-C`eI=#8q zT4)1lyqNz`{H0vk5(0P877IbB(2rzim-eGWKfYuAXaQ;2sqdIcUTwo{0cp7qgbMvg zR?364u{*8NjK*GP>JzuORr(&Q)ua~A5!-L33U)F@$t1m86tgm$E^Z+YYyqk)hs3=#9GtGVU z!87AtoTIHXFT|Ym{VD5MlcrHs5%9;WG?tc}2mGXdG)4Z9_DQuJa_CPfe`mS#?4Gm3 zCNI3OS#8#$Mf0~Wk!QF!P!{aEQ&(-PEnQtYhtH*%v~x*rI5+B?d@Eq9j=uF#wg}n@ zE|Kf5lDl8^Ay?s&MH(;s8C^-4z;|0HB>|t-s#B|FwHm+yWy!v8EQbi%lT98&-BN+{ z33!yTT0qtYaW-&ekOJOktmZEiK548L@F`<8fxJRkam%a1wOLlH4qR!h9w5yYIT7lQ zK@dpGg&SuB;kgPC!-qf5nRwkb?G@5dHRLF{56unVPw=)92LwPa{P{Ht>nCVb}D%>GE zOCTYzP3_d~;vKb3UVqVV_IjmcwS_yL+I`55vvWiU3=y50icWQ+h%mnG+-f{8RqVO0 z0)mWU1KmJ`fmUpf87F3PYb7|CEQ>W&Jyzni%562*ilu?!r*PW952%z2+(r&{z12i2uO>CU>pVqspcMQ;k}0`Jlj~w z!nfF3Rx1NCs;%VGYsDmYh@QRY{N)F%m^63!LGG%S1~1U6ljOH}w#%Uy>Q*%;UD7by zshFMfIi}dgb`V2mU3n;#yzRkG^jr+3yuT8CXCR&5#|%nTMTK zldZ!GFU)$!Yy37LnYcG4x_kdiStzR5pYb;61J-;8NYCUzJeETQRms(jy#DO}&9#@t z8o>RHRRBAPaB@(1X%JW}YuXuv7SgS8HH4WgGl_fTpH^h{cu;L!wsm59h*RN+koi7VjE`k5?Zz^^K+SWKbVDTpBO!Sw{89x;s#;2(|E0{&^ex==5(jM)J0 zYpfRVP-8WKOO4f1#YwTfb)pWu$yiMw!!7b2)B`~f$Z!imsKe-3)j-A~ zAqNb@O11^sQ0)k7u>)MLEcsgZA}}3vz3AjnI7s3ZNCyi+s7=hi9U$E<1fl4;XapXo zbqhf#hUPlSSmKfaNk#)Q9;tQ!n9;ZfdMn1(TQ#=coUu)?vGoEOO`#Er0ZDg&jHVET zDvj-ccuef{*tW=A1U^?hE!wMGYk^v5;YvEK1V7UW$iApI!>p*FGJ4FJo%OTSH$_O2J(l`Hlp&i|)6 z|Lr;kcl72Px$GTfzrcEZxeYaAhZ>wr|Qaq9s1`?QwvDLTf1~Q@nQY?onR&z0$~r-0@C!jbrI;cC};uc z?zna1NwuB!ouh>e9eA}3tB2k`8(4H=nsp+%pyOond8^e%(KCUCqN%1Rxk=zh`uRm# z$v{AUP))W>z%x~mn=)yNPj%JNwIuWaSk{%!`BYa2U8k9@Ca|n4ouN2pI|VXE;Cy8j z1A=1rD}um56?E%8cx=7ON+bnM$-W3kJEE)`{A#TzVnFtSP7F-ja%!l7>4%d`npXx* z%f<#s%SHZ!La9V65dDSVi?`5Q)k1Gh3kTXrdx5khBRBwDZZ%Dwd^_e?QQ6xs_}|JZ1fdw5^f8R7KJR4&U%p@ps*QOjQ)dx#W)F5rwn{^5CeW&S^n!O|D^;bkaP&d-%cI) z>2h5NhFWn6v!QVk2C~g(P@k~g4gndQ?=1wQE02_J%QOVi>+%RfXOpu!C(WnTIbsW7 zpLMKF)GiJzx_?<<(Nhk3a^|Bqp$Ew>rArm`o1z|?J29|mZbe|x96#Y8-+D`%OLkW@ z*K3MeG#7r?y9FfAxIaz?rYjR&a)P)tsH0z;HD!+lB*{2+VEXLUK?HlTIk0IsUC~VQ zSaPEti^va$JTcynn#@r(y9RZ@!;IAg9$~Bo@JMC3Y?1C8_tQ_2miSVR72K6vr<@9r zRr(S4fU||EzG~ii{er&~f^)FC~PipxYtFbeh|9F@O7%k{O_YX5|Ryq4^&_?U8I1zT(R3N4S&bIf8bpVE>) zL-)vJG^}5~IjaAa|6zSz$fEtYem1FSV7&HEeUbK8zDRxM@_6k(@gnt~c#-yBtbV5c z`ro#{>i<~(yDzc+%5nV9)1nWk9WK=Jc-8wMEq|b;eryGo5c~wu!5Zf~YaFf8@>A-E z+qAq#OH-uaHm$!}%U7!$f6sG2r4QD!u4TWLvA&wNKSfKf;kHnED=qnrxw!tF`uUHv z{Hd0|(K435Cz5~YMdY8>&!5$DGabiFEoW=F<2d6xQThC_aej;866LSZ68p#feK9}9 z@@q8?_?4@})KAB18OwiG8LYMZ;5Mu2TK)X~xT4Z~XnSwe@~v9FL(96B?5<)pgZla5 zTE17yFKW43%R97;>))sR2ef=p%ZIgmLd$2hjO))(yKJlF_FBGL%Y|CLUdy=tRm%T@ zmS5D8JA3BInsMqsto+Bcd_qfZ2$>(<8h>&7%oncynJrl#o!n`t>iOWt7IQR$tv{D_t-wS3Ds{y10{P+tB#Lg`br{PXNW!6q!Ms*i%t z|EhBT&~oxP@(<|%exv21T0X|WP^{&6a(@~}e(dE%#Sd!vVJ$DzGE!d~PwwJz0)QKbGHJ^XW1zS82)5oy79Xx(m)Xw7f&hZ)+LLzk6!IIZ4Y? zwY*%*_iLQ4)H1GLQv=P=a<-No3>Q^cqWmvud4rZWk0Zb9%L)bW*76uFkJB$GG(bWJZb-?4d7{#?try*H`cL0ZOB6umaDW}tK~W^YdU}F&!Yd2z3-2cYr5aRn+<|sk+KLK1Sv@@k_e(E1VO|i2*S?F zZnBZhX6$a*kTOU$ezl8~sL(~KQK8!kLj4$;R#ep1k59KnyRBa-sjfDy)JOR~&pr2? zxo6&I=B)Xq`Tp}gFETUFJoh~3$8+B2+;i{TEuinqFJFIfl<(8gtIk)~_l`(sX#u_6 zq5-*A^g1zmJvDlr9=)cc*BheOTcg+I(d&xn^~vbnG7`#V)EQJ4Ub7 z(d##(*B7IS=hf(S@?QBhSD*V@-kT!bfeCe7L-eXX<^H`R(q9q1J{G-pMX&3k9t2d|h9%(w_>pMpth(7-$dVRP+ ze)>_S^P+WNd-Qr+^tvQ^y*GNzFHe1hH%70QM6adhr+-BLPI5v zmq-65>08l)@s{XS|7t3quYVk-f1CDH#Lq^r`TWkPetNzASoB%n1|j%SyXWtY>;2Vy z{{R16yah%~pV?Rs%2@pW`4>SjqikApYh7dGh-vn57e*h;f<#bW!25H-X`d8?r#$6l zT!7_>QMU#+1MTo|9t5X4JUS7m;~v8&CI%&SV)H!Sr9Jtq11IC*FfLShIES$srxdT( zDd6;a@~H=>$HTb{oGuUNCU6*6!oEP!f`C^9Q=X%^lhuXB<58+rxyO(#Qm+xM^=++T z{;DU-%f5=$`2G>1UPjc_w$?@nb9H%R#04!a`k=4}%c4cS2Jt$gEte6`QOnCl#=cc= zN2GHc=1^W%g?|SM-e;&6=N&HT^L?nvo2w=Wm-FRicVe~FsJ}9=`o5-Z!+dT~#xvil zH;E{p9YW5_&a;jKA`VNc${Yc)y!7u7xV$Ydt3VB8nh+hvrF(hVGx#KFlOqn7@8xB` zm6-sk0VjJ7z7IKef9eDDeiN7RVmajAvM+jz^u>q^r!|wEYeU`g zmjhKT-+amRInAxjwM`?YM;TwzTwmK*gGj5}(9s&Ca`tV<%&gk^l4*0AT5(i6&V3_f zX5-8jKvg(fjSvL{y)dCdnxmt7(X0^?aRLmA2#NCP!P%8UsQwhxvlw|fgulw@z|d7l zQnZ+>eC98*G}3$ z)qs_MdTatdY5z>dd*z>YyrYNg#2CfMgvLj`ojoNyVsdi1Luh7{$n> zVpLWy$#a?D9b**h<%>~_Oe#iIJGB_27@1UzIv*vI)?{xH9b;Bp;Bg~44-~*dfp|?wdr(ybIXY7+CSBYsFFJ8uZ`p%6f>+> zwWnUMqwZbUn5O4l0SAev8BEX^G zRC_p6!RbK|&P9nPAQhgYZUHBIHd+*Ai$sg57j10-P~9|B38r8!t3&8Aq!l&59pj3y#Us}>t@ zRC0MF2qwZUtvdk@D~e?p-O*GoPQ}(_tc`=YTFS zT7$&*1l|IN5wciB+5nCk1=P9bZu&8h-k-*iXMuD~jcfG)sleuX z?x@Xh-kHKkq4!mJ_+-9}#Th3!rvpix8_(xra(=H6HI8ls(*9~3;Zw{y@VmI2`qMyy z`{KweKr&IzDxbds$y&&^I5W;f^-`RDf%I6&cp!m=)Bs6ZNCrqRZmD5;R6chypQ!E% z$pT4P$e)2^Eo3VOA*+P@07+TMaX`Axifh#X>9N!=2a=o@=PV|IXTRi1_y~}+wN7{u zNSB4Y2PAb;{HP5;dT}#RE}!jjI-9UKBY;$4!pL#P0qMe}mK-t_NXl|clRz>+IvWhDhleNTiWTRD6My#5$ zdX@=~T7mMUJmvWv%WQe$Ln4+pJ_nNBCf@QD+hKHDN9{+%I_fAOUHFY9{Zk%n>NQ(6 z)Kv^ei4+Y4B*h0*;zxsI|bU^(Syv8Z8WdNBS6?R*x3%M^W<^wfciC(?D=m87=qPuM(V$ zM{5W<;mk-aHlUOn4NkYwlJzp{XM7col(N5J#%mCTJ^}gM;3>~kaMZla^1O~bRD_9V zHV>S4OnI=-airV8;d-^0e;xrx&G^*nMlRBeFM+epXyJn+y$6_nE~fPbIBG2sYDGEP znQgZ{b}Bqt32-_+S_grnRw>k44-r|fYH$Xkx78S|v92aK;-g zcN;zo&IV7t-U3IhPN{Vf*s_g21&6!o%7^lM_E#msTYqqh)oV03YTZk%D{z#|>r`;2 zc(i7N!z&xbw5|n5t*EJW9<<1|(*xk7jFvlY{2ClSfuoq#$Ka^7I<=bdfh}dHt#RL7 z+M~5EI2;$nw8nvxG2R$yi$tF;AjfFQHYSbt0drgw)4C6wtVio5a29&B{s~UfqqX}^ zD6@$hIKVNMj{v9LXvzL$z0Lt=qDN~UI6WS%JHc7x(RvOXdbL;^z7Gx;NsLUcdj?qM z0l0>?*l4-?YkzR+JX#aMNqV$e!0GU4@g7ZjwOGA=4vsoQWW5mh9R2kkILnNdyT7)= zv^L+PH3A%U?ny1TH_ifwj}%fd%B^)JIP_|( zzQXh6!u2{GoE09etH5EO7Ss9(IDr|qcLrspIcST8$051 zm)bw1)@kqtOK+z=!AW|ws=%4-(K-qowKGYrZ$m_mWj-8hqS12q*K}}F9<58kQG1@$ zIu}>NIGF5o8#pX;vHp4loJNlpf7_sTQ>iroljQ_k2%px0Q)jf?bIRrkTxaxXCBRYp zwA8vBd$bJz>~vTHYb1}>>EJBzXw3#k?PpR86>#*|H^EtCwA}r57dY)6t;eVp?s-y+ zeI>oo1-0%u}yP;HceQYMluc z8GC1e(`mHaZFns>D?D01q?T#Jr=bPg=cQkOv(lsW4meqlR{36thvAMi>&00C7jyE` zuHY~qHNM=QKNy@f9xYynHM{x+u4(exsM+T)OX34E%}cyCYIgn$SwSvcd1WtOSM%t=Ij5+MkgMtni zqaVIiW&RYL_FS-n3{C=H71LS*j*3y#!p)Nb_3ZQvIDDFm(sK9L z+u-m?H^sEJ*biD^^rIF+bC{#8bpSX+jh6Hd+122T@o3EjN5xfYvGb(ozXJ|`FH@`y ze*_Mn+=Ks+k9)lT0vr{w$>BUHR~UZ+XQa_`x8djDRC}~`8>*waE|2ua7;utCizS!o zOmL=pv|7PY^98js$OHp2FWmwT+ozZ}9tNkuqxC8{Y9^xAIH<_}`UD)dPqF?Q{54zw z_h^j+N6m56ng*@S^J*0Yv%#5cv<8Up349Nnj7RHvaMbKcEk4_YJI;3cJvi)(Vr}>l zI5&8-`e9L~=4EPa0TJnqJ-}gK6l=pHz*+3kngWiR@u`KSqoWPyg41ZU+@8M$oTVPE zpMay*64V+2E$PGGfzxKR-2K(>0C>!!bpSXWXdJo^cSqn~nGOTTthK^+mYkEoF)OqJ zob$j*K}cyy4>H##a59D?;|e)ffMZrx11P$R(6bD8_%wvUDI0M*qAg3IX?ua+Co+U=^Cw%BIjx5V-V)U8_0SLLe6UDb7=gi zSAe9foZnq&yOQ-14&yse+DFZL7X!PVY16QBOArQIWx{V5lF`= zQJD)oRiFu+P7mj1=4`d|gFvdR@~k3aooT)SBxNDJK(gP^C7jzdt7*<9O}KX@-m2Rk zh%#HPF%(F`9EFku#{#LkT<1fijz?LX`9P8u=es~UEzVDYBz_am=S3h@2HDi-ulgcomOzv(tKTGG-oh&tLtka0Syd4-NuH#d&H?u|=X!`+&2+qje}at36sLfTL!R z!u6U0&O(n?130gFwA#Q?a}%}XI)YWZ9vrTtS%ztXEj;=isz^v|a;e zok#0kaMXNCtqRmaPT>CpXOYozuaP!C2zOq2v~~tZ&D7MI<<#02oFyKu(ctt)BZG!~ z2J&D0Z>QtHQELElF2$F!UT1>CHKghROBu+$m}M9rA- z+%|x-%4o5_WZLpzoacJ9b_GYR$EfuwGU2(3orZ(c<k^=Q2U zPMt^V&)}#vE$j6yXi0DU9UR6eWCf0UpRN25tXn)!MWQd(}$ z9|6vMkJc$HkI~u@naVai9~{OFrRDZU6F3V!T9<>PR`_h6)evHicDfOqN~7g&!#lxQ z~;yOXLVL8Id7^CHG!(G5x?$J6B z9Ca>3twqq1^FojmydbH}mQD;fiS^zES`T5{5Cg4AC+*;oSXO&0mA#l|B z7xUqrMY0W_0*5g{X}R0*C2+btT5o})&g`i50JP-z`Uf~Eqval7Ta7}@^l0q~jyh+g z);FAOcn~;@3HT2jcfF1VXRSx;ba2$!DD%PXn~pZD2dB+wxnpk|IO{!H*MpI|A3{w7E66TJk^0;A>buRnk@(4+M?aMZau zwML^<()0ZQGybT0xjnxVIF%l){lQUZ{nToPmh6us!Rhd5oeItnk5)akOq`c}1@Yh# za2S77y<}O)xelBvkJg>wRC}}@1gF!Z^)xtRJz6h=qxL}9hS&ggc>WLItT0;c@%0fn z6FgdSO>PNPTbKj5gnrovjgjZraN)yu7QI5=${t+T;VyI9m3 z>a5qr;JoIk*CKEhc(i^Bj@loi78e9Eb%E3E(fS)W?H;Xd4}(^?^G2(N>Oj@rGX7S|ebZF3Je zd@8c4m)rBtg0se>)dP;&7p2zT(2{NV1vrC@mb(qViYdL@qjeNGYR9#()_LFz_Grxq z=N*sM9pI?FTxu;sz2y1wbKr0uRBhZuj(8&hi?K5WZFt#l1IoSTYiEdyr&nxxqH`V}~8N19q}AL+yQ!Qp&S z%!ivD3IBMs_6A4obyKSfT5`>i1gFkux%=yUa1tJ^`QWHsbZVX8)Vd9vv`6bvC|$d$hg}j=F+C zt;?NS&w;bZqxBv*)gG;_j)FJB>kianoum&B1gFDjx#Qs(;7s*sUB-OED;m_=+NpIr zI7>ZRE5T{-X#Ex(bv>o9*1y2vJXmae?Uck`n@4LjIOlS?JL@i|KNC|K_zZYx6ao{ZWXk7q~xw2MZ{d^HP z!I>xvUJ6|+xeOe0Rl2~v2iJgOu6veEKyGr+;dXG$_0s~J2bj-kx;*ZDo?