-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·284 lines (264 loc) · 8.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import argparse
from functools import partial
import numpy as np
import torch
import torch.nn as nn
from dataloading import (METR_LAGraphDataset, METR_LATestDataset,
METR_LATrainDataset, METR_LAValidDataset,
PEMS_BAYGraphDataset, PEMS_BAYTestDataset,
PEMS_BAYTrainDataset, PEMS_BAYValidDataset)
from dcrnn import DiffConv
from gaan import GatedGAT
from model import GraphRNN
from torch.utils.data import DataLoader
from utils import NormalizationLayer, get_learning_rate, masked_mae_loss
import dgl
batch_cnt = [0]
def train(
model,
graph,
dataloader,
optimizer,
scheduler,
normalizer,
loss_fn,
device,
args,
):
total_loss = []
graph = graph.to(device)
model.train()
batch_size = args.batch_size
for i, (x, y) in enumerate(dataloader):
optimizer.zero_grad()
# Padding: Since the diffusion graph is precmputed we need to pad the batch so that
# each batch have same batch size
if x.shape[0] != batch_size:
x_buff = torch.zeros(batch_size, x.shape[1], x.shape[2], x.shape[3])
y_buff = torch.zeros(batch_size, x.shape[1], x.shape[2], x.shape[3])
x_buff[: x.shape[0], :, :, :] = x
x_buff[x.shape[0] :, :, :, :] = x[-1].repeat(
batch_size - x.shape[0], 1, 1, 1
)
y_buff[: x.shape[0], :, :, :] = y
y_buff[x.shape[0] :, :, :, :] = y[-1].repeat(
batch_size - x.shape[0], 1, 1, 1
)
x = x_buff
y = y_buff
# Permute the dimension for shaping
x = x.permute(1, 0, 2, 3)
y = y.permute(1, 0, 2, 3)
x_norm = (
normalizer.normalize(x)
.reshape(x.shape[0], -1, x.shape[3])
.float()
.to(device)
)
y_norm = (
normalizer.normalize(y)
.reshape(x.shape[0], -1, x.shape[3])
.float()
.to(device)
)
y = y.reshape(y.shape[0], -1, y.shape[3]).float().to(device)
batch_graph = dgl.batch([graph] * batch_size)
output = model(batch_graph, x_norm, y_norm, batch_cnt[0], device)
# Denormalization for loss compute
y_pred = normalizer.denormalize(output)
loss = loss_fn(y_pred, y)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
if get_learning_rate(optimizer) > args.minimum_lr:
scheduler.step()
total_loss.append(float(loss))
batch_cnt[0] += 1
print("Batch: ", i)
return np.mean(total_loss)
def eval(model, graph, dataloader, normalizer, loss_fn, device, args):
total_loss = []
graph = graph.to(device)
model.eval()
batch_size = args.batch_size
for i, (x, y) in enumerate(dataloader):
# Padding: Since the diffusion graph is precmputed we need to pad the batch so that
# each batch have same batch size
if x.shape[0] != batch_size:
x_buff = torch.zeros(batch_size, x.shape[1], x.shape[2], x.shape[3])
y_buff = torch.zeros(batch_size, x.shape[1], x.shape[2], x.shape[3])
x_buff[: x.shape[0], :, :, :] = x
x_buff[x.shape[0] :, :, :, :] = x[-1].repeat(
batch_size - x.shape[0], 1, 1, 1
)
y_buff[: x.shape[0], :, :, :] = y
y_buff[x.shape[0] :, :, :, :] = y[-1].repeat(
batch_size - x.shape[0], 1, 1, 1
)
x = x_buff
y = y_buff
# Permute the order of dimension
x = x.permute(1, 0, 2, 3)
y = y.permute(1, 0, 2, 3)
x_norm = (
normalizer.normalize(x)
.reshape(x.shape[0], -1, x.shape[3])
.float()
.to(device)
)
y_norm = (
normalizer.normalize(y)
.reshape(x.shape[0], -1, x.shape[3])
.float()
.to(device)
)
y = y.reshape(x.shape[0], -1, x.shape[3]).to(device)
batch_graph = dgl.batch([graph] * batch_size)
