-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssocR_tactic.thy
156 lines (123 loc) · 6.23 KB
/
AssocR_tactic.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
(* *********************************************************************
Theory AssocR_tactic.thy is part of a framework for modelling,
verification and transformation of concurrent imperative
programs. Copyright (c) 2021 M. Bortin
The framework is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
For more details see the license agreement (LICENSE) you should have
received along with the framework.
******************************************************************* *)
theory AssocR_tactic
imports ProgCorr
begin
lemma small_step_eqv_seqs :
"\<rho>, \<rho>' \<Turnstile> p \<approx> p' \<Longrightarrow> \<rho>, \<rho>' \<Turnstile> q \<approx> q' \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> p;q \<approx> (p';q')"
apply(simp add: small_step_eqv)
apply clarify
apply(rule conjI)
apply(erule prog_corr_seqs, assumption)+
done
lemma small_step_eqv_conds :
"\<rho>, \<rho>' \<Turnstile> p \<approx> p' \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> q \<approx> q' \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> Cond C p q \<approx> Cond C p' q'"
apply(simp add: small_step_eqv)
apply clarify
apply(rule conjI)
apply(erule prog_corr_conds, assumption, clarsimp)+
done
lemma small_step_eqv_whiles :
"\<rho>, \<rho>' \<Turnstile> p \<approx> p' \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> q \<approx> q' \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> While C I p q \<approx> While C I' p' q'"
apply(simp add: small_step_eqv)
apply clarify
apply(rule conjI)
apply(erule prog_corr_whiles, assumption, clarsimp)+
done
lemma small_step_eqv_parallels' :
"(\<And>i. i < length ps \<Longrightarrow> \<rho>, \<rho>' \<Turnstile> fst (ps ! i) \<approx> fst (ps' ! i)) \<Longrightarrow>
length ps = length ps' \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> Parallel ps \<approx> Parallel ps'"
apply(simp add: small_step_eqv)
apply(rule conjI)
apply(rule prog_corr_parallels', fastforce, assumption)
apply(rule prog_corr_parallels', fastforce, simp)
done
lemma small_step_eqv_parallels2 :
"\<rho>, \<rho>' \<Turnstile> fst p1 \<approx> fst q1 \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> fst p2 \<approx> fst q2 \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> Parallel [p1, p2] \<approx> Parallel [q1, q2]"
by(rule small_step_eqv_parallels', case_tac i, simp+)
lemma small_step_eqv_parallels3 :
"\<rho>, \<rho>' \<Turnstile> fst p1 \<approx> fst q1 \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> fst p2 \<approx> fst q2 \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> fst p3 \<approx> fst q3 \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> Parallel [p1, p2, p3] \<approx> Parallel [q1, q2, q3]"
apply(rule small_step_eqv_parallels', case_tac i, simp+)
apply(rename_tac n, case_tac n, simp+)
done
lemma small_step_eqv_scheme :
