-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_rwkv.py
266 lines (233 loc) · 12.2 KB
/
tensorflow_rwkv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import tensorflow as tf
import numpy as np
import glob
import h5py
import sys
from light import light
from config.Config import Config
from config.VisionConfig import VisionConfig
class RWKVRNNCell(tf.keras.layers.Layer):
def __init__(self, embed_dim = 0, hidden_dim = 0, reg_lambda = 0.0, **kwargs):
#reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).
self.embed_dim = Config.TRUE_LSTM_UNIT_SIZE
self.hidden_dim = Config.TRUE_LSTM_UNIT_SIZE
self.reg_lambda = reg_lambda
self.ln_1 = tf.keras.layers.LayerNormalization(name="ln_1")
self.ln_2 = tf.keras.layers.LayerNormalization(name="ln_2")
self.state_size = [self.embed_dim, self.embed_dim, self.hidden_dim, self.hidden_dim, self.hidden_dim]
self.output_size = self.embed_dim
super().__init__(**kwargs)
def build(self, input_shape):
super().build(input_shape)
self.rwkv_intermidiate_size = Config.RWKV_INTERMIDATE_SIZE
# Time mixing - Mix parameters
self.tm_mix_k = self.add_weight(
shape=(self.embed_dim,),
initializer=tf.keras.initializers.RandomUniform(0.0, 2./self.embed_dim),
constraint=tf.keras.constraints.NonNeg(),
name='tm_mix_k')
self.tm_mix_v = self.add_weight(
shape=(self.embed_dim,),
initializer=tf.keras.initializers.RandomUniform(0.0, 2./self.embed_dim),
constraint=tf.keras.constraints.NonNeg(),
name='tm_mix_v')
self.tm_mix_r = self.add_weight(
shape=(self.embed_dim,),
initializer=tf.keras.initializers.RandomUniform(0.0, (2./self.embed_dim)**0.5),
constraint=tf.keras.constraints.NonNeg(),
name='tm_mix_r')
# Time mixing - KVR layer weights
self.tm_key_weights = self.add_weight(
shape=(self.embed_dim, self.hidden_dim),
initializer='glorot_uniform',
regularizer=tf.keras.regularizers.l2(self.reg_lambda),
name='tm_key_weights')
self.tm_value_weights = self.add_weight(
shape=(self.embed_dim, self.hidden_dim),
initializer='glorot_uniform',
regularizer=tf.keras.regularizers.l2(self.reg_lambda),
name='tm_value_weights')
self.tm_receptance_weights = self.add_weight(
shape=(self.embed_dim, self.hidden_dim),
initializer='glorot_uniform',
regularizer=tf.keras.regularizers.l2(self.reg_lambda),
name='tm_receptance_weights')
# Time mixing - time_decay and time_first
self.time_decay = self.add_weight(
shape=(self.hidden_dim,),
initializer='glorot_uniform',
constraint=tf.keras.constraints.NonNeg(),
name='time_decay')
self.time_first = self.add_weight(
shape=(self.hidden_dim,),
initializer=tf.keras.initializers.RandomUniform(0.0, 0.05),
name='time_first')
# Time mixing - Output layer weights
self.output_weights = self.add_weight(
shape=(self.hidden_dim, self.embed_dim),
initializer='glorot_uniform',
regularizer=tf.keras.regularizers.l2(self.reg_lambda),
name='tm_output_weights')
# Channel mixing - Mix parameters
self.cm_mix_k = self.add_weight(
shape=(self.embed_dim,),
initializer=tf.keras.initializers.RandomUniform(0.0, 2./self.embed_dim),
constraint=tf.keras.constraints.NonNeg(),
name='cm_mix_k')
self.cm_mix_r = self.add_weight(
shape=(self.embed_dim,),
initializer=tf.keras.initializers.RandomUniform(0.0, 2./self.embed_dim),
constraint=tf.keras.constraints.NonNeg(),
name='cm_mix_r')
# Channel mixing - KR layer weights
self.cm_key_weights = self.add_weight(
