-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_faster_rcnn.py
847 lines (798 loc) · 27.6 KB
/
train_faster_rcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
"""Train Faster-RCNN end to end."""
import argparse
import os
# disable autotune
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
import logging
import time
import gluoncv as gcv
import mxnet as mx
import numpy as np
from data import *
from gluoncv import data as gdata
from gluoncv import utils as gutils
from gluoncv.data.batchify import Append, FasterRCNNTrainBatchify, Tuple
from gluoncv.data.transforms.presets.rcnn import (
FasterRCNNDefaultTrainTransform, FasterRCNNDefaultValTransform)
from gluoncv.model_zoo import get_model
from gluoncv.utils.metrics.coco_detection import COCODetectionMetric
from gluoncv.utils.metrics.rcnn import (RCNNAccMetric, RCNNL1LossMetric,
RPNAccMetric, RPNL1LossMetric)
from gluoncv.utils.metrics.voc_detection import VOC07MApMetric
from gluoncv.utils.parallel import Parallel, Parallelizable
from model import (faster_rcnn_resnet50_v1b_custom,
faster_rcnn_resnet101_v1d_custom)
from mxnet import autograd, gluon
from mxnet.contrib import amp
try:
import horovod.mxnet as hvd
except ImportError:
hvd = None
def parse_args():
parser = argparse.ArgumentParser(
description="Train Faster-RCNN networks e2e."
)
parser.add_argument(
"--network",
type=str,
default="resnet101_v1d",
help="Base network name which serves as feature extraction base.",
)
parser.add_argument(
"--dataset",
type=str,
default="visualgenome",
help="Training dataset. Now support voc and coco.",
)
parser.add_argument(
"--num-workers",
"-j",
dest="num_workers",
type=int,
default=8,
help="Number of data workers, you can use larger "
"number to accelerate data loading, "
"if your CPU and GPUs are powerful.",
)
parser.add_argument(
"--batch-size", type=int, default=8, help="Training mini-batch size."
)
parser.add_argument(
"--gpus",
type=str,
default="0",
help="Training with GPUs, you can specify 1,3 for example.",
)
parser.add_argument(
"--epochs", type=str, default="", help="Training epochs."
)
parser.add_argument(
"--resume",
type=str,
default="",
help="Resume from previously saved parameters if not None. "
"For example, you can resume from ./faster_rcnn_xxx_0123.params",
)
parser.add_argument(
"--start-epoch",
type=int,
default=0,
help="Starting epoch for resuming, default is 0 for new training."
"You can specify it to 100 for example to start from 100 epoch.",
)
parser.add_argument(
"--lr",
type=str,
default="",
help="Learning rate, default is 0.001 for voc single gpu training.",
)
parser.add_argument(
"--lr-decay",
type=float,
default=0.1,
help="decay rate of learning rate. default is 0.1.",
)
parser.add_argument(
"--lr-decay-epoch",
type=str,
default="",
help="epochs at which learning rate decays. default is 14,20 for voc.",
)
parser.add_argument(
"--lr-warmup",
type=str,
default="",
help="warmup iterations to adjust learning rate, default is 0 for voc.",
)
parser.add_argument(
"--lr-warmup-factor",
type=float,
default=1.0 / 3.0,
help="warmup factor of base lr.",
)
parser.add_argument(
"--momentum",
type=float,
default=0.9,
help="SGD momentum, default is 0.9",
)
parser.add_argument(
"--wd",
type=str,
default="",
help="Weight decay, default is 5e-4 for voc",
)
parser.add_argument(
"--log-interval",
type=int,
default=100,
help="Logging mini-batch interval. Default is 100.",
)
parser.add_argument(
"--save-prefix", type=str, default="", help="Saving parameter prefix"
)
parser.add_argument(
"--save-interval",
type=int,
default=1,
help="Saving parameters epoch interval, best model will always be saved.",
)
parser.add_argument(
"--val-interval",
type=int,
default=1,
help="Epoch interval for validation, increase the number will reduce the "
"training time if validation is slow.",
)
parser.add_argument(
"--seed", type=int, default=233, help="Random seed to be fixed."
