Skip to content

Latest commit

 

History

History
41 lines (33 loc) · 1.56 KB

README.md

File metadata and controls

41 lines (33 loc) · 1.56 KB

MadNIS 2

Neural Multi-Channel Importance Sampling

Arxiv Code style: black tensorflow PyPi license

This a machine learning framework to perform neural multi-channel importance sampling. It containes modules to construct a machine-learning based Monte Carlo integrator using TensorFlow 2.

Installation

# clone the repository
git clone https://github.com/madgraph-ml/madnis-tf
# then install in dev mode
cd madnis-tf
python setup.py develop

Citation

If you use this code or parts of it, please cite:

@article{Heimel:2022wyj,
author = "Heimel, Theo and Winterhalder, Ramon and Butter, Anja and Isaacson, Joshua and 
Krause, Claudius and Maltoni, Fabio and Mattelaer, Olivier and Plehn, Tilman",
title = "{MadNIS -- Neural Multi-Channel Importance Sampling}",
eprint = "2212.06172",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "IRMP-CP3-22-56, MCNET-22-22, FERMILAB-PUB-22-915-T",
month = "12",
year = "2022"}