-
Notifications
You must be signed in to change notification settings - Fork 0
/
q_learning_softmax.py
137 lines (131 loc) · 3.34 KB
/
q_learning_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import sys
import time
from qlearn import train_softmax, test
from bisim_transfer.bisimulation import *
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'--mode',
default='train',
type=str
)
argparser.add_argument(
'--env-name',
default='FourLargeRooms',
type=str
)
argparser.add_argument(
'--alpha',
default=0.2,
type=float
)
argparser.add_argument(
'--epsilon',
default=0.1,
type=float
)
argparser.add_argument(
'--discount',
default=0.99,
type=float
)
argparser.add_argument(
'--temp',
default=1,
type=float
)
argparser.add_argument(
'--num-iters',
default=1000,
type=int
)
argparser.add_argument(
'--num-seeds',
default=10,
type=int
)
argparser.add_argument(
'--policy-dir',
default='saved_qvalues/optimal_qvalues',
type=str
)
argparser.add_argument(
'--transfer',
default='lax',
type=str
)
argparser.add_argument(
'--src-env',
default='FourSmallRooms_11',
type=str
)
argparser.add_argument(
'--tgt-env',
default='FourLargeRooms',
type=str
)
argparser.add_argument(
'--solver',
default='pyemd',
type=str
)
argparser.add_argument(
'--lfp-iters',
default=5,
type=int
)
argparser.add_argument(
'-th',
'--threshold',
default=0.01,
type=float
)
argparser.add_argument(
'-dfk',
'--discount-kd',
default=0.9,
type=float
)
argparser.add_argument(
'-dfr',
'--discount-r',
default=0.1,
type=float
)
argparser.add_argument(
'-ma', '--match-action',
action='store_true',
dest='debug',
help='Match actions with ground truths and generate plots'
)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
args = argparser.parse_args()
if args.transfer == 'basic':
bisimulation = LaxBisimulation(args)
elif args.transfer == 'lax':
bisimulation = LaxBisimulation(args)
elif args.transfer == 'pess':
bisimulation = PessBisimulation(args)
elif args.transfer == 'optimistic':
bisimulation = OptBisimulation(args)
else:
raise ValueError("Provide a valid transfer metric")
start = time.time()
if args.mode == 'train':
if (os.path.isfile('transfer_logs/Dist-sa_' + args.src_env + '_' + args.tgt_env + '.npy')
and os.path.isfile('transfer_logs/Dist-matrix_' + args.src_env + '_' + args.tgt_env + '.npy')):
bisimulation.d_sa_final = np.load('transfer_logs/Dist-sa_' + args.src_env + '_' + args.tgt_env + '.npy')
bisimulation.dist_matrix_final = np.load('transfer_logs/Dist-matrix_' + args.src_env + '_' + args.tgt_env + '.npy')
else:
bisimulation.execute_transfer()
train_softmax.train(bisimulation, args)
else:
test.test(args)
end = time.time()
print ("Time taken: ", end - start)