-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLA.thy
367 lines (268 loc) · 13.8 KB
/
LA.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
(* *********************************************************************
Theory LA.thy is part of a framework for modelling,
verification and transformation of concurrent imperative
programs. Copyright (c) 2021 M. Bortin
The framework is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
For more details see the license agreement (LICENSE) you should have
received along with the framework.
******************************************************************* *)
theory LA
imports Prelims
begin
text "highlighting the type of relations between (abstract) states"
type_synonym 'a staterel = "('a \<times> 'a) set"
text "an auxiliary annotation structure for the parallel components"
record 's annpar =
ap_rely :: "'s staterel"
ap_precond :: "'s set"
ap_postcond :: "'s set"
section "A generic imperative language"
datatype 's LA =
Skip
| Basic "'s \<Rightarrow> 's"
| Seq "'s LA" "'s LA"
| Cond "'s set" "'s LA" "'s LA"
| While "'s set" "'s set" "'s LA" "'s LA"
| Parallel "('s LA \<times> 's annpar) list"
| Await "'s set" "'s set" "'s LA"
| CJump "'s set" nat "'s LA"
text "the unconditional jump instruction"
definition "Jump i = CJump UNIV i Skip"
fun jumpfree :: "'s LA \<Rightarrow> bool"
where "jumpfree Skip = True" |
"jumpfree (Basic f) = True" |
"jumpfree (Seq p1 p2) = (jumpfree p1 \<and> jumpfree p2)" |
"jumpfree (Parallel ps) = (\<forall>p\<in>set ps. jumpfree (fst p))" |
"jumpfree (Cond c p1 p2) = (jumpfree p1 \<and> jumpfree p2)" |
"jumpfree (Await c a p) = jumpfree p" |
"jumpfree (While c i p q) = (jumpfree p \<and> jumpfree q)" |
"jumpfree _ = False"
lemma jumpfree_Jump[simp] :
"jumpfree (Jump i) = False"
by(simp add: Jump_def)
text "locally sequential programs"
fun locally_seq :: "'s LA \<Rightarrow> bool"
where "locally_seq (Seq p1 p2) = (locally_seq p1 \<and> locally_seq p2)" |
"locally_seq (Parallel ps) = False" |
"locally_seq (Cond c p1 p2) = (locally_seq p1 \<and> locally_seq p2)" |
"locally_seq (Await c a p) = locally_seq p" |
"locally_seq (While c i p q) = (locally_seq p \<and> locally_seq q)" |
"locally_seq (CJump C i p) = locally_seq p" |
"locally_seq _ = True"
lemma locally_seq_Jump[simp] :
"locally_seq (Jump i) = True"
by(simp add: Jump_def)
text "the set of local jumps"
fun ljumps :: "'s LA \<Rightarrow> nat set"
where "ljumps Skip = {}" |
"ljumps (Basic f) = {}" |
"ljumps (CJump C i p) = {i} \<union> ljumps p" |
"ljumps (Seq p1 p2) = (ljumps p1 \<union> ljumps p2)" |
"ljumps (Parallel ps) = (\<Union>((ljumps \<circ> fst) ` set ps))" |
"ljumps (Cond c p1 p2) = (ljumps p1 \<union> ljumps p2)" |
"ljumps (Await c a p) = ljumps p" |
"ljumps (While c i p q) = (ljumps p \<union> ljumps q)"
lemma ljumps_Jump[simp] :
"ljumps (Jump i) = {i}"
by(simp add: Jump_def)
section "Concrete syntax for the LA programs"
syntax
"_quote" :: "'b \<Rightarrow> ('a \<Rightarrow> 'b)" ("(\<guillemotleft>_\<guillemotright>)" [0] 1000)
"_antiquote" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b" ("\<acute>_" [1000] 1000)
"_Assert" :: "'a \<Rightarrow> 'a set" ("(\<lbrace>_\<rbrace>)" [0] 1000)
translations
"\<lbrace>b\<rbrace>" \<rightharpoonup> "CONST Collect \<guillemotleft>b\<guillemotright>"
parse_translation \<open>
let
fun quote_tr [t] = Syntax_Trans.quote_tr @{syntax_const "_antiquote"} t
| quote_tr ts = raise TERM ("quote_tr", ts);
in [(@{syntax_const "_quote"}, K quote_tr)] end
\<close>
lemma neg_Collect[simp] :
"- Collect P = Collect (\<lambda>x. \<not> P x)"