<>{73c6? zh~!kw;dzrxFC(AKd(l<$GWk7`9&my)qI^QiIv`aR@(GaS)B0*VNn0O{)y~i2$WA~~ z7P2o9{GrC&b@PLP1Y5_EqsYM@zRz(^B~lhg8iDkVh$HiXWZsS=*8%A{C0>i~0!cm^ z=iCP*aabIAibwrbT^m)i+p9pTd*YmrfOMP_NB$Q`*E4Zsi(^ni>k9a;Kq`J4zv_Aj zkm^6ik>h|Q-;5(?1L?qHL~>W#8_DU3BUb?Fd|M;6BMuu=g&mKI>UiC62B*Tx`92_l zg**YI%0gZO())(anZ4Wtq{l-30VHYE$=Q57=H)-fj~Wc56Ay3B_38dVlBdRzF+jSk zqfP~q`erta;bGPY6Q8wbO<s0B3a(EqyJrXD8^OF1XJVFE}VK-NEvN5s94J$joB|!Gk;u zTAT6P0&_|hoY#t!hnc?0e8O1Ae0D}7ORe|7;hMjg)~Dd~c(k@X4)qG7D7AhBVKjAK z+83M(kJeG(tn+A1p;j25sdXzQq+D~{292NP=;j_hM zyo2Z2e z+Ht@7ndBHPcfFdx8SK%z1{^i(QR`B)Ar8n(_kuIoXvun${wz2{Jz9SRN6n|y!nEY@ z#{YtoGFonLR8GM4caPR6aMVmqtzj5k97T3I6P!AuGJOip6pz+6IMr6`7HaJV zAIdfDzTjkymb(p;;M94v&H+cQh^TcVe27f*(mZe&S5-W8kFVRoNqe*&2S=^7sPz}9 z$k_V|IPZA0)`2tMqqX^o@K3moqSjUr+9t17cm^^!>y4J%8;60zzgAf+Zk!H|S|3vD zQMBRaLaPy+fyhU-p}W7X0cVj%s{s4?%JX(JRN3Ch8^<&g) zOHr@QPf{_Vm^TvOEca*~4vtzIQ)_4FKrSy$24}pf7v4D19B@{8w5|h3t-7hjl1r_n z;4mhrdb#7_GvKW9X#E}>wVp4m^$&2WJzCpLMEvn+?FWuJQz)#J1ZT2G>l|?2^k}t$ zqs~DJYuyMAV_mT}{2@4NJzCF#qt0%q)rkIr?eo&_!I^5b2IhUMKCTC6y+>Rd0Z z7udMrE-yU_4r86_FLykA5u8eoRu4GpERtHYp(5Mx3vd{Jl$N^pIdffm{l}GDgaMYPEwT2;RAk)0`Dmbf+mMjbD>%kf8(fSH@P0Y?o zS%Qa&v>!NThatQtP*8$V;Fw*b0{ec)gJbrZ3UIiumG_*Dq=to?15RR^ z-aR1nEg&5i#F0CJq%6+EK!WLU&I?59;>bHZ%HsSRNLrVNQo**>aDq8%Q}12u4|UZ( z^w0Syj~o}rg46BsPc1kTJpTCxII5kgg^RlmtvkSB>{Vk>dYLWu1UQpDTE7EF^&qt_ z!cnsG{|Qd7(W+q9BJFT0deEbFAUUBosP%p1A+=5dhq1RN$T&JvH-d*GBRoC~DKs>P*1sz=2+ zi-81IJ}ZD^tunvFe5{)OmHFV$wC3u*6|RA_Tea8=NT*ec!-4czwKx+<)mia;TA2?X z1*US|)N{ejP*>idS5FANkpE97IAhGXaF4;4!CB$)>PO%xk5P;J7SfE{AiQx+qQ-@L z3=Rh;>(M$H9OYhWErS+ww9_nbCVI54180p#>wa+5xS-Y>wn+5p1#qSsEq5D!08Y0@ zYiooPHR7l>1-Z+-_5+9Wmuf@zTreJ-cRX6P)Cxx~weEJ->vC{7e-+bO0#2_->j`jF zOrX{k(2{GCSHR)?RZQzca6a>B^+&U*XhW^5oLYmy;rvxhYZN#Gwkm#ZHHlhb1fbTV z&NjRd9L`@#%RQfd3!Fh7t)<|o2uZCgom$U>s{^4vzt-J6+?p2-#&TB@?-KV?{qS~W% zFF0z}qtv^2G0kl!J~B*IBKS* z)&l6rd8Y#$#;9Ui&w$hF(fR{8Y7IcGMbMIQ>@#o}ql%69-LR(1c(e`&N3AZX<&G^= z!Re2DifLT|&J7-|d%#ia7HZuj`ij6W!5L_@+&=seoW&lkiu3e}h+4Sl@3_`B5}Zn- z<&GO?gR|75bvZa$G)}l)EpTtoo#2=?ZJG2A>&|s}7wV?s;r@g~dKCEt=S3?$cQ(PR z;8cv$t3hV*7anCjD{o7jvUeuqoUa0@Iy#OV0i?%pHsz{P&kjAi>ee_0Z8L~fvC{b{ zp=u5GGKb{u*7y8yCF^B+*&VTe08Xc;mtO!!wJNoChZYK#m)-@3k-ykT=~sgp#H009 za8!R$>qvZ%S4NHnCuy|YQIvmyeYHpH7I2gksKqO0(pEnPhqH{Tms@KMIInrM{sNBj z7`2knl6h^N!j6#9a`)E=aC$sir;-!8ms3(oh9<9~j^xs-}w$S|~ z?=zpUFQ|2xvtGdkYQ0g+b-RL7;n5lij_T#YZ8!;>w5MJ(!5Qq)qI;`~xVNRXxv6e$ zI>4M@^Legq`2p2_nJkFxf|Un9qUDh`ke^IX|Y>3P;- zi)mN`gmq_Mi~}P5{1tH8OkcRyHbcM}>gkI^z)@{Tt%E2p(nN3;7%drPdBAjVMtZa| z;HciA7B(dv^|~FLg+|L=uZNkBN9!eURKHVeHa^I5uLWn3(Q=;?^{>O8Oc5=;y5KD~ z<*ZRSJK#-TN+2KQI&!e!cGUd{aJW7!HkQu{O4~;?ZKAc5JZ-PGg#EU2q8vkh-UQDnjE!Qtv_GklBt{qV0$t>DZr(uUfrRmQ7B zWhOwbMn0;2sD;PYIsSUWVsN->Qsr^?=|kWwEK(kduL4K4JhcwN2gv26KY+8|Xt`H$ z{|0A~M~nVxFXA7{4w?>+9bA0gNr2OJpY~5vO?~6cme#P~EPHtnedZQySR3WBVK}PC zJacbm)67;pJ}=#Mkj{tdhk=te&tpszLP{W8l`}t$X9>sYqZ(^lTGMk{!oNtUICGhE z)7;se=BSp2Ie4^UeY$6vK8pFAf_y40WGax1h0G+!JQ0ycT>+%pD)S9MlIHJsld~8| zkN&IQL48x*%-SZD*|bL8oSJlPb4z{DFJ7Jpa8!pWGdR=c%x!8-=8mcd0jbI${PZZm zwC*ng!Sg_>=f_tCe*%&}R>984I3O$kaI&hYIwC)5)d7k-jsLQ%_g2R=t z(sGaPRp6{FqNO8S%0#v!krBpZUg}0ZYQ*WfZ;{6cg7?80Xv*VWfqVkasv_lKrdu@V zu}rPwfv|>lssyLfqqRRcT^_Bm;Ha2Dt=~apTU!X9P6lU)(Q^Bz2AnrNS{H$%A_=vy ztsKZU%z(p{r|MI88@7Y9)}z${j*3y#nhC7|qFxV!!?j6@6mb#92Na^y*3wG zAA!S_XECjQEGDYV7A|yVw-Y!ju9CyENI3=%28Sz8r8Pj5g}^D`4D@IKqYoCMBTkJh=&C!Eo!bq6%Ivvl~O862+k zih1KYa3*-P?g2;5mDJ)D7U{$1z**qYdK;X{91C#~<9luL~;!}%<8mtN@+x*15Ph5Qgmd-$vHMA#qLWhck_ z+d5r9IxOUUAc3{2{11@oF>$R5Y(@0y77NR>8<5mdan2z?x-4W8kR&>lXRK%jq**|! zt!F8J6G)F$<_;j)(ea}m2hwZpkG&2gu`JH{7)Z52HuXw)3!Eva9^@$42Q^jo4J#e} zvo|FDbJDMEGbeR%AO65 z8avdw42X=zE#Ry+TJCoKHaN>XTK9vaMkTe_lCqtD3C?RqOO}OYeg~Wt9<6>nK@Z0} zweG=(EqSPw_5i2bXu0ck1UOlb))a75B%u}x=UCxi1kO7~%RQrA56&8o)(^l@5s6we zpe5_|b8yyqwEhfEw?~V&MXOk+wYIX_k015|hpYEu<6=BG?|8JPgQKD-wI(2Exx&8| zoXZ0Ty>@6uc|2N&fTJQmwGg_4o${2hIs=Di z3QEiE`HR6BuubupxfmQZr%>xEXl*C79s{SsXjO>s3H%nEK_0D7z)`amwURhW#;9Fd zFn<{>x97)_H?9O{sL^t_;Zkshd99V~j^@cW}&lqrfVTE3015%4!7i>3lI-C&;D=3x6s&$zR3S5_LSPC60UxNZMMZ z+zX`I;`|&)%F5?$a;&4i0Fuz<3DpyGk+YT0I3Pha+88ft5dP5tcmdqQ3H7d!`=T;hAr-`12cZsy$jCf}|*tL5S#{&Ru?#G6i{ntN3DY3U*JqMTJC!7-iCcokJfl_)cB&-BhZqu z>_TvOMqg}hx(S?&M{6ZGYUCDf!{385)o97GurdAv&J7-|#5^4nsKwnUnT`i1WwhLF zI0u}?99p^s)hv%oo`m6jKxX;R?H5eQ-cRPN=tIu;YsB$>J7wA*2Z4$VXQgPhv zGaOn;J-^Fg9JXl+oT`)cY))t%5#-Lf4%d9!>TyxCwIPk;6++HpaC)r$mY)C#8sho9 z2&6q3NB#h$!pdhYkc5T&9Y~c~xA1B*^%86Q1?sMbX^r)@O}K|DZIDg90@?g>-Kunp zyIGF{XOYJ(^T6r9ZQ-*L?SyvY1dtu+VdSHFkmbP*V2*o$Ujb*aDUbWi)Lv)pL8>-AG`hI+JK1xI<6 zT3>;dT36$ZN$bFQ(rCHswRr|BPmfjt9OZCo?TGw2uIzMp1`)}lbp|*|k5(ESHFl_V z97JS9z8aiWMoWH=gM!<@nOHyZ+#`o44a41ufRV4uHYm*oc+Nu(XYT6>*3&VNGUD1 z#~Asm&qw=#T4-iG6ZxdOqS%Z4Txl*iRhkoQ>L_}fDIsey+Eu{dNpM~>PH?xzpTVgs z;sjO^pq z$Efu`kdbDb3J&+5)wsYLN16@JLXXzv;3)S}3j@TV^=)vt|E#p!v-$VIS>(~`1V@bv zYJK1+aS;3*9R5sJX}R0*x8QVmv_1q!jW}wJ>hIb&F8`+5e=gL9dZpK4R(gAb`idy` zVC1vhQ=U=asL{>x@Cx72BA=7N;T|^BIPtq<@xx!+m3= zIO%}1Zo`*t$r+~l|BV$q|tJFb@yu!6Fgc;a8$IR76O_>s{x#(N9!hV z-t=fa0gj4e)Y=S{lGjtZ!I@~Z23d91A3gzRtw(F8Z^6%DgrwH%(Ar8LZeB-%lQLTF zF?c#S>pfb{;HcP3tq+ku9bl*LfRi>_Zf`sY4ll)EU?Cs&X}O&VKD`KzirAVXD8XOA zX){{PO{M`0aV^QCwI4WUMk`CmOn@8)j+s-+_HlBm!7+1Xf%Q*4IA-oHum^GpIA-oH zOE|S|1jo$gWqUh0KO{%b<^{_9G&pANF5A_a&+E)b&+lb>IXUaVF|%;l7$=A8s7}v1 z>T_y+q-JXTvelUeUW@kGJigl58Aw~?4r#CY`n)zHA=S&9DnTaDc zKq|(@k!B#tqvObxK&pD9GKVF;2}tjaan4=L=khr60Q0#yj;sWdx-E`8$D=NeBQF8z zye^LXo=2S!N8SNabxj=k6i9DH9NF$V#KRNg$WS1iR=p+w$s7^qoWrAzj3YCFRGgtk zuo}g!e>CxE2%bCx#wnaitCSFU5Uc{VI{{y*=7Gv5pEZb=g@~QHaX8|~BR8s3hD%zRg(;eXOibkRG@PLQG8SBw{5gaw% zsdXZblHuenaCk+dm{u=16FgewH=s|$NJ6b2Lrd0cH*k1GqnOr6a3*`SPG&w~jH1^4 z&=Oq{oDUAKXcW^*gOl=TT?LMce$-lx29&ex9pLbaMlr2Nz-jboy$p_utJIp~?5}sg z;S~*~LbBf;L(~4j+zUobsQQH%dEUK z1Dwx{mU}gL89418t?z)NW*KU6<+){^QV`rj4vJ8$za9l=iAU>K;HdeFT00`UorKm~ z;BZe^X}R0*V{n#vv^M)Tyc*7o)OvsGAlO%EeFYru(<&`@8}17ZpD|x-<#{MLYR;wB zzqfF$-Y0-F!J~B!I9ZQYBRFa{r`Ayj8rzF{T>;KikJc^Vtnq055FE8mpcXF21OtWE zW8iQ%OtqnVe60qj+oSb6aMTKfT9>1_(Peq*pWtMSmb<@p_zuRPN9#av)Y^txzkrI2 zhbMx=9fo4{n$CPYT33OiR!!78cXQnDmscz7;DNK$Xt_QAEI6NewEhH+T8~kSe-}+^ zZPAW6@6j3o&H!{}G0&d?j#}wa3&M^zoDI%vMr(kmH-T%w8RXIWJ~(O(NiF=T)&N5+ zFRcKFXW7O2>sR0;JX$^AsFf$R?m`<5%~OKLO}LtDwA}r5064=uTBm}e*0j{(Ujvb` zw*{R3=yz2wcN^Xc&KQr@(GPT~tK<4_!PTk<}%vWi->$L%#@gA+pn`7(w0(Tbe z4~{ttD8S*_UytYPZ!GfZ)MpB4L038hoa{yV++kDi<<2rCWXo^kDqwIOI73X!bKJ@F zBXFucE&nT1Q)=Pno3JnKyxs$6sL_%Uo$T^kFoSrs*gF+9;F4cpUm}5gs_%`?{tEQY z{@^66^TAO-dad)pB#^*5uRIkM!;whD?9}n3s+MXQanJ)!;OE{8I~#>Qidr=08Vj11D*;+|jQcoK}z4 zGH{ezsP!_G|-Msr5%_$??1kIUcQp!MVYsbrLwr;nX?; z{UyiqOmLws7OMs*P$hS z*a^-eqlF9|X%#rDJzCx1s2D}9Nf44N>VJW=)M&Y9{IA@GRh&m_BsePiQEPh`ek)Px zYH*(PXw3$v$D?%}I4Z7E>mn=#cM@9nfb*J1>u2Ds^Ju*Wj*8gS`km7o>zI$xa{F+z z#keQXqqPS(X4WgPBB}z%%#{T=oR^cHdHHDOqj$DZD_1%Lob=&(wjyIDkR)>F9H@Ld z7f1(=&mmU;$y!Indo;vzu+dhw@@v6w~?| zIDW-L84E4f|K-U9SM#aanu@)AuaoB3iI)3wSqIzqtyC<={;5XuUv=N9#RsRFt4r3xa^`uYOA~E{xU?XB&PMoVp@fdX3$A40Mn~ zd0DSBpRveC#VB%)N8NW2ymP@>WXj{7Q!ZnfiYFMWzKo5){QmG`as zxZ|BDGY&;3pncq&y}?O>pg8Vx5YD;jB6IGD=`$Pap>Za<^7AkF_`=%OIZgF#Gh0VY zix+GZw5ktbZ4yC0S*4JAG&z${-muJe-C4%kR_2R0BcpsA*G6B!*X*HO3ZG>WeN;8g zeW%}zxS*wl@6mw)&kJ2wB1g3Gp%`k_t)d^_2|RD zo}himUXidAVo7`K2IH}&+SZoV+U8i)(z{qaVZSq8))P`!ejM6+8YS~ zsyzCe+^h6P8;7)&^t{szlkv;)vV`?LKj`t^WyZUlcl0XG)FS+Ko^H8Zmh|C^leG_d z-}COdFQa$#;b4RlJoKcKp?TUT6H=+Smd==S@w)iEv96Qx8`=?$L#(>wwc6 zaUhG-z@v)JL~V67wb;uAm$AGYa}$tDv1&31-UL@5pVXn+;X00~^3Xr`f@9n4%Xqaz zj|51penaUwPS3{F~<=Rj+fB_$KT@S3Zg}jz<^dKx@c3 z=bV!QM`;bfJ3EaaXWY1PL<@2F9mo6W)AV?M1nxh8u$4I8x56f?8t*rkSzksUINp2E zl{^o_^F_;DM;~j@rdJC!CY;bH=f43gv^ZLjMf7Q2Pg$1@qdF9QtPoI$inaY(gT@8%Z3k zyph27vH`em;S=PPH|j+m1laHGslxrP`*cs!r?Y1^&A6ndp}sL)-`rw4_IgB7)u)Bm zBzJ(55s^0Mgh8T&r8&WlBFt2;3bE(1w{oJ}a!<*|H=S(x596W#?Y>#@-HFBx-1ULbvqHs1R5Oe`qrN?Q|+E9*C#pO0Se(BO8>;88q#RD*)8XwNhvO%#K?;-3j^Jaz#i_+n@P-)$ zgYhZXU%FVF`fRJ~Slv6QvLn&GyIrZ> z%SSUz5G=a)W^|u&Z&H+*2hhFqs(E5# zi@B5+iOx*a>be(pCjTC^a%Kj{hj2@0Qn{{B4BxsV2s$td zavs|SNXA0;1CkgQckg&03oXuB%*Wzf0wj5~K1zF4m51%a@wZWrx?FVTmuARpz!7t8X#4nNX| z_ux>_P#)f?D-(U#i=z<$!C`p- zSB%xQC=0SJcBW9dmG)`^LTI8`(oyt*xL0Q*lE%EMy^%OZmDJ@`=?