)
parser.add_argument(
"--verbose",
dest="verbose",
action="store_true",
help="Print helpful debugging info once set.",
)
parser.add_argument(
"--mixup", action="store_true", help="Use mixup training."
)
parser.add_argument(
"--no-mixup-epochs",
type=int,
default=20,
help="Disable mixup training if enabled in the last N epochs.",
)
# Norm layer options
parser.add_argument(
"--norm-layer",
type=str,
default=None,
help="Type of normalization layer to use. "
"If set to None, backbone normalization layer will be fixed,"
" and no normalization layer will be used. "
"Currently supports 'bn', and None, default is None."
"Note that if horovod is enabled, sync bn will not work correctly.",
)
# FPN options
parser.add_argument(
"--use-fpn",
action="store_true",
help="Whether to use feature pyramid network.",
)
# Performance options
parser.add_argument(
"--disable-hybridization",
action="store_true",
help="Whether to disable hybridize the model. "
"Memory usage and speed will decrese.",
)
parser.add_argument(
"--static-alloc",
action="store_true",
help="Whether to use static memory allocation. Memory usage will increase.",
)
parser.add_argument(
"--amp",
action="store_true",
help="Use MXNet AMP for mixed precision training.",
)
parser.add_argument(
"--horovod",
action="store_true",
help="Use MXNet Horovod for distributed training. Must be run with OpenMPI. "
"--gpus is ignored when using --horovod.",
)
parser.add_argument(
"--executor-threads",
type=int,
default=1,
help="Number of threads for executor for scheduling ops. "
"More threads may incur higher GPU memory footprint, "
"but may speed up throughput. Note that when horovod is used, "
"it is set to 1.",
)
parser.add_argument(
"--kv-store",
type=str,
default="nccl",
help="KV store options. local, device, nccl, dist_sync, dist_device_sync, "
"dist_async are available.",
)
args = parser.parse_args()
if args.horovod:
if hvd is None:
raise SystemExit(
"Horovod not found, please check if you installed it correctly."
)
hvd.init()
if args.dataset == "voc":
args.epochs = int(args.epochs) if args.epochs else 20
args.lr_decay_epoch = (
args.lr_decay_epoch if args.lr_decay_epoch else "14,20"
)
args.lr = float(args.lr) if args.lr else 0.001
args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
args.wd = float(args.wd) if args.wd else 5e-4
elif args.dataset == "visualgenome":
args.epochs = int(args.epochs) if args.epochs else 20
args.lr_decay_epoch = (
args.lr_decay_epoch if args.lr_decay_epoch else "14,20"
)
args.lr = float(args.lr) if args.lr else 0.001
args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
args.wd = float(args.wd) if args.wd else 5e-4
elif args.dataset == "coco":
args.epochs = int(args.epochs) if args.epochs else 26
args.lr_decay_epoch = (
args.lr_decay_epoch if args.lr_decay_epoch else "17,23"
)
args.lr = float(args.lr) if args.lr else 0.01
args.lr_warmup = args.lr_warmup if args.lr_warmup else 1000
args.wd = float(args.wd) if args.wd else 1e-4
return args
def get_dataset(dataset, args):
if dataset.lower() == "voc":
train_dataset = gdata.VOCDetection(
splits=[(2007, "trainval"), (2012, "trainval")]
)
val_dataset = gdata.VOCDetection(splits=[(2007, "test")])
val_metric = VOC07MApMetric(
iou_thresh=0.5, class_names=val_dataset.classes
)
elif dataset.lower() == "coco":
train_dataset = gdata.COCODetection(
splits="instances_train2017", use_crowd=False
)
val_dataset = gdata.COCODetection(
splits="instances_val2017", skip_empty=False
)
val_metric = COCODetectionMetric(
val_dataset, args.save_prefix + "_eval", cleanup=True
)
elif dataset.lower() == "visualgenome":
train_dataset = VGObject(
root=os.path.join("~", ".mxnet", "datasets", "visualgenome"),
splits="detections_train",
use_crowd=False,
)
val_dataset = VGObject(
root=os.path.join("~", ".mxnet", "datasets", "visualgenome"),
splits="detections_val",
skip_empty=False,
)
val_metric = COCODetectionMetric(
val_dataset, args.save_prefix + "_eval", cleanup=True
)
else:
raise NotImplementedError(
"Dataset: {} not implemented.".format(dataset)
)
if args.mixup:
from gluoncv.data.mixup import detection
train_dataset = detection.MixupDetection(train_dataset)
return train_dataset, val_dataset, val_metric
def get_dataloader(
net,
train_dataset,
val_dataset,
train_transform,
val_transform,
batch_size,
num_shards,
args,
):
"""Get dataloader."""