shape=(self.embed_dim, self.rwkv_intermidiate_size*self.hidden_dim),
initializer='glorot_uniform',
regularizer=tf.keras.regularizers.l2(self.reg_lambda),
name='cm_key_weights')
self.cm_value_weights = self.add_weight(
shape=(self.rwkv_intermidiate_size*self.hidden_dim, self.embed_dim),
initializer='glorot_uniform',
regularizer=tf.keras.regularizers.l2(self.reg_lambda),
name='cm_value_weights')
self.cm_receptance_weights = self.add_weight(
shape=(self.embed_dim, self.embed_dim),
initializer='glorot_uniform',
regularizer=tf.keras.regularizers.l2(self.reg_lambda),
name='cm_receptance_weights')
self.built = True
def get_config(self):
config = {
"embed_dim": self.embed_dim,
"hidden_dim": self.hidden_dim,
"reg_lambda": self.reg_lambda
}
base_config = super().get_config()
config.update(base_config)
return config
def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
if inputs is not None:
batch_size = tf.shape(inputs)[0]
dtype = inputs.dtype
if batch_size is None or dtype is None:
raise ValueError(
"batch_size and dtype cannot be None while constructing initial "
f"state. Received: batch_size={batch_size}, dtype={dtype}")
def create_zeros(unnested_state_size):
flat_dims = tf.TensorShape(unnested_state_size).as_list()
init_state_size = [batch_size] + flat_dims
return tf.zeros(init_state_size, dtype=dtype)
if tf.nest.is_nested(self.state_size):
return list(tf.nest.map_structure(create_zeros, self.state_size))
else:
return list(create_zeros(self.state_size))
def time_mixing(self, inputs, prev_state):
"""Apply time mixing to inputs in RNN mode.
Args:
inputs: Expected shape (B, embed_dim)
prev_state: 5-tuple (inputs_channel_mixing, inputs_time_mixing, num, den, q)
Returns:
rkv: Shape (B, embed_dim)
new_state: 4-tuple (inputs_time_mixing, num, den, q)
"""
# Mix x with the previous timestep to produce xk, xv, xr
# batch_size, hidden_dim = inputs.shape
# prev_state = [torch.zeros( [ batch_size, hidden_dim]) for _ in range(5) ]
prev_state_inputs = tf.expand_dims(prev_state[1], axis=1) # 取下来之后保持维度,方便后面concat
prev_state_num = prev_state[2] # 这是以tuple的形式来保存的
prev_state_den = prev_state[3]
prev_state_q = prev_state[4]
# print("inputs.shape",inputs.shape)
if inputs.shape[1] == 1: #推理时
inputs_shifted = prev_state_inputs
else: #训练时
inputs_shifted = tf.concat([prev_state_inputs, inputs[:, :inputs.shape[1]-1, :]], axis=1)
# xk = inputs * self.tm_mix_k + prev_state_inputs * (1 - self.tm_mix_k) # (B, embed_dim)
# xv = inputs * self.tm_mix_v + prev_state_inputs * (1 - self.tm_mix_v) # (B, embed_dim)
# xr = inputs * self.tm_mix_r + prev_state_inputs * (1 - self.tm_mix_r) # (B, embed_dim)
#这里要有右移操作
xk = inputs * self.tm_mix_k + inputs_shifted * (1 - self.tm_mix_k) # (B, embed_dim)
xv = inputs * self.tm_mix_v + inputs_shifted * (1 - self.tm_mix_v) # (B, embed_dim)
xr = inputs * self.tm_mix_r + inputs_shifted * (1 - self.tm_mix_r) # (B, embed_dim)
# Learn key, value, and receptance from xk, xv, xr
key = xk @ self.tm_key_weights # (B, hidden_dim)
value = xv @ self.tm_value_weights # (B, hidden_dim)
receptance = xr @ self.tm_receptance_weights # (B, hidden_dim)
# Apply activation function to r
sigmoid_receptance = tf.keras.activations.sigmoid(receptance) # (B, hidden_dim)
#############################################################
# 开始计算RWKV
output = [] #tf.zeros_like(key) # 先申请好空间,一个个存进来