"(\<And>i. n \<le> i \<Longrightarrow> i < m \<Longrightarrow> \<rho>, \<rho>' \<Turnstile> fst (f i) \<approx> fst (g i)) \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> Parallel (map f [n..<m]) \<approx> Parallel (map g [n..<m])"
by(rule small_step_eqv_parallels', case_tac i, simp+)
lemma small_step_eqv_substL' :
"\<rho> \<Turnstile> p' \<approx> p \<Longrightarrow> \<rho>, \<rho>' \<Turnstile> p \<sqsupseteq>\<^bsub>r\<^esub> p'' \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> p' \<sqsupseteq>\<^bsub>r\<^esub> p''"
apply(rule small_step_eqv_substL, assumption)
apply(erule small_step_eqv_sym)
done
lemma small_step_eqv_substR' :
"\<rho>' \<Turnstile> p' \<approx> p'' \<Longrightarrow> \<rho>, \<rho>' \<Turnstile> p \<sqsupseteq>\<^bsub>r\<^esub> p'' \<Longrightarrow>
\<rho>, \<rho>' \<Turnstile> p \<sqsupseteq>\<^bsub>r\<^esub> p'"
apply(rule small_step_eqv_substR, assumption)
apply(erule small_step_eqv_sym)
done
lemma RG_subst :
"\<rho> \<Turnstile> p \<approx> p' \<Longrightarrow> \<rho> \<Turnstile> {R, P} p' {Q, G} \<Longrightarrow>
\<rho> \<Turnstile> {R, P} p {Q, G}"
by(simp add: prog_corr_RG_eq)
ML \<open>
fun assoc_entryL_tac ctxt = rt ctxt (@{thm small_step_eqv_substL'})
fun assoc_entryR_tac ctxt = rt ctxt (@{thm small_step_eqv_substR'})
fun assoc_entryRG_tac ctxt = rt ctxt (@{thm RG_subst})
fun assoc_app_tac ctxt i =
FIRST[rt ctxt (@{thm small_step_eqv_trans}) i THEN rt ctxt (@{thm small_step_eqv_seq_assoc}) i,
rt ctxt (@{thm small_step_eqv_seqs}) i,
rt ctxt (@{thm small_step_eqv_whiles}) i,
rt ctxt (@{thm small_step_eqv_conds}) i,
rt ctxt (@{thm small_step_eqv_parallels2}) i,
rt ctxt (@{thm small_step_eqv_parallels3}) i,
rt ctxt (@{thm small_step_eqv_scheme}) i]
fun assocLHS_tac ctxt =
SUBGOAL (fn (_, i) => assoc_entryL_tac ctxt i
THEN REPEAT_ALL_NEW (assoc_app_tac ctxt) i THEN TRYALL (rt ctxt (@{thm small_step_eqv_refl})))
fun assocRHS_tac ctxt =
SUBGOAL (fn (_, i) => assoc_entryR_tac ctxt i
THEN REPEAT_ALL_NEW (assoc_app_tac ctxt) i THEN TRYALL (rt ctxt (@{thm small_step_eqv_refl})))
fun assocRG_tac ctxt =
SUBGOAL (fn (_, i) => assoc_entryRG_tac ctxt i
THEN REPEAT_ALL_NEW (assoc_app_tac ctxt) i THEN TRYALL (rt ctxt (@{thm small_step_eqv_refl})))
val _ =
Theory.setup
(Method.setup @{binding assocR_tac} (Attrib.thms >> (fn _ => fn ctxt =>
SIMPLE_METHOD' (fn i => CHANGED_PROP((TRY (assocLHS_tac ctxt i)) THEN
(TRY (assocRHS_tac ctxt i)) THEN
(TRY (assocRG_tac ctxt i))))))
"Associating sequential compositions to the right")
\<close>
lemma
" \<Turnstile> a \<sqsupseteq>\<^bsub>r\<^esub> a \<Longrightarrow> \<Turnstile> b \<sqsupseteq>\<^bsub>r\<^esub> b \<Longrightarrow> \<Turnstile> c \<sqsupseteq>\<^bsub>r\<^esub> c \<Longrightarrow>
\<Turnstile> d \<sqsupseteq>\<^bsub>r\<^esub> d \<Longrightarrow> \<Turnstile> e \<sqsupseteq>\<^bsub>r\<^esub> e \<Longrightarrow> \<Turnstile> f \<sqsupseteq>\<^bsub>r\<^esub> f \<Longrightarrow>
\<Turnstile> ((a;b);c);((d;e);f) \<sqsupseteq>\<^bsub>r\<^esub> ((a;b);(c;d);e);f"
(* apply plain_prog_corr_tac doesn't work, but *)
apply assocR_tac
by plain_prog_corr_tac
lemma
" \<Turnstile> {R, P} (a;b;c;d;e;f) {Q, G} \<Longrightarrow>
\<Turnstile> {R, P} (((a;b);c);(d;(e;f))) {Q, G}"
apply assocR_tac
by assumption
end