train_bfn = FasterRCNNTrainBatchify(net, num_shards)
if hasattr(train_dataset, "get_im_aspect_ratio"):
im_aspect_ratio = train_dataset.get_im_aspect_ratio()
else:
im_aspect_ratio = [1.0] * len(train_dataset)
train_sampler = gcv.nn.sampler.SplitSortedBucketSampler(
im_aspect_ratio,
batch_size,
num_parts=hvd.size() if args.horovod else 1,
part_index=hvd.rank() if args.horovod else 0,
shuffle=True,
)
train_loader = mx.gluon.data.DataLoader(
train_dataset.transform(
train_transform(
net.short,
net.max_size,
net,
ashape=net.ashape,
multi_stage=args.use_fpn,
)
),
batch_sampler=train_sampler,
batchify_fn=train_bfn,
num_workers=args.num_workers,
)
if val_dataset is None:
val_loader = None
else:
val_bfn = Tuple(*[Append() for _ in range(3)])
short = (
net.short[-1] if isinstance(net.short, (tuple, list)) else net.short
)
# validation use 1 sample per device
val_loader = mx.gluon.data.DataLoader(
val_dataset.transform(val_transform(short, net.max_size)),
num_shards,
False,
batchify_fn=val_bfn,
last_batch="keep",
num_workers=args.num_workers,
)
return train_loader, val_loader
def save_params(
net, logger, best_map, current_map, epoch, save_interval, prefix
):
current_map = float(current_map)
if current_map > best_map[0]:
logger.info(
"[Epoch {}] mAP {} higher than current best {} saving to {}".format(
epoch, current_map, best_map, "{:s}_best.params".format(prefix)
)
)
best_map[0] = current_map
net.save_parameters("{:s}_best.params".format(prefix))
with open(prefix + "_best_map.log", "a") as f:
f.write("{:04d}:\t{:.4f}\n".format(epoch, current_map))
if save_interval and (epoch + 1) % save_interval == 0:
logger.info(
"[Epoch {}] Saving parameters to {}".format(
epoch,
"{:s}_{:04d}_{:.4f}.params".format(prefix, epoch, current_map),
)
)
net.save_parameters(
"{:s}_{:04d}_{:.4f}.params".format(prefix, epoch, current_map)
)
def split_and_load(batch, ctx_list):
"""Split data to 1 batch each device."""
new_batch = []
for i, data in enumerate(batch):
if isinstance(data, (list, tuple)):
new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)]
else:
new_data = [data.as_in_context(ctx_list[0])]
new_batch.append(new_data)
return new_batch
def validate(net, val_data, ctx, eval_metric, args):
"""Test on validation dataset."""
clipper = gcv.nn.bbox.BBoxClipToImage()
eval_metric.reset()
if not args.disable_hybridization:
# input format is differnet than training, thus rehybridization is needed.
net.hybridize(static_alloc=args.static_alloc)
for i, batch in enumerate(val_data):
batch = split_and_load(batch, ctx_list=ctx)
det_bboxes = []
det_ids = []
det_scores = []
gt_bboxes = []
gt_ids = []
gt_difficults = []
for x, y, im_scale in zip(*batch):
# get prediction results
ids, scores, bboxes = net(x)
det_ids.append(ids)
det_scores.append(scores)
# clip to image size
det_bboxes.append(clipper(bboxes, x))
# rescale to original resolution
im_scale = im_scale.reshape((-1)).asscalar()
det_bboxes[-1] *= im_scale
# split ground truths
gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5))
gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
gt_bboxes[-1] *= im_scale
gt_difficults.append(
y.slice_axis(axis=-1, begin=5, end=6)
if y.shape[-1] > 5
else None
)
# update metric
for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(
det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults
):
eval_metric.update(
det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff
)
return eval_metric.get()
def get_lr_at_iter(alpha, lr_warmup_factor=1.0 / 3.0):
return lr_warmup_factor * (1 - alpha) + alpha
class ForwardBackwardTask(Parallelizable):
def __init__(
self,
net,
optimizer,
rpn_cls_loss,
rpn_box_loss,
rcnn_cls_loss,
rcnn_box_loss,
mix_ratio,
):
super(ForwardBackwardTask, self).__init__()
self.net = net
self._optimizer = optimizer
self.rpn_cls_loss = rpn_cls_loss
self.rpn_box_loss = rpn_box_loss
self.rcnn_cls_loss = rcnn_cls_loss
self.rcnn_box_loss = rcnn_box_loss
self.mix_ratio = mix_ratio
def forward_backward(self, x):
data, label, rpn_cls_targets, rpn_box_targets, rpn_box_masks = x
with autograd.record():
gt_label = label[:, :, 4:5]
gt_box = label[:, :, :4]
(
cls_pred,
box_pred,
roi,
samples,
matches,
rpn_score,
rpn_box,
anchors,
cls_targets,
box_targets,
box_masks,
_,
) = net(data, gt_box, gt_label)
# losses of rpn
rpn_score = rpn_score.squeeze(axis=-1)
num_rpn_pos = (rpn_cls_targets >= 0).sum()
rpn_loss1 = (
self.rpn_cls_loss(
rpn_score, rpn_cls_targets, rpn_cls_targets >= 0
)
* rpn_cls_targets.size
/ num_rpn_pos
)
rpn_loss2 = (
self.rpn_box_loss(rpn_box, rpn_box_targets, rpn_box_masks)
* rpn_box.size
/ num_rpn_pos
)
# rpn overall loss, use sum rather than average
rpn_loss = rpn_loss1 + rpn_loss2
# losses of rcnn
num_rcnn_pos = (cls_targets >= 0).sum()
rcnn_loss1 = (
self.rcnn_cls_loss(
cls_pred, cls_targets, cls_targets.expand_dims(-1) >= 0
)
* cls_targets.size
/ num_rcnn_pos
)
rcnn_loss2 = (
self.rcnn_box_loss(box_pred, box_targets, box_masks)
* box_pred.size
/ num_rcnn_pos
)
rcnn_loss = rcnn_loss1 + rcnn_loss2
# overall losses
total_loss = (
rpn_loss.sum() * self.mix_ratio
+ rcnn_loss.sum() * self.mix_ratio
)
rpn_loss1_metric = rpn_loss1.mean() * self.mix_ratio
rpn_loss2_metric = rpn_loss2.mean() * self.mix_ratio
rcnn_loss1_metric = rcnn_loss1.mean() * self.mix_ratio
rcnn_loss2_metric = rcnn_loss2.mean() * self.mix_ratio
rpn_acc_metric = [
[rpn_cls_targets, rpn_cls_targets >= 0],
[rpn_score],
]
rpn_l1_loss_metric = [[rpn_box_targets, rpn_box_masks], [rpn_box]]
rcnn_acc_metric = [[cls_targets], [cls_pred]]
rcnn_l1_loss_metric = [[box_targets, box_masks], [box_pred]]
if args.amp:
with amp.scale_loss(
total_loss, self._optimizer
) as scaled_losses:
autograd.backward(scaled_losses)
else:
total_loss.backward()
return (
rpn_loss1_metric,
rpn_loss2_metric,
rcnn_loss1_metric,
rcnn_loss2_metric,
rpn_acc_metric,
rpn_l1_loss_metric,
rcnn_acc_metric,
rcnn_l1_loss_metric,
)
def train(net, train_data, val_data, eval_metric, batch_size, ctx, args):
"""Training pipeline"""
args.kv_store = (
"device" if (args.amp and "nccl" in args.kv_store) else args.kv_store
)
kv = mx.kvstore.create(args.kv_store)
net.collect_params().setattr("grad_req", "null")
net.collect_train_params().setattr("grad_req", "write")
optimizer_params = {
"learning_rate": args.lr,
"wd": args.wd,
"momentum": args.momentum,
}
if args.horovod:
hvd.broadcast_parameters(net.collect_params(), root_rank=0)
trainer = hvd.DistributedTrainer(
net.collect_train_params(), # fix batchnorm, fix first stage, etc...