#Rsyrg%H*h`_G zWwpa2*r%Ui&4D7JUMu-;UQTLeyc5e*)u--p%Kl=%s{TqK4=KpLI2WC+`l3$g5MWHm z6lrJOhEJI`(t`t9*$6~MmLqq@=Al>>H)pBT(1fyi|+|A0`%0X zI8-dsj=?!T0z2BU3qoj!Skh7A6@)CcCxZ=-n(66-s&b(gADdzO*7Wg_e`Ilkh!Pl% zIZILq)lr?iw6Puaj&T${V<+vXL1=m9sIVVx5UkhCFFNX!o&9mX9lT<0 zp%YHVDpfgQ9<*fBvX?6^@b@yGS*?0mkI!7y^ytonJ;=T|IQM1rZlm=DHuPGNXVz#5 zsbFJiF=w_<($hZQx?7jWz5ArwCs*bZMMrF`GVAEa9eV@{^aUMaC+*dQ$E&P++Ee$N zQ1^-x3Xfb}cg10OYX9qXUvKJ8$J$BPeOMpr-ch9PH8r($b*JY2{+OdwzYn%6j!(MoWBO3{uA+6Xn|U$n&cE{*t_tibg}S=m6^C`-14e|QVrgU7 zJyERg(N0&-u_z15pq_Pa`$M_YMSaTj+xQa zQ7j=Ih5BE1%UIK5g`-4uA6lcTXlvjP#-cR>>{=IcOHIv;R*Pd=LmkD|NdMPcgL_13 z?AX4bWwke^_MtUWMO&jWY>jkdvDRn|Tf=ZnYbb=Rfk!9(mq*i-KD0(dA6lcmXlu-# z+lWY#zzI|#Z|F#(IIR10tT_L>k)*-Y-4R8jNRq(WO}QtMwDzHWvPIjcW$p!xv{=0P z+DCENKA%I?4#^uk(k?LVQ^~<$B|TCyeW-hHk-9U}JMPBL(v5wnd&ptkKefuj4;#Dg zJZDr<0w&LGV8e%AfleW-iLVcqd2?`&dY*L`Up>b|&0-Stj; z%8VU3@38J%c~*Pc=UKE*;ybE+3hj!#1x_a7sEF|)kPZv^H;}A_47dkZ4J~9RAUzf` z6iBayj0VD+Cc|;cN(5&Dsj!gQKoS;mJ&C*{)=+i}g=+oOC)qPrt)^hi0PapcU7f1X0^gBE0ouyX`_GwQa`jmgQrvf>+{G-Py zpA@0SX-jK!>zul#=G<+ZH8l!rFVd&e(=$hmJb28(RnS4z!g&|ZmcZyXN0~LYLRg+2 z!^E2~$+7HM|3p_S`m#qo(e%4xEfK9V(`K&ZT6Bx3BvE;yyM{XY;Ef-z)ZX}axq4@1 z72bDoJgS3`h`Mhh2PyCb8t-oGydgw`!~6YY3a>yx!RMa~;6rpP@_8Ts%B;9Y&A+RO z%^YyHl0rZjH!AA!eaLaIqZl{%Tt4M7UJC#aOWI>6+8&!8p9vz5O;6*hYoT>Gvz&FW zy1$nSEK?B71!9ge9#aVGwbU>}I{wiftH%2lScSQ=G6Gd^X(|D|K99!83k1fe+k9~j%4#Ihf9;@9|du*QU zbnp}4bYs_AdF(zXhaStI*^0$6-ucjrkjzq)m!yauuxmy{ixX ze*bFS?>|N(GsfA8{r(67np!noZGRbkV!yvPQTIE-jw7+(d-~At&myv^et!kIxcj}U z5B=V2`n?MIu*Gvp_xrC*zh6?@(o%2TA5{}UT}Ar6MjaJY;MoUiS42BO9mQV$0#!hj zVrio}A&L@79iz&6Vk+vbjuPCfWZ#yT4UwE^js2!^3nPiWM&dy{r=IdF?UvJ!-3XBv z-7*F@!z#Col--9T=#~Rd)^7O?JRuX^QUPQ8qQotTNXjjzK}*VU-uYiBsCj3o6avCX z!rQc2kYe|NBp{^bolY?AQKudCo^e!o&NizicGI#(y0lwlam_5FI4lq2g`GBioU2rM`aF=#jA*Btn7|mgt4f zt#sT_9QHeV#4hv3?)T-U-)%3mcDmn#ulV=b?*EPM_dlY*@;sLPUiMYp?-^z<68rs* z({#T-AigKSn2_#6zrTw3qx#*w7sr^eH}dhVMN@t7MkV?k|DnIC@GmlsCGCy9j5pM8 zyIPvk%`=-?&H48u_o7~X@P^`0i@!Gb?|P%tcteh3?Tvwb@W#SdwKsU*pxYZ)8gDF* zwO;Nmy>Z;>es6U2!5d2uf0Q@=Ali_M^u}=G4W2#8#JJJk2X9O;-WY>Sa8N91ZzS`) zadDnGehF{1_rV*ALvKu#S{v)EB$_W)8gFneu#@&iWgoop-s{>Mi_tjPT*ym|8^aSi zZmh`rR(+&5J~rN%YBzFp1mi|mAG~oXe5kzfIgYf)7qg-_jxydr$2k(ck?n&wGR7NI zkc(Yx?Ty*S8{x{KZbocQp>#LA(ObkD%@?17b1|GH-O1V{!u1V)|AeCwcPm8cZUB<9 zkS&%XXA9XLNarN@3;DU8OGBLlzzMMU4><&aQA9jPod!;}2uIJ1s-{$bHi2s;$T*ia z_RP4-IJ_<=61~$7A7UIn7T?e}xumZGC$L~pEtV;Bt(LiJy1ZMDg8yLIy$g7D;wbo2 zLXU#U%uXbZf|JkG5%LfeTJ>z4$Wg#$Ubud9%vR)bx2GBbAJs=YXGK}a;kkKRLXVU+ zTND~8r}Q^7tTP{ul-@p!lx{OpI*^Y&gXocReQu=8ot-yISmrc6_Eh9~M`^Uj6o+*` z1uRq`mNvG>hGIpnR^51$m$b)H#$#cx<+0Qm*<~MV{|tsVV4=K3|BM=<{j)CbTlJCt z$vmO`!(T4QME_KI{6lYyAF91khBlOq%_w>{@=>d=y`&HjdLuDIkDdLU9A5Qk!vu}4 zM}M{9UjVVBz44UshFX24r_X7gU7Py}%BAo|#WTtqu00uESsQ)O!J|8nHx<+XT*#xc z(NRG0SDS&PE#v_pnP=mir-?ilN4kL|ejZ2u0iAC z>+yBTU~udD-6!#^+x>t;g424--NFIKEPw`Qvj1LZFJz9bn7EF?j6P z^cdU$Y*FNJC36{$R%7rNG7}&igVlW)gS}=9cJ$Bxg^?bEJ!TBn&7Rp3d*DH&{OAwh z%s)krlEn>KzW}F0b3){GAc;R~9}?;Tk~D~p>MCdU&Pk{f3K>h{voMdK$FhC!7&}yXtV#+2VPyNoNbRw5fBgXt`gdWEG0RWENleoHPA})`MOE!X zl@Htb_aI>kjHQj{!)S(08;_w8@{;!0)INA@r-QV|R-??PLPw_%h@eN2#Oes7d0ujqRv~#!(zocG8Y&Fpi?@ zFpTpOqt+kr7Y(>qR9<#E0;N3)NT;K&8=)OFO4N%SIx2I4cGMouNJ2*?P=sPLBO}s- zIQ>^{c^^4TIlAQ`MF%A2PZ?I>pP4T=s9{>e*yS~W$pUay(;P{F*UXT8P7KXzG2*Z#>E z{}i6}4#MB0Q2yBp{*hj!f1Wu|`{yrtrBNU0pSxyg|6J?j&_C6E@Xw+nwST^ad}Kq? z8_7O+qY4+9)ofLTd~i@K>DlUvoHy#*nrh>>IfU#9@J6-|-cTI&JAY%Jr?s)X5zRzP zOurYNiEijazaNp*{r+zlC=qKN^_Km<3{9tIBL2Mznb`09;kFjF+WF8qnAz`{KJ@!; zU)TLU9a>V3apN%)H)P#eI(j4B2XCZ|Hx}Y3928618;=-oI47Cl40xk@3l%q9Tvf#4p>Zp5| z4|-s8gFFPJeM>#Z0S=x35^NPmRs-p@kXL~8SjbyID)4X>HCLubwJ@vjVIG^~MX9d? zCoxfdQpmr6WN=flI*JFB{}5-a+s2V?fb?2OC6H7_oU<2@%=U3)7?5^6eq80O0DNbAOvh(Fq$I3YS(os$j=d|)7+hvF^cx*}7n?Cijy;Fz{T9<= zWfSbeM454ZA9<`ErNRQLus`1UY>J7)~4$XR;Ub%1nnG{(Zr=6&H zvH3lGdLDwRIxAtWGI0%XSs$7&t1c9VLq!mhNbBcGRvTGzmz0P#igj91EEVqzX6e*DO zl9SLgcwgu`;}5`DtDO**>`5S&3lDtH(o;g~3wXUF7 zPsKJk8Vz+%qSIw)rB^Gq@W;#yGV$%?JbbM7^YsP&yyF1vX9RplqMw7As-(s4-0Q@Z zeS~q;s}owtG?uiV*Py^^x9}1?C~wZ}3-ZpJ{tCAwae0>harrqqD#%7077cqlII3b- z?K(Yot9)3VPf;FpSuA}Sk8$svN4v_SJ+{VpY-mhHz11FDZag*wUx;Nucpc;>EK}8a z(~Ah5`-r^gu_q4I9>YnNBQYM{^pN)0-|dcw`1Dw^4<766gU7ypy!O~clt&hc^YVD( zv4o?jh2al!p)E?v7Ca+JUXF4T!qZ80y=JzRP)-!)?$Mk71VkS?eh8$XnQxY~6 zj#9`du3Ic*WEz9jLPlSJP!S=K`h=3y2MKjPN7K?8*&x)X2=(fc)GLH~hfq%m^@&1# zN=fPih5BNlK1HY>E!0ybsSgn9?LwWu5wrSY^cbPuP?CCop}tV4PY~)OgnGIpb)JS> z^%|8C>PewKM5wowr2ZKKovq#`)W-<*N}--9NqvJ*PYd-bp}wt9Us#g*dZFGR)Q1Z7 z{zARIB=ugQo)YQ_q5dgW)=_^&v2Jlm>g$C16ro-z)ISpH9VMx+73$SOy+WwJBh;6b zr2dXjpCHr+2=zCGdS^-MJwiPx)G-0-URLwq=+}h$%97OI6zXGy`Ub2Ote7zRS3*5o zl6tpLuM+BfUV*Ki73!-?Qh!aT4;AWbh5DmHy{jbkE}@ODezxlr#eNqvn_uN3Ot zLj4}0-cyqLYN1{s)VqZGBB8#vB=uE7eSlD3E!3|Q>b)hYXN7to)U!f8Bh)vPr2eE( z-+H+T3`SR=el|r3Yu5I;Bp?;xIA5fC|3Zc%wh+(TQ6Y3WT^@@_z zJB50WQ11}x=Lq%6lGK+A^=_fg-y&G8F}hl)CrVOZCe*uxdb?1cAk>GJq`p+BuNLYH zh5FZpdR0m49YQ@T)H6bTv``;YlKK*%zEY^S3H1>|Jz0`EpUq-9YE-9CPYd-SLVZF> z>WhT>GNIle)OQu?)g`I73-u16o)YR6LVZd}>Ng1W#X^0GQ136)QzfY{6zc6ly;`V$ zik;WUEz!A5LrLljg!)3EK0&DW3iWhJ>KUP)5$Z{y{+>{8D@lF6P;V3JV}yFQP|uX4 z-X_%3LcL0;uMz4COHywY>J37Ds8C-e)Z0r^PYd;wP)`W;Cx!arlGGc8`V^sFDb#-| z)H_O2ZxHI$LcKz$-zU_Um84!L)F%k_0Yd#Qq25`NdP=A#g?b>=7YX&1C8SKiZ z1}xOAS$On9p`I;CeTq=866(D|{c@qcx+L|>eWI$A=G<>dP=Bw zm!v*Xs8Pev<2=%N` zA1l;1l%zgZsPn!XYjlrXDbz;@^&fmuf^tlgnGA7Uo6x&;DWZjqOL4SeW+09Qw40-wF~t>=hUM+ zw0q5+26N`NrsuZSBAkfeo72GVXJ zvw(C(2&QMG%YpP5MBlNX%ELPio(BgP=VD3TvA}yRRBoE4@8B|JE<@AhC4I-jdUMA@ zB9D=~E2hibu`mG~-m{WR`fkI_$-HLHGV?AknRw^SRQ#bvbSpUj!954KO(ZYzu7*#> z=(`#|Lhs7N_3YJ;>AM<+gCl9Yt0C>VtAS@@*P%M<*91Rx=EFN)Qhm4^VcA~#ZiFlf zjEi%zr0;m)Ur|tZyiBj1RUaeZZ9`M-Y(hCdPj79Q+cZl(Nn-%M$vqLVH*^cz(9VOO zv^RS29z}O^qUQomo#KWlWL;6tnY>~Q8=dXb3FAA#rP)-4l5=--u&5>i0w+>R#1{ zy7v~TJ1cS1GQ{4f?yeX`&fVbj>h>WJtN>D#h};q)Yk>6Z8AtvEq+_o*@(GXHJC1C1 zKknzZkOYvdg&Yc`%R){C(qkdBfZ(ULm|GIj-1?qATiPUiV*6AVX&+Osu%>KBQ44d|qM5t(J&K18)iaSsMrHNtJ?m*?bYt#5 zqG+a`S7fHvtCUie|JfT?T2D~g*k@~)825bQnc$#y}p#|28naDEQUbX7usVZGw59l z8NCLBBSIp#bZfVKDfJ4WzEY^S3H3*XdQVB}1BH60P)`f>`-J-1lGFzX^<_f6L8vbh z>b)hY_ZR9NLOmta+l2atlGJ$$X*p`tVxc}os9z}5gMB&6eA!6*SuSQqW3XMQR}1ws zh5CS!)HewAg+hITP@g2!D@sydFVr(aJt@?ygnDI3>b*j}O{k9%>O+Kjq9pZoLOm_i ztAzR>p+2-E^|eC1L8uQE>Rg7{k+!NN^>>7NN~kAiiuU+h)q~0miH|R4U-OeLd3iWQG-cgeJa-rTU)H{XxDxtot zB=u!NeXUSmCe%BHdS^-MONDxmQ11}x-xKO9OH%I;>fJ(pu~5HGsAo%3Un11IgnGMB zZxrgQOHyAf)K?4jg+l#Iq25)J`XZs873vwG&fg2$(4YQmD5H^I;SXGNIle)IZa^J?8ldy(OtH5b7O5JtfpX66zaDQqKtW#X^0G zQ2&Ea5B4kN{C&PqZx`y-LcJ@e9_<$1S7f(P@08~9(L1Fvt!S>S(6zuiIzMgfol@o> zj@%+UrMWWeozhsDqq_46MZTTVO<1py3-vij;a$*CtMy8zFz3)py|Yw?H+e~4$A8h( zecHSke8~B5Jiwy9sZKw@;(A=I=)wh7UXg&YkZuFgxwaoploHsZ4k7Cwy$8EVTI|AU z%@j8!bhHM)f54O(wFv)Ot}OWD~jmM0Y+Yr2hjzPEk24WIrICmp)(n z#TPoCDNeuTNsyb#7=P=&(v)X*{p{IuF0K#M?{js|)1&fi6}1Td zmNAgbqWq3s zkc-hfrY|m;))GELDQOVqa}$nY%Ju2}L@MIQb3od{`#g2azXU|x{iu=dFrP#$pT7e^ zabn1}59PON0*GFv^b5k4ufyLT#8Il{Yg!vyY7hxiKytl27DsiR9Pj1Rfb^KUgB+Ys zB)S%$+GiFJR4dk}-vF|~YSnK8$@P0p%bYZyI+eESei!qxv>pJW Hx(?FP1nc?1P z>3Q(H)$%WZ(`ohcn>@-Iaeo2QYt?kSAFG-wN43sroO4NibC3#irpIcgx3t!_jvlG+ z23O@7ilg*dK)+yiZ6n4U9A(Ngv!%AR6(#JnYB~-_b(s>@9CO;_nv*972^5mKs+`XN zCteO*tfcLC{ydamw&1Tw&C)%8GhnpxI}w{ji~euDPF zH@R510}!2Nmf;a_j-!TvGt{crQ9u$_8%_k0vN-1h(R*M0g4zq_G`B)%j8*rG!0E9( ze+Ll#+jdp=`++R8-0~<8yB5C$qSu*>Ep?5JH8o+iaSO{tARC$LaS|e6(tj z0FttL=j%Z9Iio7!=|HM1Z=`^l#4kT-} z*b77~t=E9iEdy|@%BKfN((13j1JS>~P@KFtPW|^lver!f9*_!f zay9)tLUQ?R`v}_EXf@Y1)!~3(neiAu?FCNSa!V3Or&+I(b1smS)rQl7EC-_M&ihVl z5jfjT&dv3;q1HmnQ5WH;t{wGJ%y}UYrd*l72c**CtN@a=kmrb)5@JQ&G;MY|XfW!` z@l9|R8%GiO07$##y0S;%4U-Q!I|0dggUCKW)>=o60a9VL*c2eWrhVo%HO}Ncu7sBX=`hY@ zJ~!|vQy%nb-CUF>WtDk3^NIFtR2!}YQf+Dd5=fhsa}RUYcY{+ZSP!Jj^cU*hQs0W2 zS}p$tI4Dl6%!5{<%$C;PK-j0bae6qAcFP;pK-w%$4Ue)~buJJZBR7_>XFgUh-wve1 zjWj5^N#rd?8pdYPlb7+$O5YAzx@hokg;ddhYG17x99_df$^ zFj~lGS`G4H%H{J3ILtdY3M!t+Uytnt1l=CvQ~^=HA526&cm$AMaB^;$0%WmOo(qXs zt=bBt+mw(cxdsSRt~@^mlCn5I2U2CV{0BgKEN7Pg40DQ6pN`*pO+&5~@m6iD0aOJv z*BX^LssTuDC9@BZ)z-K;2*?zxJSPC@G+H=3movbY9KwG3#I-80jR`Lw!gISWC+ zQ9syCgLFE?LiRo8&V0(59dzCbxN2uK8EtSLjlay74rTX6#7fGd<{xC`6=!Bj|-W9 z2gir1HkFJ*g4=De};rv5<#q?Ls);|N~ zx3M%RKTkpV>)1BBanrv?AocHE-oGTA??ZjD05pFR>w<9p6=bLsQu*A1@}tYepMXMt zN#;L*@}HtihZViei1y=<|59a;5m=b-$AK_Toy>0_^H(nKKN2P7OB4O0)B3-V`D>!nO((@&7UdQsGeE%Gje;kp?