by fast
syntax
"_fst" :: "'a \<times> 'b \<Rightarrow> 'a" ("_\<^sub>," [60] 61)
"_snd" :: "'a \<times> 'b \<Rightarrow> 'b" ("_\<^sub>." [60] 61)
parse_translation \<open>
let
fun fst_tr ((Const (@{const_syntax Pair}, _) $ p $ c)
:: ts) = p;
fun snd_tr ((Const (@{const_syntax Pair}, _) $ p $ c)
:: ts) = c;
in
[(@{syntax_const "_fst"}, K fst_tr),
(@{syntax_const "_snd"}, K snd_tr)]
end
\<close>
syntax
"_Assign" :: "idt \<Rightarrow> 'b \<Rightarrow> 's LA"
("(\<acute>_ :=/ _)" [70, 65] 61)
translations
"\<acute>x := a" \<rightleftharpoons> "(CONST Basic \<guillemotleft>\<acute>(_update_name x (\<lambda>_. a))\<guillemotright>)"
syntax
"_before" :: "id \<Rightarrow> 'a" ("\<ordmasculine>_")
"_after" :: "id \<Rightarrow> 'a" ("\<ordfeminine>_")
translations
"\<ordmasculine>x" \<rightleftharpoons> "x \<acute> CONST fst"
"\<ordfeminine>x" \<rightleftharpoons> "x \<acute> CONST snd"
syntax
"_Seq" :: "'s LA \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(_;//_)" [56, 55] 55)
"_Cond" :: "'s set \<Rightarrow> 's LA \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(IF _//(2THEN/ (_))//(2ELSE/ (_))//FI)" [0, 0, 0] 61)
"_Cond2" :: "'s set \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(IF _//(2THEN/ (_))//FI)" [0,0] 56)
"_While_inv" :: "'s set \<Rightarrow> 's set \<Rightarrow> 's LA \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(WHILE _/ \<lbrakk> inv: _/\<rbrakk>//(2DO/ (_))//SUBSEQUENTLY _//OD)" [0, 0, 0, 0] 61)
"_While" :: "'s set \<Rightarrow> 's LA \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(WHILE _//(2DO/ (_))//SUBSEQUENTLY _//OD)" [0, 0, 0] 61)
"_WhileS" :: "'s set \<Rightarrow> 's set \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(WHILE _/ \<lbrakk> inv: _/\<rbrakk>//(2DO/ (_))//OD)" [0, 0, 0] 61)
"_WhileS5" :: "'s set \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(WHILE _//(2DO/ (_))//OD)" [0, 0] 61)
"_AwaitA" :: "'s set \<Rightarrow> 's set \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(AWAIT _/ \<lbrakk> ann: _/\<rbrakk>//(2THEN/ (_))/ END)" [0,0,0] 61)
"_AtomA" :: "'s set \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(\<lbrakk> ann: _/\<rbrakk>\<langle>_\<rangle>)" [0,0] 61)
"_WaitA" :: "'s set \<Rightarrow> 's set \<Rightarrow> 's LA"
("(WAIT _/ \<lbrakk> ann: _/\<rbrakk> END)" [0,0] 61)
"_Await" :: "'s set \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(AWAIT _/ (2THEN/ (_))/ END)" [0,0] 61)
"_Atom" :: "'s set \<Rightarrow> 's LA \<Rightarrow> 's LA"
("(\<langle>_\<rangle>)" [0] 61)
"_Wait" :: "'s set \<Rightarrow> 's LA"
("(WAIT _/ END)" [0] 61)
"_Jump" :: "nat \<Rightarrow> 's LA" ("JUMP _/" [0] 61)
"_CJump" :: "'s set \<Rightarrow> nat \<Rightarrow> 's LA \<Rightarrow> 's LA"
("CJUMP _/ TO/ _//(2OTHERWISE/ (_))//END " [0,0,0] 61)
"_Skip" :: "'s LA" ("SKIP" 61)
translations
"p1;p2" \<rightleftharpoons> "CONST Seq p1 p2"
"IF b THEN c1 ELSE c2 FI" \<rightleftharpoons> "CONST Cond b c1 c2"
"IF b THEN c FI" \<rightleftharpoons> "IF b THEN c ELSE SKIP FI"
"WHILE b \<lbrakk>inv: i\<rbrakk> DO p SUBSEQUENTLY q OD" \<rightleftharpoons> "CONST While b i p q"
"WHILE b DO p SUBSEQUENTLY q OD" \<rightleftharpoons> "WHILE b \<lbrakk>inv: CONST UNIV\<rbrakk> DO p SUBSEQUENTLY q OD"
"WHILE b \<lbrakk>inv: i\<rbrakk> DO p OD" \<rightleftharpoons> "WHILE b \<lbrakk>inv: i\<rbrakk> DO p SUBSEQUENTLY SKIP OD"
"WHILE b DO p OD" \<rightleftharpoons> "WHILE b DO p SUBSEQUENTLY SKIP OD"
"AWAIT b \<lbrakk>ann: a\<rbrakk> THEN c END" \<rightleftharpoons> "CONST Await b a c"