"sgd",
optimizer_params,
)
else:
trainer = gluon.Trainer(
net.collect_train_params(), # fix batchnorm, fix first stage, etc...
"sgd",
optimizer_params,
update_on_kvstore=(False if args.amp else None),
kvstore=kv,
)
if args.amp:
amp.init_trainer(trainer)
# lr decay policy
lr_decay = float(args.lr_decay)
lr_steps = sorted(
[float(ls) for ls in args.lr_decay_epoch.split(",") if ls.strip()]
)
lr_warmup = float(args.lr_warmup) # avoid int division
# TODO(zhreshold) losses?
rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(
from_sigmoid=False
)
rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1 / 9.0) # == smoothl1
rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
rcnn_box_loss = mx.gluon.loss.HuberLoss() # == smoothl1
metrics = [
mx.metric.Loss("RPN_Conf"),
mx.metric.Loss("RPN_SmoothL1"),
mx.metric.Loss("RCNN_CrossEntropy"),
mx.metric.Loss("RCNN_SmoothL1"),
]
rpn_acc_metric = RPNAccMetric()
rpn_bbox_metric = RPNL1LossMetric()
rcnn_acc_metric = RCNNAccMetric()
rcnn_bbox_metric = RCNNL1LossMetric()
metrics2 = [
rpn_acc_metric,
rpn_bbox_metric,
rcnn_acc_metric,
rcnn_bbox_metric,
]
# set up logger
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
log_file_path = args.save_prefix + "_train.log"
log_dir = os.path.dirname(log_file_path)
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
fh = logging.FileHandler(log_file_path)
logger.addHandler(fh)
logger.info(args)
if args.verbose:
logger.info("Trainable parameters:")
logger.info(net.collect_train_params().keys())
logger.info("Start training from [Epoch {}]".format(args.start_epoch))
best_map = [0]
for epoch in range(args.start_epoch, args.epochs):
mix_ratio = 1.0
if not args.disable_hybridization:
net.hybridize(static_alloc=args.static_alloc)
rcnn_task = ForwardBackwardTask(
net,
trainer,
rpn_cls_loss,
rpn_box_loss,
rcnn_cls_loss,
rcnn_box_loss,
mix_ratio=1.0,
)
executor = (
Parallel(args.executor_threads, rcnn_task)
if not args.horovod
else None
)
if args.mixup:
# TODO(zhreshold) only support evenly mixup now, target generator needs to be modified otherwise
train_data._dataset._data.set_mixup(np.random.uniform, 0.5, 0.5)
mix_ratio = 0.5
if epoch >= args.epochs - args.no_mixup_epochs:
train_data._dataset._data.set_mixup(None)
mix_ratio = 1.0
while lr_steps and epoch >= lr_steps[0]:
new_lr = trainer.learning_rate * lr_decay
lr_steps.pop(0)
trainer.set_learning_rate(new_lr)
logger.info(
"[Epoch {}] Set learning rate to {}".format(epoch, new_lr)
)
for metric in metrics:
metric.reset()
tic = time.time()
btic = time.time()
base_lr = trainer.learning_rate
rcnn_task.mix_ratio = mix_ratio
logger.info("Total Num of Batches: %d" % (len(train_data)))
for i, batch in enumerate(train_data):
if epoch == 0 and i <= lr_warmup:
# adjust based on real percentage
new_lr = base_lr * get_lr_at_iter(
i / lr_warmup, args.lr_warmup_factor
)
if new_lr != trainer.learning_rate:
if i % args.log_interval == 0:
logger.info(
"[Epoch 0 Iteration {}] Set learning rate to {}".format(
i, new_lr
)
)
trainer.set_learning_rate(new_lr)
batch = split_and_load(batch, ctx_list=ctx)
metric_losses = [[] for _ in metrics]
add_losses = [[] for _ in metrics2]
if executor is not None:
for data in zip(*batch):
executor.put(data)
for j in range(len(ctx)):