output = model(batch_graph, x_norm, y_norm, i, device)
y_pred = normalizer.denormalize(output)
loss = loss_fn(y_pred, y)
total_loss.append(float(loss))
return np.mean(total_loss)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Define the arguments
parser.add_argument(
"--batch_size",
type=int,
default=64,
help="Size of batch for minibatch Training",
)
parser.add_argument(
"--num_workers",
type=int,
default=0,
help="Number of workers for parallel dataloading",
)
parser.add_argument(
"--model",
type=str,
default="dcrnn",
help="WHich model to use DCRNN vs GaAN",
)
parser.add_argument(
"--gpu", type=int, default=-1, help="GPU indexm -1 for CPU training"
)
parser.add_argument(
"--diffsteps",
type=int,
default=2,
help="Step of constructing the diffusiob matrix",
)
parser.add_argument(
"--num_heads", type=int, default=2, help="Number of multiattention head"
)
parser.add_argument(
"--decay_steps",
type=int,
default=2000,
help="Teacher forcing probability decay ratio",
)
parser.add_argument(
"--lr", type=float, default=0.01, help="Initial learning rate"
)
parser.add_argument(
"--minimum_lr",
type=float,
default=2e-6,
help="Lower bound of learning rate",
)
parser.add_argument(
"--dataset",
type=str,
default="LA",
help="dataset LA for METR_LA; BAY for PEMS_BAY",
)
parser.add_argument(
"--epochs", type=int, default=100, help="Number of epoches for training"
)
parser.add_argument(
"--max_grad_norm",
type=float,
default=5.0,
help="Maximum gradient norm for update parameters",
)
args = parser.parse_args()
# Load the datasets
if args.dataset == "LA":
g = METR_LAGraphDataset()
train_data = METR_LATrainDataset()
test_data = METR_LATestDataset()
valid_data = METR_LAValidDataset()
elif args.dataset == "BAY":
g = PEMS_BAYGraphDataset()
train_data = PEMS_BAYTrainDataset()
test_data = PEMS_BAYTestDataset()
valid_data = PEMS_BAYValidDataset()
if args.gpu == -1:
device = torch.device("cpu")
else:
device = torch.device("cuda:{}".format(args.gpu))
train_loader = DataLoader(
train_data,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
)
valid_loader = DataLoader(
valid_data,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
)
test_loader = DataLoader(
test_data,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
)
normalizer = NormalizationLayer(train_data.mean, train_data.std)
if args.model == "dcrnn":
batch_g = dgl.batch([g] * args.batch_size).to(device)
out_gs, in_gs = DiffConv.attach_graph(batch_g, args.diffsteps)
net = partial(
DiffConv,
k=args.diffsteps,
in_graph_list=in_gs,
out_graph_list=out_gs,
)
elif args.model == "gaan":
net = partial(GatedGAT, map_feats=64, num_heads=args.num_heads)
dcrnn = GraphRNN(
in_feats=2,
out_feats=64,
seq_len=12,
num_layers=2,
net=net,
decay_steps=args.decay_steps,
).to(device)
optimizer = torch.optim.Adam(dcrnn.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99)
loss_fn = masked_mae_loss
for e in range(args.epochs):
train_loss = train(
dcrnn,
g,
train_loader,
optimizer,
scheduler,
normalizer,
loss_fn,
device,
args,
)
valid_loss = eval(
dcrnn, g, valid_loader, normalizer, loss_fn, device, args
)
test_loss = eval(
dcrnn, g, test_loader, normalizer, loss_fn, device, args
)
print(
"Epoch: {} Train Loss: {} Valid Loss: {} Test Loss: {}".format(
e, train_loss, valid_loss, test_loss
)
)