^Iz}KdY$!K$o%h^Lel!TgyZV{FF^S{m#<%g zl4_Z>{ue0n_mdgs=J-ibm;d{Jkoi-W!hi56EPs<$f{-(S0u|L>6b^N75g4{ZHcQHH)(g5=D8*QMuwLhElpm3;jj zo=%qi<>9KEW3F-4PvLRctj6$retEg;Z^IKJ!svKWt?szA&2!(WDZ2;V(a##4YbPyjn|>zK&-2mvc0+LX2mUHR`+~OZzXSEX5yP z_hP;NdOmEhDEU@WUrK7ivG8*P$qv(yY23^nRFuyQ&$rudf4@aeVdA5ozxwpkP*X>$ zJXL4bOnjrUO@mv56y^^nc)HbkobS8YZZU55yK#+QUH^WoZ>!^}-(vj@q(#5o598)!i&k)QT9o4zUT@zc z14FkMZ??m_??#rNW?f*R1&!MdF?zon77cQ@I(?qAka=u(8Y=G}3EDAUu*CbEA2l<= z?^ z#8Qyi_vk5bn{*E0WSDmIlT+ykk7oT6u8d*=)6$1-)8AnL zML?E&rqCIN*gx75H}m)1xLVQVJmmlh;jpBwb~#*8T8H@to2~QxVIotr`E#=bP1~nyqXlZRb*T`e+(V5U^FPG`h;f8eigDZjO-Jk7}4^ z6e+Pa4I?7)tNnFH1IV;OFg?8+wiv}0<8C>-obKjZL{z)^y)4vsXwf(G-MfA#UGZ#& zxzAq3JL-2U6}&vGW_Uts5#995j;Ef|aUYiq)5$_YC>&Ue!Y4KM;u=Hv0wb+@1Gs~m z?fxDWN<-GkCr=)q9#!k^hGnn1XSwc^v#KtJ*EK#t%;WH*$4O+6>~)tMwnv9CaDdYB zO&`1d7l#3{qq;Tb2+%VO^unWXMra==>{v4hI`{n*YAE6tEJ;R9fC{rkZ)>f`s{x^6 zO;K5G-B>?0?a2H9eXghnKv0!OkfhqG5W;HfO53lLI5Tp+fhPtC(-CY<+ulT4DLWOq<9nqxHP`f1-89eK5jv>xLV6f^oH|y?pZrcb@45M2PH%V*gt}%l4K~qc_J&r=A(xHKhGvTUS z5{LUo=Ih~yJ{C@?R%<}C^D1=fsM&}_5TQ*bTpd>{3>jA|3?8BFprRO#B-)O|dKhlB z{3Sd{&!Ul@#SF!30iS;>F#l!|JEWA*8x;9D-40F zFia9@;B~2Df=vh$Si{ykCsIbA#{rmR9Z55cnf zD>s;NGb0%{2c`f_!nG3C@Cs1FW5^KD)q*`mJ}M#xj*2)tHgL@F9n0f7mM@Cv@ng`L z7f3}SE0&7H14g{BuXHPofP>sa27_G7EQY%Ekxne^rV(Ku!w&YdsckA4f(SxK?F6Bg zwGgPcYbi=J?L>(OjD)l_bLFQ7a#@mDiHjaQlWUocKI}+U8JTAOjLd_k9?W9|3z83; z4U!*V9MhQ($*jzb+68P9$%r3jIi#~$zaBP-e@FqOX_^F>l`c+8*qCD<%YKk(TMQD- z42wWWdON3H?jeH#uVq#ylkGmL{H7V@AB7KTXy!?#pd9UmsH;*9PRbiBCb@ZrN`Wj# zr9f_hLtIINPL@j}6`8_LMaG+=X;qlClx@y2GjOljMwJ;>o_wpV5=Zb=qBO#b05xo3 zR3L>>BAGRUYB@N51=sP9!t)YDEzJf(WR9B=8E+~rXygVACxbPd91P>LTM8*b3yA`} zka)nzlcM+sp7@(38HhY&1|n<+6J$z2z>JTgA0JuPEz4+DJx#PcEzgdbod&DXzvwDh z=+Z?doGt@bmVq>7HI4w*I1E->KoUP$;|N%dz4w zK9F51q&DzTxx2uxYUgz99MtHvY+9vb@w7&#Wm0VI;3dIsH;()88!vFqx3gh0(N-UC za^fT@P6%Kd1WSNIAu7BJE4RJZ@ES^vdB3Y2zyF0pGPp~&rgSkEu9R*YS0 zE+28zwyL#*Ig&J1N8;wL6loS-QE5(7X{;)ZD7fhGB;w)82ud-k3EKd5C~_p$D_f>& zR~TZp!eAsjVw(T&iv+m&y%NHhs4$%~fOyV-=a)RHc)awrWC! zv6@hBjS?h{Ivc)*F0l&a#LDrE!zfd2nFXe0=BU=2l(3Fl;5u#z496S&Q4QMhE8vcw z!&kgoX`?1o7^(@C)|y_jX05P0~N zI70}H5f1M-N$mP$Mn7W*p$B=nntpN7u>gfFGRsF}#vM~7LqwGn(65vNHMyPduQ}~OlhP@8rnO2kh80c=<6O>W)8p6+ zjuEFlXevN{g|9O^|3hcUPwL`#4YCub6IF4*;wsXTHYsp2TzgMKB^W7**v4+@G&1RaDmX*pF?bE*LNVLJe1R0YVW z3=o|@Ua64Mw-iyd6j7q}) z8?xcNjUhyh5Syq)5{aag)JTeYu8WeE^HPQoHC)ps0oSw*A!?*1D>XSJD0r;Q|0bW%~zl|6~LvNwd3KQjt(-uT(%i=SDXMjY!((zA%C zXBIc(ET^K&<4Y};hvfwRVY%EaB`8F#r7_1XOgQcl;5dkx% zZTMX0<&Yr&G?Uyi$u*%O+>ScEgkn1TFZ>T5A;AMk5(JJNQ^i284LUE*!IRn19(vh3unVbuix{M@7e5Xh5H}&<6K?? zc&b)tLyun0JAeD##rc;fXOAC;7a_+VMDybrtzz-pMUqBr0rN!zcz0-VSknePy;&;4 zrxA9AZ%Pa8u~>XE)4`js4^TPzZR%G{;39^!N~|O;r-ET#^9#r1hf@8rB#kBMhmz!9 z(w4N~P2D0H?p-t$E2Z4Bqe#6krO^M@T0j&f(7952K~Chy%kS$N-IaNBbm*$@gPCOe zTGilNOqdp|J-nn#$1CaFqlN4nxI@ZV7A#{KJnkG0MkrQWD47z!ZyUlKNn7e&I^QYC zjA6T;T6QEc?MP0KyJ@BQ@*7QeiOC5oe%~$0P*%m;@Wi-HIX?WPvNl zj3H$oT#+JVMA6TPM*A}PD+gfd7Q@mR#`gz0=pxst$Pm=x3S^7Rz;!>ViEJL{E(>0jB{5P8|$) z6E(oVX@G%K2cu}Nfkvzb9I+aB<((WM$e`;wT6kd9@!~tKMFRn+fd)<;tbExfrmYDE zojO=NYh9!aoJPvPse_g8!Gx57(*Ogf4#v??t5${CfD|U9ipL1il%i!sLCJ`$?V~T% z&WNI&5!*SUXzf_0n13W+%+KMgF<)t=E>;+;i{&=`*jLF@E>PIX1!OvAW+Xb(nxA~~ z{Pby@uBG{u^6hNPwBi-b+2~}Q4V#&W8<=o`*?mFh)%}7hn;tpvu1EM)m*o(=VDVl@ ziQ-QraPn{xiY{iu+EZnWNVzKO*YJwMHoUwhnH9>Ufg0I$;K;6GOSv|Xm08DCW);=# zPUQvbcB&f8Dyr0LBdyA;r&XC%RN1nkj#cR>T>e&~j&CKZM(l1{o@L?HfrVFvgeR>H z5S(J+)ggsfg>8l(eN==T18KpaoQY5bBdf*sD~ zV|&(KL8GEV{h{BDBtsWc70?QS_ZTpZk4eN4{_hXd-Yi}y#hio-Hl_vcWlNe0h-=e^ zmGNCc8mm9J1bAcHdIb38^k#Nsa<`biT z$OGua$dI&@*nJdej+v*;G3%)6ep}mqW%9t)(zlLGDy>jY8rzAwwmV ziH+J(q)2lqQrNK-UbIv`t|)^-rIT8&47V#>pFl%rYHn#P*7k&#Vz4?CH-zG&q&+@z zIx|o$f}ARvIn`&>CL_zGWn~3uSo{t+T01RJP5m4n{gIc`nSMFq;&ZG9;dXM+@945~ zetmU6zQcahbUog6L4+T|p1QtRP6u^xskx(u2bNd6^i}{)^=z*2?E?LJ2OmgY;NJc{ z?(x72-}Wq>>DJ7{P0jl$-& z;tH}wsd|nidXB_;j1PUK5a1&Mxdkr4V-|9O!a^>PTWETi%wdQ7KVmT@UsTv^ zVscQ7Lv7){B>BvWUOmw9!OFmreIZd8VT+uty|f@F;EEpQ)2%?bnqHqm;gw#OHazw1 zG*ctEQRr4bVd|+B;{DXg_tlLgo$7jzqorvuM#*uM$kPBz=Bh#PelRY-8z-4BU|7S4 z8%{oce)cr!ba?Z4Kj2oR49nB;F|vxv-F&yfDCU?n@6)@XGDLj$g1#ogM_Mx$B8g4E zqqD9VgPMqP)L2Reu8kY_!wR3G;1A#6wu*vB-~FhZqA=A|b}-84wge2PKIYV8JO>n1!Bg|VKeqIZ0feh;aTFS1(s+SG2WqR#>%t|Ss8Dt z@HM%eQXn%@3gi}YpH-SDBnlgagg26WT)n{;{LDbX_wW@TT4thfv*jeW6v^!r{4OF&7hfAeA$qjl0}ZqfQPMO6lR8G$o6iG$nK6wuw*zYFRSXEh2@v5+%1266Cr}Syy$j z!d_i0w;8JQ0h@KP!e(8puxSd5yLOpJTUa7e+A2^AJ5?`GF;=q;y#EDM7YBSTIMcMLom z;qg^*y5mMS0r=)+`syF%RhVlpaPWHbj@HlPunxwEbD#ZtyckP&7vi1D`9v2j<1*+# z?C!2{%+r6d5IZLaT%#C75}@8pJzp+&XZ)U+F$JG8-yt-@KiGDe-}dzDR(?e>SzBVc zB7B@aFneXg`C!eg)G>m8sLi~BeZl5Q$_qXZ5DLDB&&xlDFZe~ieEk(g%{xn}7AyF) zZDj;X1DSx&05@l;k zxWuLdIe5=nB#Ks&=y@Ug0A+kkmcF8lZ;RvO$?0+3 z-{8*A8GTH3L*EDG%RaG{NteW4rDuY_9@lG}bcfI8lUVrrF}ZJ0#$^&THO?+wQtG@l zd3wzNHOCh3dX8)Iip@$@EY^N)rY)i=HhkfHjjy3|x$b&wWYV1s`yO35ZqF{DJzGLy;{e0m zGnqqCviF;Y70)#G@Cgn|C}G`g=`vIHS@BoA0w+?Q$k7-Qi(7ttkBS_kptnxp zocU}?JQ0K8JsppchO_IpNE$wN4^H^jBtK9nFbgvH$wVDo*$ytY-rXx1iQrpEXqesR)iF%8tZ(vC+n6tlAZZU{n|$=}B;BQ4*9) z7Zg@vN9H?<+OKg0q{b02v})7E0#HU(kc`Rzd8br_f-DdPnK8H<#q&GjeLYRIJ&jdE zm*#FCs)5ejAl?+3sCv0%H8=@XWebsJtVUW=g>1Y+g!P1Al!V~YnN&iGh~m>olw>A2 zDVxGbGsYr~Rmoe4OH(~V5G6w}#&Xx^tQJgbzF;ycy56$OU8jQ9d4gHz#jJ68=Z@Fp zw9Zc%uk$1PG52k(92HB(j*5v*%=CGP%soo#w_&WX;W|5k$jFd*C<%#;_(IjRWmE<* zL2_-FQNV|!#K1#Rxk2^QY2YfYl_G_yQY5#N4T43um+=b=8D9c4GgNEzq?ZWNIPOZ~ zayQ@6t}zyNEJMD2HKMa<_irkd#j+kOsJ4-|eqJEfbWs|XSrmm~a-XsR%-PdNA%Ho1 zdX}ObiJ;v5ceFqq1^|=n3E!8oug4GJOdq^Eyrhv#0}I`;WjUNIC(D$%#CmgmC(=MM zdx;Af@#0GXw3{yn^S-`*Hr3rH$ok=e9DcA}(Ga9C4S}mAcKJ|Dc^{5+(J$rm+O>sS zHXX+;>eq1#V5y!8rZP%6W#mYq`cN2gOf^;F*#)X+x3J~vv=C@j(1Sn|KM3R&xC(3O z4vYdZFsewkOVn5aj5-n+j3iS2HD6B?eNU?j{eNDza^XpyRp^ zmEg}nu?p^bF%!HfX@-?Zdt}^dB0fug47**D0C%rQBwEZ!bfAf9Q5BR@+6_-6ry7}H zF`$-w5q+*Lw^B6PK586k95s%w&sYL+eiggDWo2#6vKn|ub~a8%C9qm}A+u#7P{K_> z;gwbFFVCTgWT zlVYVn9Wz7Cx=X8~LU(FaR^%UpuavMeUn%9BFTRcYo9ooFvBz}oBK59d`4(tMzz^t-mFf5^-A5P!>!n0M0MIebasQ>g`3> z@tbb=G95M%;Vj{F76J7ijPlT867yXvrAgGXDkNh$NXY3w#RIMk@DCJWhWs^56rSmrz z-Pae8+OK#06&1}4)5HbcB)%2I8TRb_b4aXig6VD4xZr5q-G`S15m~>*j-OmIv(dQOKDkk<6}<(IN2m+o;;4%c-bZg-%hU-!EnNk`ge{mr3c z55>ROHDXxY9P|h*?eqmrwY0z9QHfxzzLzE$iq7yC(=4#{3c;?sd-g;UL;yIB5CK9K zh`x|=1WO*v+i@O%e;Q6^`AX{cK;16w};~XqTj3B=i}~EoT1?h0<^>v^PFFJ^1v_O_edCI zUcZc~nsu+HZ^jMX+)1yUzS^80b~|h^vp_W3<8>)=57gtrz$DU%ZJ=Z`~7k=bwKX znRtBl+CRP8tZ-4iB175pznX8Z4yc>A*l4FWjb8B9wn_u-O@D<(_*T{hLRyjFmmB)1 z864^7@jdFKL?CbaHPv^t46FmBh?*N{R}nvwXTU*qEjCF*D43YOW6_4?&zzq@Cr7^@w7Ui)!5TWyEalP72R z5JPB$%;2geiFFeB*o%Mz%XnpMI(d5fh}wwwjA;{Ik5j^}p$wY^dL7ze_u>roOWxHz z(N&SUE*sJr3{X~M6tp*?uX5Nr9NUsGE$GvT)?HTs4{u2BnmT!r&uzw7#wEF)!zv`f5z|@7AKMr zYxW|#zZ=mZx7~8MLg8T4x;=UN9AAhw(mCc;PIw=!SiSe_<#?bkGlvS-0>Ja`R=)rz zMY+kIX$1>|Dh`=o!5rrfLy=#ho#TuVDHZhu2C|@avzxAmRcJamd_JsyP>wV`73Q%? zk^l+{o`uLVb}Hf1`Pcbd9&GgiE)t$s9!LfsHZA?1o!< z?GXgz<}+TK6N@+ab_oqc@-&=Xh7{5_O@z1|@1ByFV4glbd3tvGF{Xpv+UAcg>J<6q zuv+QQ%d>#IjL7IDiy%5hDmICSQMF{-Nx&B4_MZBSvgVt6bhsdQi5`Eq=oZ_uA~=BT zZZ10nd%RT05!MDF*7~ydVX4aM;s#qorHU=#Ad)cD_E~%ibix4#P=s?Kj9JUIn0H_2z)slLpDP zG@30OGi`heog0-W(VMx;3jMID5aF9ERE|(RYPd$&QRjQSyIcx0xvhYb*xzsaSqX)r zYjB{mo#5gS^;gx}Ow!zq`w^!c8metB>ki|hA8?@fs->O;x{x-0I~rFl-M~wiG&%lA zGBjQ%2}F9G)$D$H{-%=v8*>5#fc*}th>tp&D9Hpq90}EBfb_^gaC+pa)ycD`Pai*> zeL<1K&Gt2pU1K0jpY@41fQ6}>VXf(?1wzwa{21cdV8i zaeh5659|I*thufG@8H0~)YlCmB&#<@q4;QG$h$*4eF_R2xK7Lqm~q(B|9cwkQe2&| z*(>UtTQlv0Jf!O@xU83S?^jBbsZ*Z9PShOU-lK8dT%bjMI-yW{`Zbe*jk@=GKTU^` z{NMu9>yW#I#5d8%$Lc$T^4p2$ESkR=>Ov|Z)((O%To)$G1(J01d}&@oYE1H_v&i>HtWjA?Th!@yy@` z0h~_yW0x?3ck`R+3K0}tkFWLzIAOZ6~(RQ|m$+t4=W{Hx)kmhK`LhG>Lwfmx-hlt#xr1 zDj6lt_v!^#+Pxn-Z12TKZr?WI6^wH2HqAtqC}n2cx3{R*42>t5Q3-y8dQU)giu+k15j!Ga(Yj2wR`GS0uKA>>0^cDK| z1+82u2Nf1pS*ci&1%6KugA-O}ymJOGn>a{0t)v1vKRCc?p!JjiQu5ytRZxACR}1ai zEh4xMh1F0Cc{AP85H_EEjeO3rW;nj5kw9zocClDv6iYQKy?