forked from Revenue-Academy/Microsimulation_Training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp_usa.py
96 lines (79 loc) · 3.57 KB
/
app_usa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""
app_usa.py illustrates use of pitaxcalc-demo release 1.0.0 (USA version).
USAGE: python app_usa.py > app_usa.res
CHECK: Use your favorite Windows diff utility to confirm that
app_usa.res is the same as the app_usa.out file that is
in the repository.
"""
from taxcalc import *
# use publicly-available CPS input file
recs = Records.cps_constructor()
# specify Calculator object for static analysis of current-law policy
pol = Policy()
calc1 = Calculator(policy=pol, records=recs)
# NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs,
# so we can continue to use pol and recs in this script without any
# concern about side effects from Calculator method calls on calc1.
cyr = 2020
# calculate aggregate current-law income tax liabilities for cyr
calc1.advance_to_year(cyr)
calc1.calc_all()
itax_rev1 = calc1.weighted_total('iitax')
# read JSON reform file and use (the default) static analysis assumptions
reform_filename = './app_usa_reform.json'
params = Calculator.read_json_param_objects(reform=reform_filename,
assump=None)
# specify Calculator object for static analysis of reform policy
pol.implement_reform(params['policy'])
calc2 = Calculator(policy=pol, records=recs)
# calculate reform income tax liabilities for cyr
calc2.advance_to_year(cyr)
calc2.calc_all()
itax_rev2 = calc2.weighted_total('iitax')
# print reform documentation
print('')
print(Calculator.reform_documentation(params))
# print total revenue estimates for cyr
# (estimates in billons of dollars rounded to nearest hundredth of a billion)
print('{}_CLP_itax_rev($B)= {:.2f}'.format(cyr, itax_rev1 * 1e-9))
print('{}_REF_itax_rev($B)= {:.2f}'.format(cyr, itax_rev2 * 1e-9))
print('')
# generate several other standard results tables:
# aggregate diagnostic tables for cyr
clp_diagnostic_table = calc1.diagnostic_table(1)
ref_diagnostic_table = calc2.diagnostic_table(1)
# income-tax distribution for cyr with CLP and REF results side-by-side
dist_table1, dist_table2 = calc1.distribution_tables(calc2, 'weighted_deciles')
assert isinstance(dist_table1, pd.DataFrame)
assert isinstance(dist_table2, pd.DataFrame)
dist_extract = pd.DataFrame()
dist_extract['funits(#m)'] = dist_table1['s006'] * 1e-6
dist_extract['itax1($b)'] = dist_table1['iitax'] * 1e-9
dist_extract['itax2($b)'] = dist_table2['iitax'] * 1e-9
dist_extract['aftertax_inc1($b)'] = dist_table1['aftertax_income'] * 1e-9
dist_extract['aftertax_inc2($b)'] = dist_table2['aftertax_income'] * 1e-9
# income-tax difference table by expanded-income decile for cyr
diff_table = calc1.difference_table(calc2, 'weighted_deciles', 'iitax')
assert isinstance(diff_table, pd.DataFrame)
diff_extract = pd.DataFrame()
dif_colnames = ['count', 'tot_change', 'mean',
'pc_aftertaxinc']
ext_colnames = ['funits(#m)', 'agg_diff($b)', 'mean_diff($)',
'aftertaxinc_diff(%)']
scaling_factors = [1e-6, 1e-9, 1e0, 1e0, 1e0]
for dname, ename, sfactor in zip(dif_colnames, ext_colnames, scaling_factors):
diff_extract[ename] = diff_table[dname] * sfactor
# print table results
print('CLP diagnostic table:')
print(clp_diagnostic_table)
print('')
print('REF diagnostic table:')
print(ref_diagnostic_table)
print('')
title = 'Extract of {} distribution table by baseline expanded-income decile:'
print(title.format(cyr))
print(dist_extract.to_string())
print('')
title = 'Extract of {} income-tax difference table by expanded-income decile:'
print(title.format(cyr))
print(diff_extract.to_string())