debug_mode = False
time_decay = -tf.exp(self.time_decay)
for current_index in range(inputs.shape[1] ): # 序列内循环Config.LSTM_TIME_STEPS
current_key = tf.to_float(key[:, current_index])
current_value = tf.to_float(value[:,current_index])
# wkv computation at time t
max_for_output = tf.math.maximum(prev_state_q, current_key + self.time_first)
e1 = tf.exp(prev_state_q - max_for_output)
e2 = tf.exp(current_key + self.time_first - max_for_output)
numerator = e1 * prev_state_num + e2 * current_value
denominator = e1 * prev_state_den + e2
output .append( tf.cast(numerator / denominator, key.dtype) )
# Update state for next iteration
max_for_state = tf.math.maximum(prev_state_q + time_decay, current_key)
e1 = tf.exp(prev_state_q + time_decay - max_for_state)
e2 = tf.exp(current_key - max_for_state)
prev_state_num = e1 * prev_state_num + e2 * current_value
prev_state_den = e1 * prev_state_den + e2
prev_state_q = max_for_state
wkv = tf.stack(output, axis=1)
###############################################################################
# Compute output
#乘上前面的wkv结果
x = (sigmoid_receptance * wkv) @ self.output_weights # (B, embed_dim)
# 同理,这里也是用 最后一个token 和最后的 那些 num, den, 和q来组成新的状态,传递到下一次计算中
return x, [inputs[:,-1], prev_state_num, prev_state_den, prev_state_q]
def channel_mixing(self, inputs, prev_state):
"""Apply channel mixing to inputs in RNN mode.
Args:
inputs: Expected shape (B, embed_dim)
prev_state: 5-tuple (inputs_channel_mixing, inputs_time_mixing, num, den, q)
Returns:
rkv: Shape (B, embed_dim)
new_state: 1-tuple (inputs_channel_mixing)
"""
# Mix x with the previous timestep to produce xk, xr
# prev_state_inputs, _, _, _, _ = prev_state
# prev_state_inputs = prev_state[:,[0],:] # [0]的写法能保持维度
prev_state_inputs = tf.expand_dims(prev_state[0], axis=1) # 取下来之后保持维度,方便后面concat
if inputs.shape[1] == 1: #推理的时候,如果seq_length=1,那么就直接用之前的token,不用移动了
inputs_shifted = prev_state_inputs
else:
#如果不是推理时,就要右移
inputs_shifted = tf.concat([prev_state_inputs, inputs[:, :inputs.shape[1]-1, :]], axis=1)
print("inputs_1",inputs_shifted.shape)
xk = inputs * self.cm_mix_k + inputs_shifted * (1 - self.cm_mix_k) # (B, embed_dim)
xr = inputs * self.cm_mix_r + inputs_shifted * (1 - self.cm_mix_r) # (B, embed_dim)
# Compute k and r
k = xk @ self.cm_key_weights # (B, 4*embed_dim)
r = xr @ self.cm_receptance_weights # (B, embed_dim)
# Compute rkv
kv = tf.math.square(tf.nn.relu(k)) @ self.cm_value_weights # (B, embed_dim)
# Compute rkv
rkv = tf.math.sigmoid(r) * kv # (B, embed_dim)
return rkv, [inputs[:,-1],] # 这是最后一个token的信息,拿来传递给下一次编码数据的时候,作为上一次的状态
def call(self, inputs, prev_state=None):
"""Apply this layer to inputs in RNN mode.
Args:
inputs: Expected shape (B, embed_dim)
prev_state: 5-tuple (inputs_channel_mixing, inputs_time_mixing, num, den, q)
Returns:
x: Shape (B, embed_dim)
new_state: 5-tuple (inputs_channel_mixing, inputs_time_mixing, num, den, q)
"""
x = inputs # (B, embed_dim)
batch_size, sequence_len, hidden_dim = inputs.get_shape().as_list() # 这个要转化为 list,tf的变量是不能出来的
x_tm, new_state_tm = self.time_mixing(self.ln_1(x), prev_state=prev_state)
x = x + x_tm # (B, embed_dim)
x_cm, new_state_cm = self.channel_mixing(self.ln_2(x), prev_state=prev_state)
x = x + x_cm # (B, embed_dim)
return x, new_state_cm + new_state_tm
def compute_output_shape(self, input_shape):
return input_shape