+tPx>6vi>at)(yA+kr zk$ym*x}I^Xz@is@e<37={k4gCLQ0|^uk|=Y!sN%riC!W|4y_VJ(in#JBVG}WQC~U! zaC?F}4M=Gr)Ylrzzm5P7KDb7f-~%)C@{w(uW@|>o%!D^;2Lnj6BW@K z8$Ry_4B3)^FmhguaX6h}!9m`)l-D>lrFv_r>)pZ%7tMAnx^3CInJm2_UU`K8RCauF z$Ljn$mk=Bi-$UEh!T7euDg*Xaw&)BYHl*Uxfa`{X!ODnmyGl_d#EXeXtd>e^q+yY~ zwjGAduwh1J`_f!TPA@ip&S29+M(e3jWGDNA`=PudJr5#D;Flr?woe&}<9o#>?WIw@ zhN+~~xt55wB8=de=97c7U919T2WmV2gPZn~JF$WV4!mSMt2I&)c)RX#!(ugV$)Y$r zI}kraU!n;?dYUOe|z~o#o59^jcs^_LO*o+Dh@@!QSkW=0zrX!$q{5bhkRO#B3*Dp1@L?*=Io#sfE+t9mY7?5C805A}jc0H<3(b@_vD^ z$@u2nxw&xMs0|&yTFosb4WN;o{IhZO_4Ne7s6^}uBMl;9U9KGf%QUtUbA-gg!_oA- zT%Aev8)xZ=GUM(@%v*;Ni&^JVb<5+_AQ6G!6ntRP5q+s;!mA3gj3*B#lI literal 0 HcmV?d00001 diff --git a/rwf.cp310-win_amd64.pyd b/rwf.cp310-win_amd64.pyd new file mode 100644 index 0000000000000000000000000000000000000000..a870aa6c5d75665e5d166e87b5f1bb7572ce73a1 GIT binary patch literal 51200 zcmeIb4PaEo)i-`O$wCN(U67T4Ad7|)BtRgjfe7r9EZl_+L_P#XOu}XZtNChnS3m)S zNm|zHYT9b0mD>1K?Nb$OE26cU5F`Obqiq$%mbBPPx#V3_FU3oelmO5)N!kTWe-8G0=AT59Bn=$(>_F+a{SJ)Y zW%3*ty=09)V6UvISY1_AX7?7AmsbSst9FvNsVx8Jo-4X0uz2%vj%Tv?BENSHm8sV--z7=K-|Hi-@M~T@ty8+l-al^O#nLrM zspP5l>wv8+T#f4UaGWIdVM*Osvf?Qz6@PJ3AtF4Jj!up96vsA6T8=zhfqzSxJ0Zd4S>1LHw!$Rn$OCC!GjD_tGAK;m^V7e5Dm2Bps2i7~Nh25rPg$njM?+zb__7 z%;Ei#)cmselfz3=t)6ghYKkZ9NwqJ&YMESfEJId4lOw^@LRooB-LGkyD|4S54yM{Y zN{g)gK~@qq+wTe`Nv_$GQE=UgC^PVs>-Je{Uxr>8PsUva>H@n~--+IbP?qey(k@%Jx5?RWZ=xdJZk43d5M50~2j#jC zg8k$=%~Ds*N=aTqvPW!}78A36nr#T;&&1)GW*byMX{~rV2~X9}zR)!BqzfI|xy!^j zydo=Ynk~67n(b{o6(&W2jVC<|Zmz9tEA{*}q;8NR+j{vU0e?iP#8Pc{R{qvz=sm zIM^{kv(03|6U;21VZ2*4+gp@aGsz??2hmQ-tD5cmlu~!dQhPU}x!Ed5Zm@SOr1pm- z$LBgsp<&R;Rw9eo20>D$dy04Xlx1k(h0z9H2t8C-StBb4sGT)i{YuJk!tL!-b3zM+ zy&C$bhWO*H!0Y zG@}>J<4>~kie`HPe4xk}@h{OW<>+$o(R&=(2fA8mYRXl-tG$grCM&iPpmr;&tjveV z`z^Kkuv*RbB{YbxRyP|l=tK^0NX^h}8C^NVueMovizbq0NSX@ExZVX=OQC>usg!)wV zOX_<4WerZbKOUvQ=?WY8I~a)WhN@FzLz+_F-L7lyru#kUG}~N~A7+A9fu&rzhf0N| zsCbBO{2UW49yFws=5<_WH;oF7gkRt}gM+z6#S}t?3K^m$>&?mfdkVFuU9{(HxXO=N zOQL1>N7ZHu`sK)y)GYY>6_Ql5AvH@1jR;f62xdn8iGv$5Y#4P@k~={O?Q#ExPGToz zP#+3om{@@b>2Y^VAK+QJnYbxCS$<=%fR)XZk)szMgx^Sx@FJcddmy*^d&ET%24gCq zJTu{pA7%~RPMN6Pe~jqSW@ZhxBbaCj>kUrVY`LI8mqL>nZ6~yWwLuGLAytKDJAja| znI9qt+03)VC}R7Zi3B&m;@oCtcH2yC51X-d+rpDzz*O2Xp*wLK5;fa*xa7h>GIo>5 zFc6Z5)F@2MVQdCIJ_b{*VrcwCR!)MgrS=ZiC(Y+ECfx(%D9t8=9qMjliX@wb7J@Kb zHblruL00w6!~CIR1D->iU^?JL3I}8O5YnmBi}C$5_HaoYiD`~+Bot#0ShIMEz26=K3mCc68)5Y zy;uf4eA0A=ha}8d9+&hYEb;zC?!7Y6=e?O0)ix9T#+v-wDjE(ZHB}A$#ByyDg#yX) zGq5oFtCp1}DyLPBZzY~*V#jSYa@Bumt7R8R(oO+?0wx#-_?H3O(Bzj3>FtAHo2+xT&4M$0Z35Qi6k7& z5<+va@|g?zg;+jauGyYnLQhuP;W3sxbFt*XBsTAIb>=6U zc620)^(c9xz^1<(elE2EWq{pKSy_h(ulW*UMCG@*`cq}pY5&9s>*}kx`qCH&_l}v~ z%Kjc@=}>1RN5j++(@3am|AI)uAa~bWuB?oZ)wx%)yS3K&kpvT@S>K_!W%Mj5w4g@2)ibMW+;ZKAZ7}iuSAj}>YcrEY|JdR z786-$6!fl1p2)UTG7Pt}BE_u)?0HHc&8-|+XbYd|oPqary2?SV4MWOl)uxLb1C7@_hy2D04L<(h32 zIHU0sF(%jSDO`cM(2~@Al+lGM$`McMa`h={Bd}5c)JiA8!J~LEF^rgpK@ytpOl7S~ z^jRo%YJZTZD@kjHd`*j5o_$Z|%Uq6tQ_CfM!nI#@kT3R(7=>}UXYBq5PCK%UaX z#L)hr+5WHyrJ+d^sb*9UE>iHCTm*EsddqUQ)UvEy_nM^Gc0~o$>pP7i1_z^Qv(Se$ zTbN3M@L1`fN}_QeT8KoHghcvb>eBnZVZ7RqYF#QvN>hJ{zE9dl^L+xd$kbpfeR^2qAh_&q51CqIeRb`&4!do=-_Y(ljQJ53rUnu{(*}YagCw?+QBuH z0$B*mqCf@$ms0?HBd)#_u%o$M3+ZQWi|ajR6yc3pc;n~cja}i5pN2Pnq}gl`Qh1NQ zf`a-9#C)2(Y$WeSErNnuDy_oDa>yn&ZP8dCAN_bwKZiQb+alPmV3qV(mDu zulnEz-QqL<6oC0+|Ag!{?6SZ=X~Km6>Y;|EB#b$5L1dqBK~}eNGu%+D`+51ypElP*%)%R^D;;@$6Y*MD3}MXMWZaeg8Ygvo}coZ)Q9TplUJWSq@B5v)x4{#ExfA z&O=gfh(DLziEFW(% z_9S0=4|{MqA8%)oj}OyC7=W(5904|{(!k3GRT%*c$9&*rLoqpiHUiVY%f?$8cro5@ zT*$lwjk^~58P(!?6T=bYpkeoLc;gZH{_w^QHvZo2j#_6ETi>$r_a2&wMDi@^L}m(a zDy}za{Jn=$(CGRUrx>LUh@l8^3L0J6yeX1*M1A%cHI&X{F{hx>^(g1@p1L)LVlt#bI?y48==)gw`-ZyBWpOLriU8 z*45%V1m7g7R@Er^Pbi1ibqFJLSN8~gadd<(v5d;aJG)-SX$KmIjni2er?FIVb%=2~ z1LHJSOs@B+cr@YC!-yPVve1CNgp8LD*t!Z$5Cn^gLm0FTg7lbro;qY}YA1FSx?AE| zX0|j(S$bIgSB!En8H7b+fe~41QQ!a2n5&jQ8jDAx)K?9Uf@R1t3CTy)M-9w^S0NeW z-_rNg9~hIdK+Kzk z!o0Y})rAHD70rP$_rg2_WER$(d>%a%t3h;3xLADxf`oWlBH}$4N)^MyM__|CrD89n zVlh`#H!?5RrMSAN1HMQtKP?mw1Bf@5stmAW9Z||bo!&`{; z_GiS1D%;}voOPpp?~(!Ob$AEVSZ{xhZe;0RZ(oS@_PodtT5soOO~Fhz4hypVSda~Z zFzb)8<#t|Q>=44`qg>5{ZCkrobWf&Ah(U#y61)NZ<8$Z|CG@g1J9WuDRBc1;bV2cw zf^R8k>RX03U^Cq?Y*4ekO=ibO8jG;RE+>*Ob730kxf1^@haU3gg3hBem2nZaI%8O*>^`_0?yW~#(DVXt=7 z?lkr~4zCiT$>cfTf~9D-OQ_gbd!0Lrbl8i%&SS>>)$Ns?H!#kR$Un)7c@_Av`H^8O z@;WSlNG3ip!lWR1Nra_fc%Y4lx!i$bQp9I9G!0@CBL@O(Vnov*=8|a|#3n{G4H_jJ zknqeKhq8?aEPDHfH}=P-hGyI5h}!X_IFfHEOUMID+-> zkt5w&w$vVhPXrH|v|Pj~`m0Sb6l_;tSxS=@2dA*8KaZjKIp;yss}fED{~trK5fpr< z(|i}BAO}pt3U)hnZ@c2KQLg!v!;6gp_-nrV)rQ^83+4FNJW3OGzv>-X(+%F%%DgR| ztRZ#sF%0t+xLj9%%v0h;X-hSlnmj|+!>1;?b3cHl7OwY9`<+B3%gX-A5M_*rn0@7E>!o+kXp7!EBBkFt&(kWl9T{!&Ex0Oqp}dM}RFq z$t5#K;Xr_`L&+s;L`*)Ui^~irjY%={&zKjska95peGh3L0ly0P1K>@-A;TQ`Fycov zTPIpV%sGy9`|4G+(vRf5r(XRRYUvim)k20%N5fz+wDhay6n{`JkD(CDSPLkA%qiYf zZ7~#L89Njdk8z4a>ZhzT=%t8dtOknxoZ?mWwHOLo#$v9H)tqszPA5H2ovZWVip|wu zK99sd-CX^FY4n86eeR(mmE`>Uf%Li05j>8W`&{%U<~|RiJaqFeNP(Ad&!y6lXejL? zF;{2%NoXmw$xHcY6LsWUMqSF3+v|D>bM=q9JD@$f`U|6`X6X}8b*=# zUf6X6J^fW!!x3gqeAgQ5Z90zuA{w#Zq=22?p{=5Nis_NAZt}J81TUds4TAJo@}4@S z?^3^bqq{zA=+K~vSJgg-=4LBYT2%Z&{m9UQK^i)+FkkwndeE3mu7s98htwuxGP#oP zqKD!9PZs3Ik`Z(t30HFXQY2xX#k8Nja#YM4y1!jc54WX~X`p?PkKWR5OQmjm>bk(O zc$t%(RC)Ga@t}_+&#$9GH-d==XMw`zOd2^9^ShU^r(ZB(%;mQdk)0y^z|c(WNSl~J zVc^Ij31SWoE})dULm}uO`G*va*p9HwI6`z2;+Q`XeT+eO2}m3YYB>fw}L z0lnBW-%AwJauR7lmAr}b+OG4ONO3w5_yjvQ^d@LK9u((=o~4XjO4eJ zs+cz-1xCV-^o`?8Zw1q%*U%eY>kMqm;~1oQ8K{C|HLG(MONiJuv4WGkz$6zZO6f$D zg7DFF%2vO%4~{{dKsn|MkuhN7Db8J1v;;Kp17z-K((3C$hN4Fx=@riJ5hfIv%_L@r zztpsv6DFK*joAK7dH$@~B18eBz8FeaPu38zU4*SSCc!v7b1N-$e26Ozr_CI0&Xdq?Foywlcyq4FnO+$4zAgUJb8d$gw{* z#|oZf5B8fh+fJTiQf!W`u{p*e>Ox~jl1G6q^L5Sk9?xd)&K5TRY8x?JNm-TT`w-F3 zJ--j)%n#&g6V}(@;9@PFpxXpf<;>%ra523O9#e=1Zsp%7;1{gTpCH*t*+}R zs_oTYl>J{)K6m`T<(gSisMe!E6gq7rd+@WInn^#N$l40)^V6S4e_NbKKdDZCP18Jd zwlfGv*V0UuMso!_8KJ zKFE>kYDAnCD}ijy<8jL%M>XP(2FoD1o*wK#N&}@dB4r1qv>~ODQreNyMk$?0p-87( z^S&wcFp^*Z+fr3l@|#3~6FiTl?m!#|-sJFaQy)c;SlB&?G_Z8pN`x6;Wv3?&@XMf- ze55!ir4VC!IeGyeP+B1!JHVk_1v+GBLo8eBQ6V||RZHai2*4cD+>sF$dHl)eQGk^F z;iefL+(pRZ`@wn2K=8W+{8)qFyyI-0(YpCyvT=?a{}%FUd)+mA6SM!d;T4=@-ZXh{ z{5YJnmusF&T}MnqDRN|?CfA&_R-JFLnqS4V+A=6!u4%Tq#~+rJ=8nE{OCvR}N8$C9 zfvNJc!u3G|4A;}`yrnWW&Id?0XOvy(?tEXZ)pC@!as^xik7+ox3 z$G-0&mNjLP$>Z&$1IxG{Fcp=`t2=JlQcIb$yDX8L5pc&JcaQ&4uKC?^M5Isw^@0p` zNkQ1Z#Tsw1&bP{ud#gbJv#PdOa~fb`^+?`_A+YxU=yc2N>!|soo zLXUTp*W8>aS?+k6+96tyWfXDN``b5J9(Z}E7$}<6L3ste3*y-!k`*Z#5YLXd1Mv*R z^AUF-UWhn_3)Pm-;iItcuvm`ol*gaw7%kUmeKxoh^K5M0hWl8aHqStyBs?cUuGx!I z?jHd()27tDeUdN^y2oSsdKKKGI)TQ6SJ`;?5W-~m6PcDlg8KyNw8VZHLu(f{ym0W> zqwG~*eo4dP26rI>$dK7c{evuzCRk+CSkU1J)D2j`1>jhZ;A+9OdQaf%Dwxd4yV*GB znHJ}i zg*EeduJV_<4>n!pQRb%PDz9K=MyuKqI1kzaApr-wl|An9e-!O&*_k+ffHj1}^o_Oq zLLV!8JIog}*0h??5obHKX1CVl-n^TJFi-Y@4ZER>`Ot-1d0EZ4n2jxULz$R!vAqsy zfi~|U!BK4*5!|>4<3C8*XDhk!iFA7Xxp~um8()YNOKl!{qw-2!90UxQ)a^yqxyGRb|wtKU6Sd!NjM+Bf_T-O zOblT&A^BE#2aF5jk)#})w$^I7BZb6-Z#zL)!93=D`+x6V@KS9cn0G6h&vE3M4ZBfOhEOElW0o1wSlFU3VXeT>Prq# zIUyWiCe^ol=9G#k#;(nK$!Ofl;cV#P_Wo=n;+3Z!NBW?1lKYZJDM~91UP+A63mC(e*sRPU(D-O)UEaBr-TlH@TUI;sHLJme&xNXy zlB-;4%{-K+wBwqcM>&eaudce+H_i7bSEu0AXw<&k${-n&%JFaZ(!ZO#`*)#JYjkgJ zB1OBhcW-#nO_%?m0PJSpkp``WSv0tY4T!CIb?;j0sK?@7Af74*@g5CFVw0PxvJqR* zK`OwKGn3tewFw;l?~$)-I1x|Ycwr18o44o*M)kn5aR6m!_iMc?ooD9 zSEg~X_CpEr>@h*g5We*Hm@5TWV@8ugx2ezv9PXy}c)4Xa`3&{YNR)j?KC;qzPKWau zgwTPC>8x;z$`2&4>Hb}Lxa8Ub!Xe&a|d%&n1Z)K7gLl zeIcL6o12yhM`mSph(Dmd0qz~+^cq}c?NI^V_o)Jw+E?N57^9l!(#VA2PJf19WieR8 zXDQ}i-3cwkAJFepw#sy;4h?4hAs!H!GCz73uN97Q-Ar7)!9AwMR*x6+Tg&z)H?Et? z%I)Kby_yZtP;fBCo&8SCc0*t+je{MtkZ!4+2C2yMEp?M9M7Q!5<2h^D4%{EAO(V_9 zT?a2{>^i8mcJ#|r_Tb(hNKjBJnYoOKWR`{EVuHDO5A_GSqvu@7MiqUe6ys^lF?eZb zO3k`NEtKU^*cgyk_j(8$%E<-9IAW7#5{vL-(4xHb08?z@If}qdUWqWZF;H zY&TOm%83peQd(HbPk0LD9BlA}!x>ww59y8$7EOE};aG|*%9uoRXMuIwE=(0R0$Ub4I zO~F$~?eX&v|tp zSZW^vBWH`t4lyO?Ue_>hE>=1DR97X(j(xg(%g&r(TXIvE(3k+58O1bWR&S>w7AA_j z#FpAmkYBS6!&7vDx_1%l+B+CbEp@*}7#i4#98S#6Vx)CI+Mh92QE9P)h`oIIcq&PI zI1e|7YmfIKY3B-Q=MM8as{a8Ve{dZC%LR>@`^DUsMcb(WrwCpqw zx`JZKpCGoywZ$?nH?CJF7yM0PEF z7%kf2+J4T+TngMcJu>@WH7DY3 zG}nAKG=vi%b6G4EJz;3@!pQ7T@Qe{t;Kt;-*DZCof|ILG3vIMK`;UGBGn`z<2n3S? ziOyY#c-AoxvHtwTO`c^o)}wQ+nXkLMaI5(B5F!qU=Ln7%LnpIl&`&7IS-pPv%*bq0 zC{AgrYwQ>_CXSxbPiQE67PLBR{~3&D_q#wc zvL;Wb=pYk#QoE;g%o#&d>>2bE>L<8`CZCp*g>yKF(G4(x!