if executor is not None:
result = executor.get()
else:
result = rcnn_task.forward_backward(list(zip(*batch))[0])
if (not args.horovod) or hvd.rank() == 0:
for k in range(len(metric_losses)):
metric_losses[k].append(result[k])
for k in range(len(add_losses)):
add_losses[k].append(result[len(metric_losses) + k])
for metric, record in zip(metrics, metric_losses):
metric.update(0, record)
for metric, records in zip(metrics2, add_losses):
for pred in records:
metric.update(pred[0], pred[1])
trainer.step(batch_size)
# update metrics
if (
(not args.horovod or hvd.rank() == 0)
and args.log_interval
and not (i + 1) % args.log_interval
):
msg = ",".join(
[
"{}={:.3f}".format(*metric.get())
for metric in metrics + metrics2
]
)
logger.info(
"[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}".format(
epoch,
i,
args.log_interval
* args.batch_size
/ (time.time() - btic),
msg,
)
)
btic = time.time()
if (not args.horovod) or hvd.rank() == 0:
msg = ",".join(
["{}={:.3f}".format(*metric.get()) for metric in metrics]
)
logger.info(
"[Epoch {}] Training cost: {:.3f}, {}".format(
epoch, (time.time() - tic), msg
)
)
if not (epoch + 1) % args.val_interval:
# consider reduce the frequency of validation to save time
if val_data is not None:
map_name, mean_ap = validate(
net, val_data, ctx, eval_metric, args
)
val_msg = "\n".join(
[
"{}={}".format(k, v)
for k, v in zip(map_name, mean_ap)
]
)
logger.info(
"[Epoch {}] Validation: \n{}".format(epoch, val_msg)
)
current_map = float(mean_ap[-1])
else:
current_map = 0
else:
current_map = 0.0
save_params(
net,
logger,
best_map,
current_map,
epoch,
args.save_interval,
args.save_prefix,
)
if __name__ == "__main__":
import sys
sys.setrecursionlimit(1100)
args = parse_args()
# fix seed for mxnet, numpy and python builtin random generator.
gutils.random.seed(args.seed)
if args.amp:
amp.init()
# training contexts
if args.horovod:
ctx = [mx.gpu(hvd.local_rank())]
else:
ctx = [mx.gpu(int(i)) for i in args.gpus.split(",") if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
# network
kwargs = {}
module_list = []
if args.use_fpn:
module_list.append("fpn")
if args.norm_layer is not None:
module_list.append(args.norm_layer)
if args.norm_layer == "bn":
kwargs["num_devices"] = len(args.gpus.split(","))
net_name = "_".join(("faster_rcnn", *module_list, args.network, "custom"))
args.save_prefix += net_name
gutils.makedirs(args.save_prefix)
train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args)
net = faster_rcnn_resnet101_v1d_custom(
classes=train_dataset.classes,
transfer="coco",
pretrained_base=False,
additional_output=False,
per_device_batch_size=args.batch_size // len(ctx),
**kwargs
)
if args.resume.strip():
net.load_parameters(args.resume.strip())
else:
for param in net.collect_params().values():
if param._data is not None:
continue
param.initialize()
net.collect_params().reset_ctx(ctx)
# training data
batch_size = (
args.batch_size // len(ctx) if args.horovod else args.batch_size
)
train_data, val_data = get_dataloader(
net,
train_dataset,
val_dataset,
FasterRCNNDefaultTrainTransform,
FasterRCNNDefaultValTransform,
batch_size,
len(ctx),
args,
)
# training
train(net, train_data, val_data, eval_metric, batch_size, ctx, args)