&fg_4Id>OQVWQDO%pc3Ecs$%UmN z<{iBAr0AW;rR?FIXBr8x4d*M-dHyxZ*m=4TL+9BEq2QA2%3drmT$s$l$vK+TK3#1! z?It)o%nr;;zK>l{EZ#|ezC;2MIsa@iLDAIiEi|vC)mnVhS;w&k$$@ z%e?($UV0Yds8yn+26^ygA!ac-Sbfd4D%ffb&$lWIQ^IrM9Wi9g2U=*yGnAZ@hKIll zf#+f_kb|Y$eBgz^b1@KNQWKsJj1LZk=VmE64n(t*g^uuC2MH3M?+~NTFE2!spbrfc zedrM;297$k9Hq@?m>ld0E{=IY2T<~UeIcsRVl8-9NsFwL}bu|3)uVT!{w*)+1Cz9t|F-2=sj}9hP zVbeD+gJw=&qElg!LGyv`8PkfDSSnx_>sm~a(e$5( z^Y;j$%sD9@F6> z*EA(Mv(*j1#tOxa4?YCD*Ux#%fIaS-lP1fZ7}BM>L+d9xm4h9Vp|{;5Xc6`zZP44H zwE(?=p^^HhNZ&;jJo+x2uDc~+4@GplXxZ?1-Jx~oxslQPlKc~Q*Jti+Pmbx)83DVgheWlT_qYrKp%HctzChbKxtQ)$@%Wm1QlgX>0 z3qyjdAi>f3$efAQOq=orHPZ!de7>b#u9;?v%r#*OkZ4)Zf~{KGT7Ta?t@NKKHl$~N zxd|OJdEEt!$<<(ztGr6vE3CR#BAF}lUX-HzSvi23ggnZN9!w*>SEV?!_ir3c^})eT zh&4TK<3Q|Ak%YS;;qDE`K(L`N^Q;{hrsmkSrg_ScMo=tN2E0S20?$LHf~tpZplT1C z-;(eSwN^*M{P2)>XuGR9FZ=L@AGq+L8Em9Evp=y!!g%ghuKni;+51{aJqb}j%=5fB zi;>XguE}C@$l7jqO=BWhGdVV9dz6GWtqI8;mtma2avc@FWjOYh=>4>?p*z`IEVT4h zc)+XP0CD)lz>Uw^&<#ZR7iQlgK58A{QyU}MTf)Oche&5y~pks(g5awhtc;B zQIsPq-4yCVN5PvkdbkxOm9d(cQW4P?KJ zvX964pH_7R@;axLr)*jPS+IY9YWaL*&4aadm;V91a8pG25N(=z9{Aw>TTKgkdU?u* zr`d{}-Ur}&Lu_os)+FOS9;b24FGlmLZ{tJ{+UgG}WTaT7Gu!+VVyuBW;%J)BT^79z zVJ-}7)pgLitlXYT4v{=@km|a54|z=86JOV?jTt!4m3 z{SEtlnEf7RzhU;P;J1g5e);8Y|0QQ9k6sF2V3nJitR-Dd*l#g4%T4>NM}G_#f%80A zFJlrh4c#)BMnC7HO9Ycx-Dok~tlo&#Lx)+N3uM`e&V@Aeal%KjF2|-!BR=oIqA66@ z==Uz@_=VjmzG^~4LFPX7A7E08-3l@}wG4yPZ3nT;b2y$h)y(j3LZYSaMf|pyuSNvi zBy|^vY8!(K)s}vUeTM10It)qhITx`8Nj?uq{jxvJBtqlVrJNj=VEY70#hUsEka`f$ zTg(Yy3Qrg)IIpENBc0n&^|$iw8CubHuEBZLlJuC7MS)Fi6^Nr+oBW;)U(R3jb*WWMgW z?NxOoLdOqYaH!^pN%eyoZ!aF;Ld+r|>R*;I^9wJ>yGln&m^RMkL~I>U13B={mv#|9 z#&W|l%_c*JTj;_)?X|Jhk7+HI_~v$)8f^$B=@Y(=A^46A5|xASD(oILt-GN$y0HF= z+VBOwFcE!pkMU75jE_IUiRz^MWM0h+4i405G~2s2 zC{PQUYqa=~BU<7_Ly5t05P5u6`G+n(7bk6SrGuf;z`CkdI=dtsv35Tq}_!9b!$K$|m1?}X?yU!wDScD&Ba z+=uUh4I)FshQ@seVBeHQTc7QhAW^?!ufexb8YYf-V}C5`nW4}b_QQ~dd2(O&D(b*E z81+>*!VZ3khjeQj^H}o?G#PocEE$6i;s-#0>VJol!{&QJoYH~ty?D}M{w`9e*cS5* z2vJXKF^5EmElK4Y8mae`QO=eG6Lp*JbS3#fJ~8$r*!4tgZYS^16Or+`A&^jG+kbnq zphyS*lAZ&az<0x}B+qY7fN3VarPnBy?Rd!=q9>^9G`Xf2pEx3qyoPl9q`NK4H6Dv&}&^t))hb+wdecp7;hIdni7%XNNXYNWR}qdEoGbpV0Pxc5^5w z*Z5LU3Vla!9uo>%v0;}L?_m+cF2iIB+j%&GZ|t#nBE_*8jxX}bP3?9$6X8skRnBaZ z*%=7>j;MSwBAMMq$(GzEX#ehocmzw4<*qhFH&GNVzY?$FkEM}OS>>7;YtMsX=)J=W zaIoE;7;hevC#**XZOjvR0Nactk3{_Fhw!R6XFD2U#z!5y9Ya=4VycSU5)_C-8EMVT z*Q?t>31WAMPi3p&Tb73$!zSDEl(z^aBiUwr*L1t!_?75{Q&Z*0iL(7 zx)Xk=W0<-Eak$Idd2+&(#*V&f9U?nStU$^Gr#}Pc1*d;E=cn^p3%c6I5M>&yUe6e{@SQc* ziMvUAKiuk z@AugDco3QE_OVZ!SaO@Un16)0dL!JQ8UmTnzz}r}kMx7SRwCH({%v3jmq0#<^QxY) z99bphtQIxn;0h}FRD&b&!hMkoMs}loLOS2FwYnJ zhKHnLo*Yb3<_+**P)mGwTD7|ASS92 zl^&1}B%Tzo(*QG*v94>Shwzg5a=4C)AwgK8bJtcXm5mW~TS!iNUo0y;2L|y%4DIrC0duQ>9kC^xbE9fHrb659KPaJ2!Wh2Ysc^&7b(oeePW4 zC8aZSA8rwvT>aZD4>&h}Jl9tq3MZtx`o9J~3Cc+*J`szz0ihLgP4b&==xa>pEF6Ms zF~5L_RE>?z#y%z~m^P!ZPn;ASJ)@G)aPy9n|HfXUeQm0YcaroUB(^-*6d01Lm>&;d zl8GZ1xnc7I2zK;E+D{PJg;|`G8<9WH?%ePl5*vc#Dl~CP(8aJkd!%0=$<@CJc}tL` z#hd{#h;o#XWtuQsrdm7S$qD*4H1K96}NPqd|9j0dR^NT1h?{< z3ac@Ww&ZtR3dDWeS##tBHj|ylr38=iTJSul;z-Q%<|lL=^u)i0GkczkU&Fx`>@Bbz zN(`siWK2AsYl^o7`&)Jb*R*$f;#)nLC}!V^qkeqKMH>^(M0}VD1b-9z*S&tz+GC&a znBn=Dx6$VuOECu7W##?b@*L#rRvtZum(ed9lI`l-NU3KJo4X%y;%uDC;Az+weP32g z3c3h<3vEl_%ErNu>ENHMQdx?*SYDyJ;RNS|4+K*#mLqfD<}5ULqvft9r3vZK<^L0Z z??24N{8HeQU+{Rkz_P$40^cO?9RmNCzM>&gxoSh>5FFl@r z$r)9DA@KR+bl?DK|AR0c3nOe1c#y!u1RgH%c>>d30?`i>(aX740=eV28kq z1YRX@P~cjDeg^J1Fq;0zV;egTQwPe51f?1inh(nF3!T@Nj_>1wQd0m-`4`@FP)h(AMq&@EW% z@z^UX{Ft;<@#pyWB`AxxqO8(i>MOPvtuFGH2ZDCzY`6VJUsb?gQEtyzH)frERVZi= z(mz+Br&g5MS!JkvqBsk`{IADv4qhL5rqe%z5i4fE9xA_~ykc#+-B(`hFDmDyOH%Lj zrT$P>HrhFKfrC`PTi=1VDXwb%Y|AY!pr#XE!ppr>z@D|5D3X z_7Am)I`Sqgt_ZCvC0jB630cl2zfnVlMcs0f1l+cS#9pjjyi?FNz@@cA-!X<2JASg#|J(aVcPY{S!D=l@-SYzOr_f8p#GoqH zafu2tJ+UWWPf@4!AF=vj+@nJ%7o%4VeKY>UP>8M|)E9GlsjLJTV{y4~B&T?hstPvm ziuPl~PjMw+bVegbSv~T{x{|Vzvt{p@Kh~9$owfL$`D0y5dEl(&>-OKH9{)*KVl2O* z_9cIhmWgozj6c~sn>bb#_|{bxV75)I-u=hwV|a9m)ql0=cA_1B+kz8;+d8aPuup#Ti(hK^Q*K>*gBuHR-*` z!7RYQyF0^~O6e(lcP{qCpeYvDRi&HOY0HDxPcJJ;FAJt)uw$AvTAm@xy7XvqoQ_*$ znjs=wS^DV|;rFLse|_j?U%GMrKQ+)O6Q1CjtST&V7t){?y%Dvu`gA`Ha(C&-9C1VckBfC2yYSg$2emQ zh_s!{HrM2ISvh^|KN5jAAfHi>PCiaNz?%LN$?R}RTlP+nB#>z4Bh zJGf9qUoNJ1uQMw?bAp7ffF{B4bjzt-E)zZ90-Zj1rYy8E&aT_Ws$s=Inh;J57 zm|!mpVG+Hi=tiHt*jIv@(~c)L<7js`AhtsNWq}oAidWia*ja0Lmt*jC#RIk#?#Y9?Gd<-|Eplt*eZ1VawtzP| zic7asi}S~9tV6K-sXeW%Xg%zS+(KDV`FeXvm5;0o{oV&x%cSf6`OnMa9HXTbt@8z@ zqrvQHzLFAnvKwHf58X$~S3+@8Y&oiFGbchJkX z|AxQB9kK7x^djm5JiS3+Jw1y5o8*b|?-8i3KfRn=g?x_+yhGq!0yhdw?DT&_oeq>N zkHfzaeiz`@9tDYL3UFL?T=mv^NqQ(A;|6H$NLw)y|4cYw*@gHg$N^6Seh2shAmM`C z5I`28aM218fKU1@KqE@{1uO;Aemaz;6L9fR_N{Q;{Dqc8nxl0{A{a0UQ9d0p0}+ z`40XmSisGIU4XT4sy6}N1RMg4OoJW(Qvt<*HGmAvymJ7z0_p${0UiPD1?&T;fDS;? zC6bg3NC!*;(APGu1XKfR0R6^G(f~j{U@_nZKsn%hfH2^Gz(astfZqXL1-uUU2jD2+ z3xJf4IsnE3#slsEJOGHte5nth1+X8GjtN`_pb~)BdD8a*w*l@0ya9L{FmsY5Edu-o zuoJKr$8v81yaQ+l*zr#2V!-8q>3{`*?*VQD^ugNa3c$^PO@N;P8UQZ!2$E z)qonnOMq7Z#{nk+GcLmkCBPEEGQbUhO@LbgzXUu5=meYqBwsE`g8@SU`vHFdjLm`_ z0o(u&;08cBAOffd(B~e14G2t=q#FUB12jO+bl5ZC8o)}xcL71b7JvfyIp6`nPQZtN zPXI4mhfk~(pw57kg*bCoBuR(8Xn(lO1RvUAwIrnhssNG|{b(NW3iQ7LlJrlc)gZce z4fF#%H)n~5XzG_s(!`)|T`;w*9LZ8Wo};SKwA74@XdX_t4h93dc+mKZi-JX|&?4di zv>oNk$nch+tX9MmDW0MK_Yl}(abO(_}=d35LA;3SNDwX96|Lqps|G`~*BFyYSD(BMdE z=+qI?P}6X!zaf9;#qbAc2R(mGT$JI!7_@L~H;pmQd5;3`3&DE?TpG9$8fA3z5`dkFs3k~(LOBwLNFJ+-G z{zR|OXcnIjA3K85P#=13j2rWqaMP&Y6mw^MWn9MS*b4)s7v7yJ{kr&4 z=@ASx_e`B3^*3EEC3MDB{u|Du-UQkU`oqSur3;o!hn-D>olTWs?Tyw-QLlHiq)K?1 zKLL)3vW;=mz`oKzQC3Lg?;iRiR7y$`4UW0!faq%^GibCNSe~8a@g1;X_#r8 zl-$|BymCV&Hc z2%GSklsM?!WHUn#&q_AaE{WQK`z83Ksb*{e63$n(N`)^VD1q-=3%Ddib9{PhIL?1&_k^$tPYZ z%Q?&4vlq^DUV7=m%w@}RF1>p3g1NGD*<8<**;g-GIB~Vuoi=!;V(g3WHy7luFPI(j zmlj`DR2uRXEXL;U68JL{d=`6;R=`mnJJpNpKKbii*z#LIFVE?vnrofc$M&$XPY{>C zeld3cedS(X!CYU^9rTq+(la8*La#Seh4%v3p9F7YD_F!&?1EiIl_dQhsUEyaD42u8 zv=oq11YI6G_{z!VBW(^HU@dS4a>XIef3Z3&zz+7}U{#1tQ$L6@bLm~fVlD;J@v;Cj zv}kTBM9+VcB!oOp{T+gk=ubj&FcA!v#pkbITJHB&6#G!Vb8(K_EuLI1WMxVe`7;xs zTW8hkg8ZVYfNx2tvef4+FP`sPzqX>PIG}6#Nm0riaU9{wsEkY2SNgD;M41#Sa0eEL zRs~sFqsX(!7YO2bx^$r^eIedC;&|^`E3ZA03@jsy7Q@RR72 zn6IBU-=WLo3wqZ`pLgfXVJ|YUQYl4SFJzn7l#w*2>-Z^=cY$xM!8RTjsX2IwP$fCJ zyxef8k(N|pn|xJ~_XbIN+-OBPYkZXUYtS>>a0UoLi+W9QLV@alZTwQ-x&p2-J2)%| zm96qs6)-!RO%$S*oFd#UJ;cUN0GCIYI@jK;o-*bXg#u`gP2G9(VO7xLv!ZT1`jEj! z$jWrRSh}TR28=xzy=9qDPU5?`AW&XOTuUThcR9G3=&SO3g`%ZOLkT$*<=FI}bNGU@4k77^?C?BeWkQeN1Vdii#UTmHLZ!7Y+uk$2^FhT;;C{hKfp;mSd&{ zpLEc?w0uobc`=UeN3C{_zm(m*xW^0&?e*~`aj01ixwi6PepLltbOfZG<|V$WGJiR? zSZ89+E6xAApvZ;FX~>fC~61B&C~j{Q-Kv$%#D}IEt#!CrV2L(&l)YoAMJ9 zi#>R)DubPL52VfYtqQGP?W@wIobOt+z~#xD!c>mkse*!>f&g9*`b+%Y0&0z^nG!BC1bndBt8x}CU9iNR=bAi~HzS78f`TG%Rj|Nc zv8sUH;o=4=RI;m~U)N%{dx!Fy_H7|!!Crza(! zl0P8wUnW61+%rK#Ntbtr3w+WnsUYB6Q&7U1zkuv31@EdW%1iKivdV{-!x*sE7T^lQ zjo6RpIl21uN51kK{Z$p^{9WqQ7zzwh>#!0C@|VpQNjTi)^WwF2LCk~mQ6ACZzC)#d zLRo+Y?FrD!1Sr;DF`;zwgvk@Q%1(Js1D%neCxSgDNXx59h2L zmz1=us;IKkS4HO~?1hCqTVdhEq$CXdI7t8#3nWd5{v|<&Xe8X*!7&Vf`6Rp;r}x41 zGH^l$f3+&gOoJ`Ym@s)<`dIJSaY302K0y`g*>nkb31-R+<3|%*bzrrD#9xBpveq&0?$`DG59@yz! zw^Y5cekc^@fX;=gRDh)#ai-EXM0a{n-DcHiiE(^slJzINcG(9zBhDu>Z5V6umM=llu6< zx@r1Y=u_{jXCo6m__SoYbJF|unTbSiKMN7}0cRxY_6$74PG5e71DA#lffJXf4%Cd_ z8QPGaQjdB%@?>9a=>A$=#P2`*D3Nsi_2)oDCr{6T47xd$>YMA5I(r&D$dG!US@5&r zr|ppZu&<#(S;DDJ%2}MDP5&nv@GMU5Kc1|yy0a!byH1ULh>foX^^%9^RhaayWwy)uKQ5Yj}I&EEMx+JAT7)@wfW^dI~*DuCUN|nZdsxgHVvu2187w(sQl_HXrl7R`OV#~X#daju!!ciV3{zUy0ke?5hs zC0C8mH_m_a`QS4gH+-w_vuN(?J-%D$d&gw1=fWq2-oMrN*Hh?Oa^0)zdn(s+yO@7B zeyi`ZXzuGhenIHF;WA;@Lf@_5>ig>{^enla5&Fix89rV<&GA{Xef#(u)_}gBrSISA z`)7JF`t#oQyF$2^_3hvPI~uTBC21*u?uHfuUp5H$r4e=j-!T~Xz!0tnesl=xg!_la zyNz@Y@(Ua8%^;m{`uVtvjWFT0fP93jfeTXr2oo+Hjw_Q0R|2Pur6Bi(T{;~wKXNGE(Lpc7%^T}Ha&xRhR!z)lI* z0fr!qb&-^ddyAHc~UVZxsRY7sWxKQ!J=q&tfhlc7h@ z5T^U<&mm0sLBPuhV=g8AYAWQXFz~&XL4JfW21yrP4&JzvXS`QvymLr*58s@Q=b#}> z_qlTsCfpx)ua+Qeyl-f{Q%H9U!!vOQ4m5;+4roBQ0r*P**#-`LO4kB*ARX_NqzIr9 z;dXD?|5ym?z={dk%2sZ-LKkV3ma0W2eTT&y!?Z96GRD|hXdOm>i5-zzG_Kffv z!hno>IUac(+74km@JayLXCd%i0IDP5k^cUw*b!}{0{JzLew2$!oLDgS#7`_ zB76*ZOc75{1HM*-34d3F>2CNo5hnbk2>%v%2=4h&A0(U$ApV4xi!kB)0VL-`z>{#l zkHQ(it$;s5Hp0h5I$;~mK@&|HFrC)_H)!aiP&)vmTf+GF2UxfhcpGko4A{o+QVv_g zWf%dx7Lbl~{2K+*0{}b1_;(7}oyjzW>Fy-miA)23!gL>!!i4EgBZUdmy~M{5CcGT* zPlUhy`#+%plazvD0oAdk*OisF@C=l?Kttwq_2ZQp! zjIp7r^63G56s)W$Frm!vt*QuAlmzi_1(Z!M3Y1N}aq?LDnv%Z+=jgBE|IPz1jaW_6 zc_DHd8UI%&Rr2pU)IYfO!G;GPeQ?KvjSr?gWPgZS+6u+2*H~PJGSrI z-nzYQ`@!w%_Rj4mwo8qSC7g$~A*I1?;JUn_uwiS%j)sE`?G0)}XM=Qq;{De9Q|`Cl zpLT!7{f_(P`}6NFynojNjSsXw(Dp#uLm3ZcJ>+<3>%$EXKl<>FhZ7&MK9cf?{gHK# zRzJGs(fUW#Uv~cT#4n})TK=oTU#hslej@(~E?MJtsSRU4 a>Y|sk<$?MKwmx8eh;+eAz{CF^{{4SLFeT3b literal 0 HcmV?d00001 diff --git a/sandy/errorr.py b/sandy/errorr.py index b2bbc394..a81c21b1 100644 --- a/sandy/errorr.py +++ b/sandy/errorr.py @@ -123,12 +123,12 @@ def get_xs(self, **kwargs): listmt_ = [listmt_] if isinstance(listmt_, int) else listmt_ listmat_ = kwargs.get('mat', range(1, 10000)) listmat_ = [listmat_] if isinstance(listmat_, int) else listmat_ - for mat, mf, mt in self.filter_by(listmf=[3], + for mat, mf, mt in self.filter_by(listmf=[3, 5], listmt=listmt_, listmat=listmat_).data: mf1 = sandy.errorr.read_mf1(self, mat) egn = pd.IntervalIndex.from_breaks(mf1["EG"]) - mf3 = sandy.errorr.read_mf3(self, mat, mt) + mf3 = sandy.errorr.read_mf3(self, mat, mf, mt) columns = pd.MultiIndex.from_tuples([(mat, mt)], names=["MAT", "MT"]) index = pd.Index(egn, name="E") @@ -178,10 +178,10 @@ def get_cov(self, multigroup=True, mt=None): eg = pd.IntervalIndex.from_breaks(eg) data = [] - for mat_, mf_, mt_ in self.filter_by(listmf=[31, 33]).data: + for mat_, mf_, mt_ in self.filter_by(listmf=[31, 33, 35]).data: if mt and mt_ not in mt: continue - mf33 = sandy.errorr.read_mf33(self, mat_, mt_) + mf33 = sandy.errorr.read_mf33(self, mat_, mf_, mt_) for mt1, cov in mf33["COVS"].items(): if mt and mt1 not in mt: @@ -256,7 +256,7 @@ def read_mf1(tape, mat): return out -def read_mf3(tape, mat, mt): +def read_mf3(tape, mat, mf, mt): """ Parse MAT/MF=33/MT section from `sandy.Errorr` object and return structured content in nested dcitionaries. @@ -275,7 +275,6 @@ def read_mf3(tape, mat, mt): out : `dict` Content of the ENDF-6 tape structured as nested `dict`. """ - mf = 3 df = tape._get_section_df(mat, mf, mt) out = { "MAT": mat, @@ -291,7 +290,7 @@ def read_mf3(tape, mat, mt): return out -def read_mf33(tape, mat, mt): +def read_mf33(tape, mat, mf, mt): """ Parse MAT/MF=33/MT section from `sandy.Errorr` object and return structured content in nested dcitionaries. @@ -310,7 +309,6 @@ def read_mf33(tape, mat, mt): out : `dict` Content of the ENDF-6 tape structured as nested `dict`. """ - mf = 33 df = tape._get_section_df(mat, mf, mt) out = { "MAT": mat, @@ -328,7 +326,7 @@ def read_mf33(tape, mat, mt): for rp in range(C.N2): # number of reaction pairs C, i = sandy.read_cont(df, i) MT1 = C.L2 - NG = C.N2 + NG = C.N2 M = np.zeros((NG, NG)) while True: L, i = sandy.read_list(df, i) From 84ce2f694a61fb06c8207776fff40e07e872d3a8 Mon Sep 17 00:00:00 2001 From: Barone Luigi Date: Wed, 10 May 2023 16:51:07 +0200 Subject: [PATCH 11/17] Comments added --- sandy/errorr.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/sandy/errorr.py b/sandy/errorr.py index a81c21b1..88030d88 100644 --- a/sandy/errorr.py +++ b/sandy/errorr.py @@ -325,16 +325,16 @@ def read_mf33(tape, mat, mf, mt): reaction_pairs = {} for rp in range(C.N2): # number of reaction pairs C, i = sandy.read_cont(df, i) - MT1 = C.L2 - NG = C.N2 + MT1 = C.L2 # Second reaction MT + NG = C.N2 # Number of rows (first reaction) in matrix M M = np.zeros((NG, NG)) while True: L, i = sandy.read_list(df, i) - NGCOL = L.L1 - GROW = L.N2 - GCOL = L.L2 - M[GROW-1, GCOL-1:GCOL+NGCOL-1] = L.B - if GCOL+NGCOL >= NG and GROW >= NG: + NGCOL = L.L1 # Number of columns (second reaction) in matrix M with non zero-values + GROW = L.N2 # Starting point for rows in matrix M + GCOL = L.L2 # Starting point for columns in matrix M + M[GROW-1, GCOL-1:GCOL+NGCOL-1] = L.B # List values added to NGROW row + if GCOL+NGCOL >= NG and GROW >= NG: # if both 1st and 2nd reaction contain data for all the groups (or it could not work) break reaction_pairs[MT1] = M out["COVS"] = reaction_pairs From 8bdf93f7619f6598e86380a331451164eda5f578 Mon Sep 17 00:00:00 2001 From: Barone Luigi Date: Thu, 11 May 2023 09:44:30 +0200 Subject: [PATCH 12/17] Input for specific incident energy --- sandy/njoy.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/sandy/njoy.py b/sandy/njoy.py index 50382713..c37594b4 100644 --- a/sandy/njoy.py +++ b/sandy/njoy.py @@ -576,7 +576,7 @@ def _acer_input(endfin, pendfin, aceout, dirout, mat, def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, ign=2, ek=None, spectrum=None, iwt=2, relative=True, - mt=None, irespr=1, + mt=None, irespr=1, ifissp=-1, efmean = None, temperature=NJOY_TEMPERATURES[0], mfcov=33, iprint=False, **kwargs): @@ -748,7 +748,10 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, printflag = int(iprint) text += [f"{mat:d} {ign_:d} {iwt_:d} {printflag:d} {irelco} /"] text += [f"{printflag:d} {temperature:.1f} /"] - text += [f"{iread:d} {mfcov} {irespr:d}/"] + if efmean: + text += [f"{iread:d} {mfcov} {irespr:d} 1 {ifissp} {efmean} /"] + else: + text += [f"{iread:d} {mfcov} {irespr:d}/"] if iread == 1: # only specific mts mtlist = [mt] if isinstance(mt, int) else mt nmt = len(mtlist) From b457c75258c8c4f09737f126b438c838ebfaed54 Mon Sep 17 00:00:00 2001 From: Barone Luigi Date: Thu, 11 May 2023 09:58:31 +0200 Subject: [PATCH 13/17] Test for efmean for mf 35 --- sandy/njoy.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/sandy/njoy.py b/sandy/njoy.py index c37594b4..7bcbffca 100644 --- a/sandy/njoy.py +++ b/sandy/njoy.py @@ -737,7 +737,15 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 0 293.6 / 1 33 1/ 1 0 / - 2 / + 2 / + + Test specific incident energy (1e6 eV) for ERRORR input + >>> print(sandy.njoy._errorr_input(-21, 0, -39, 35, 9228, efmean=1e6)) + errorr + -21 0 -39 35 0 / + 9228 2 2 0 1 / + 0 293.6 / + 0 33 1 1 -1 1000000.0 / """ irelco = 0 if relative is False else 1 iread = 1 if (mt is not None and mfcov == 33) else 0 @@ -749,7 +757,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, text += [f"{mat:d} {ign_:d} {iwt_:d} {printflag:d} {irelco} /"] text += [f"{printflag:d} {temperature:.1f} /"] if efmean: - text += [f"{iread:d} {mfcov} {irespr:d} 1 {ifissp} {efmean} /"] + text += [f"{iread:d} {mfcov} {irespr:d} 1 {ifissp} {efmean} /"] # Default for legord is one else: text += [f"{iread:d} {mfcov} {irespr:d}/"] if iread == 1: # only specific mts From 172204700389ba48e5ec32d60845bcbb7189a281 Mon Sep 17 00:00:00 2001 From: Barone Luigi Date: Thu, 11 May 2023 12:01:46 +0200 Subject: [PATCH 14/17] test for chi covariance matrix added --- sandy/errorr.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/sandy/errorr.py b/sandy/errorr.py index 88030d88..4e3386fc 100644 --- a/sandy/errorr.py +++ b/sandy/errorr.py @@ -148,6 +148,7 @@ def get_cov(self, multigroup=True, mt=None): Examples -------- + Test for xs covariance matrix >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> err = e6.get_errorr(errorr_kws=dict(ek=[1e-2, 1e1, 2e7]), err=1)['errorr33'] >>> datamg = err.get_cov().data @@ -162,6 +163,20 @@ def get_cov(self, multigroup=True, mt=None): (10.0, 20000000.0] 4.62566e-05 2.47650e-04 4.63327e-05 2.47655e-04 0.00000e+00 0.00000e+00 102 (0.01, 10.0] 1.07035e-06 7.58742e-09 0.00000e+00 0.00000e+00 6.51764e-04 3.40163e-04 (10.0, 20000000.0] 5.58627e-07 1.49541e-06 0.00000e+00 0.00000e+00 3.40163e-04 6.70431e-02 + + Test for chi covariance matrix + >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 922350) + >>> err = e6.get_errorr(errorr_kws=dict(ek=[1e-2, 1e1, 1e3, 1e5, 1.5e7]), err=1)['errorr35'] + >>> datamg = err.get_cov().data + >>> datamg + MAT1 9228 + MT1 18 + E1 (0.01, 10.0] (10.0, 1000.0] (1000.0, 100000.0] (100000.0, 15000000.0] + MAT MT E + 9228 18 (0.01, 10.0] 1.40033e-01 1.22734e-01 2.53846e-01 -3.65421e-02 + (10.0, 1000.0] 1.22734e-01 1.07572e-01 2.22490e-01 -3.20279e-02 + (1000.0, 100000.0] 2.53846e-01 2.22490e-01 4.60196e-01 -6.62479e-02 + (100000.0, 15000000.0] -3.65421e-02 -3.20279e-02 -6.62479e-02 9.54612e-03 >>> data = err.get_cov(multigroup=False).data >>> np.testing.assert_array_equal( From 7b4b45e6420c851ed4d6b448a6c7c29352dc3b1d Mon Sep 17 00:00:00 2001 From: Barone Luigi Date: Thu, 11 May 2023 12:32:26 +0200 Subject: [PATCH 15/17] Test for chi data added --- sandy/errorr.py | 21 ++++++++++++++++++++- 1 file changed, 20 insertions(+), 1 deletion(-) diff --git a/sandy/errorr.py b/sandy/errorr.py index 4e3386fc..e069575a 100644 --- a/sandy/errorr.py +++ b/sandy/errorr.py @@ -64,6 +64,7 @@ def get_xs(self, **kwargs): Examples -------- + Test for xs >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> ek = sandy.energy_grids.CASMO12 >>> err = e6.get_errorr(err=1, errorr_kws=dict(ek=ek))['errorr33'] @@ -117,6 +118,24 @@ def get_xs(self, **kwargs): (5530.0, 821000.0] 8.05810e+00 (821000.0, 2231000.0] 3.48867e+00 (2231000.0, 10000000.0] 1.52409e+00 + + Test for chi + >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 922350) + >>> ek = [2e-5, 0.058, 0.28, 0.625, 4.0, 48.052, 5530, 8.21e5, 2.23e6, 1e7] + >>> err = e6.get_errorr(err=1, errorr_kws=dict(ek=ek))['errorr35'] + >>> err.get_xs() + MAT 9228 + MT 18 + E + (2e-05, 0.058] 1.10121e-10 + (0.058, 0.28] 1.10121e-10 + (0.28, 0.625] 1.05356e-10 + (0.625, 4.0] 3.35715e-10 + (4.0, 48.052] 1.55325e-08 + (48.052, 5530.0] 7.49925e-06 + (5530.0, 821000.0] 5.85238e-03 + (821000.0, 2230000.0] 1.72394e-02 + (2230000.0, 10000000.0] 6.29781e-03 """ data = [] listmt_ = kwargs.get('mt', range(1, 10000)) @@ -163,7 +182,7 @@ def get_cov(self, multigroup=True, mt=None): (10.0, 20000000.0] 4.62566e-05 2.47650e-04 4.63327e-05 2.47655e-04 0.00000e+00 0.00000e+00 102 (0.01, 10.0] 1.07035e-06 7.58742e-09 0.00000e+00 0.00000e+00 6.51764e-04 3.40163e-04 (10.0, 20000000.0] 5.58627e-07 1.49541e-06 0.00000e+00 0.00000e+00 3.40163e-04 6.70431e-02 - + Test for chi covariance matrix >>> e6 = sandy.get_endf6_file("jeff_33", "xs", 922350) >>> err = e6.get_errorr(errorr_kws=dict(ek=[1e-2, 1e1, 1e3, 1e5, 1.5e7]), err=1)['errorr35'] From 5a05d45184ae8be7a1fedb123742719aa9cf408c Mon Sep 17 00:00:00 2001 From: Barone Luigi Date: Thu, 11 May 2023 16:48:18 +0200 Subject: [PATCH 16/17] Option to use ifissp without incident mean energy --- sandy/njoy.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sandy/njoy.py b/sandy/njoy.py index 7bcbffca..35f47f84 100644 --- a/sandy/njoy.py +++ b/sandy/njoy.py @@ -759,7 +759,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, if efmean: text += [f"{iread:d} {mfcov} {irespr:d} 1 {ifissp} {efmean} /"] # Default for legord is one else: - text += [f"{iread:d} {mfcov} {irespr:d}/"] + text += [f"{iread:d} {mfcov} {irespr:d} 1 {ifissp} /"] if iread == 1: # only specific mts mtlist = [mt] if isinstance(mt, int) else mt nmt = len(mtlist) From b6b3d5f0a082e1847aaeb5a9276979eea22c5f80 Mon Sep 17 00:00:00 2001 From: Barone Luigi Date: Fri, 12 May 2023 09:39:39 +0200 Subject: [PATCH 17/17] Better approach to efmean plus relative test and info added --- sandy/njoy.py | 55 +++++++++++++++++++++++++++++++++++++-------------- 1 file changed, 40 insertions(+), 15 deletions(-) diff --git a/sandy/njoy.py b/sandy/njoy.py index 35f47f84..34b9ec9e 100644 --- a/sandy/njoy.py +++ b/sandy/njoy.py @@ -576,7 +576,7 @@ def _acer_input(endfin, pendfin, aceout, dirout, mat, def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, ign=2, ek=None, spectrum=None, iwt=2, relative=True, - mt=None, irespr=1, ifissp=-1, efmean = None, + mt=None, irespr=1, ifissp=-1, efmean=None, temperature=NJOY_TEMPERATURES[0], mfcov=33, iprint=False, **kwargs): @@ -608,6 +608,15 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, irespr: `int`, optional processing for resonance parameter covariances (default is 1, 1% sensitivity method) + ifissp: `int`, subsection of the fission spectrum covariance + matrix to process. + efmean: incident neutron energy (eV). Process the covar- + iance matrix subsection whose energy interval in- + cludes efmean. But if there is only + one subsection, process it and if the input efmean + was not within this subsection’s energy range then + redefine efmean to equal the average energy for + this subsection. iwt : `int`, optional weight function option (default is 2, constant) @@ -643,7 +652,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 2 0 1 / 0 293.6 / - 0 33 1/ + 0 33 1 1 -1 / Test argument `temperature` >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9440, temperature=600)) @@ -651,7 +660,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9440 2 2 0 1 / 0 600.0 / - 0 33 1/ + 0 33 1 1 -1 / Test argument `iwt` >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, iwt=6)) @@ -659,7 +668,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 6 0 1 / 0 293.6 / - 0 33 1/ + 0 33 1 1 -1 / Test argument `ek` >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, ek=[1e-2, 1e3, 2e5])) @@ -667,7 +676,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 1 2 0 1 / 0 293.6 / - 0 33 1/ + 0 33 1 1 -1 / 2 / 1.00000e-02 1.00000e+03 2.00000e+05 / @@ -677,7 +686,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 3 2 0 1 / 0 293.6 / - 0 33 1/ + 0 33 1 1 -1 / Test nubar >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, mfcov=31)) @@ -685,7 +694,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 2 0 1 / 0 293.6 / - 0 31 1/ + 0 31 1 1 -1 / Test mubar >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, mfcov=34)) @@ -693,7 +702,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 2 0 1 / 0 293.6 / - 0 34 1/ + 0 34 1 1 -1 / Test chi >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, mfcov=35)) @@ -701,7 +710,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 2 0 1 / 0 293.6 / - 0 35 1/ + 0 35 1 1 -1 / Test keyword `relative` >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, relative=False)) @@ -709,7 +718,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 2 0 0 / 0 293.6 / - 0 33 1/ + 0 33 1 1 -1 / Test keyword `irespr` >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, irespr=1)) @@ -717,7 +726,7 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 2 0 1 / 0 293.6 / - 0 33 1/ + 0 33 1 1 -1 / Test keyword `mt` as `list` >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, mt=[1, 2])) @@ -725,9 +734,9 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 2 0 1 / 0 293.6 / - 1 33 1/ + 1 33 1 1 -1 / 2 0 / - 1 2 / + 1 2 / Test keyword `mt` as `int`: >>> print(sandy.njoy._errorr_input(20, 21, 0, 22, 9237, mt=2)) @@ -735,9 +744,9 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 20 21 0 22 0 / 9237 2 2 0 1 / 0 293.6 / - 1 33 1/ + 1 33 1 1 -1 / 1 0 / - 2 / + 2 / Test specific incident energy (1e6 eV) for ERRORR input >>> print(sandy.njoy._errorr_input(-21, 0, -39, 35, 9228, efmean=1e6)) @@ -746,6 +755,22 @@ def _errorr_input(endfin, pendfin, gendfin, errorrout, mat, 9228 2 2 0 1 / 0 293.6 / 0 33 1 1 -1 1000000.0 / + + Test ifissp without mean energy + >>> print(sandy.njoy._errorr_input(-21, 0, -39, 35, 9228, ifissp=1)) + errorr + -21 0 -39 35 0 / + 9228 2 2 0 1 / + 0 293.6 / + 0 33 1 1 1 / + + Test with both efmean and ifissp + >>> print(sandy.njoy._errorr_input(-21, 0, -39, 35, 9228, ifissp=1, efmean=1e5)) + errorr + -21 0 -39 35 0 / + 9228 2 2 0 1 / + 0 293.6 / + 0 33 1 1 1 100000.0 / """ irelco = 0 if relative is False else 1 iread = 1 if (mt is not None and mfcov == 33) else 0