"\<lbrakk>ann: a\<rbrakk>\<langle>c\<rangle>" \<rightleftharpoons> "AWAIT CONST UNIV \<lbrakk>ann: a\<rbrakk> THEN c END"
"WAIT b \<lbrakk>ann: a\<rbrakk> END" \<rightleftharpoons> "AWAIT b \<lbrakk>ann: a\<rbrakk> THEN SKIP END"
"AWAIT b THEN c END" \<rightleftharpoons> "CONST Await b (CONST UNIV) c"
"\<langle>c\<rangle>" \<rightleftharpoons> "AWAIT CONST UNIV THEN c END"
"WAIT b END" \<rightleftharpoons> "AWAIT b THEN SKIP END"
"JUMP j" \<rightleftharpoons> "CONST Jump j"
"CJUMP b TO j OTHERWISE p END" \<rightleftharpoons> "CONST CJump b j p"
"SKIP" \<rightleftharpoons> "CONST Skip"
nonterminal prgs
syntax
"_PAR" :: "prgs \<Rightarrow> 'a"
("(INTERLEAVING-BEGIN//_//INTERLEAVING-END)" [57] 56)
"_AnnPrg" :: "['a, 'a, 'a, 'a] \<Rightarrow> prgs"
("(2 \<lbrakk> rely: _,/ pre: _,/ post: _ \<rbrakk>//_)" [90, 90, 90, 60] 57)
"_AnnPrgs" :: "['a, 'a, 'a, 'a, prgs] \<Rightarrow> prgs"
("(2 \<lbrakk> rely: _,/ pre: _,/ post: _ \<rbrakk>//_)//\<parallel>//_" [90, 90, 90, 60, 57] 57)
"_AnnPrgScheme" :: "['a, 'a, 'a, 'a, 'a, 'a, 'a] \<Rightarrow> prgs"
(" (2SCHEME-BEGIN [_ \<le> _ < _]//\<lbrakk> rely: _,/ pre: _,/ post: _ \<rbrakk>//_//SCHEME-END)" [0,0,0,90,90,90,0] 57)
"_Prg" :: "['a] \<Rightarrow> prgs"
("(2 _)" [60] 57)
"_Prgs" :: "['a, prgs] \<Rightarrow> prgs"
("(2 _)//\<parallel>//_" [60,57] 57)
"_PrgScheme" :: "['a, 'a, 'a, 'a] \<Rightarrow> prgs"
(" (2SCHEME-BEGIN [_ \<le> _ < _]//_//SCHEME-END)" [0,0,0,60] 57)
translations
"_PAR ps" \<rightharpoonup> "CONST Parallel ps"
"_AnnPrg r p q c" \<rightharpoonup> "([(c, \<lparr>ap_rely=r, ap_precond=p, ap_postcond=q\<rparr>)])"
"_AnnPrgs r p q c ps" \<rightharpoonup> "((c, \<lparr>ap_rely=r, ap_precond=p, ap_postcond=q\<rparr>) # ps)"
"_AnnPrgScheme j i k r p q c" \<rightharpoonup>
"(CONST map (\<lambda>i. (c, \<lparr>ap_rely=r, ap_precond=p, ap_postcond=q\<rparr>)) [j..<k])"
"_Prg c" \<rightharpoonup>
"([(c, \<lparr>ap_rely=CONST UNIV, ap_precond=CONST UNIV, ap_postcond=CONST UNIV\<rparr>)])"
"_Prgs c ps" \<rightharpoonup>
"((c, \<lparr>ap_rely=CONST UNIV, ap_precond=CONST UNIV, ap_postcond=CONST UNIV\<rparr>) # ps)"
"_PrgScheme j i k c" \<rightharpoonup>
"(CONST map (\<lambda>i. (c, \<lparr>ap_rely=CONST UNIV, ap_precond=CONST UNIV, ap_postcond=CONST UNIV\<rparr> )) [j..<k])"
ML \<open>
fun dest_absL (x, T, body) =
let
fun name_clash (Free (y, _)) = (x = y)
| name_clash (t $ u) = name_clash t orelse name_clash u
| name_clash (Abs (_, _, t)) = name_clash t
| name_clash _ = false;
in
if name_clash body then
dest_absL (singleton (Name.variant_list [x]) x, T, body) (*potentially slow*)
else (x, subst_bound (Free (x, T), body))
end;
fun quote_tr' f (t :: ts) =
Term.list_comb (f $ Syntax_Trans.quote_tr' @{syntax_const "_antiquote"} t, ts)
| quote_tr' _ _ = raise Match;
fun annquote_tr' f (r :: t :: ts) =
Term.list_comb (f $ r $ Syntax_Trans.quote_tr' @{syntax_const "_antiquote"} t, ts)
| annquote_tr' _ _ = raise Match;
val assert_tr' = quote_tr' (Syntax.const @{syntax_const "_Assert"});
fun annbexp_tr' name (r :: (Const (@{const_syntax Collect}, _) $ t) :: ts) =
annquote_tr' (Syntax.const name) (r :: t :: ts)
| annbexp_tr' name (r :: Const (@{const_syntax UNIV}, _) :: ts) =
annquote_tr' (Syntax.const name)
(r :: Abs ("s", dummyT, Const (@{const_syntax True}, dummyT)) :: ts)
| annbexp_tr' name (r :: Const (@{const_syntax Set.empty}, _) :: ts) =
annquote_tr' (Syntax.const name)
(r :: Abs ("s", dummyT, Const (@{const_syntax False}, dummyT)) :: ts)
| annbexp_tr' _ _ = raise Match;
fun annassign_tr' (r :: Abs (x, _, f $ k $ Bound 0) :: ts) =
quote_tr' (Syntax.const @{syntax_const "_Assign"} $ r $ Syntax_Trans.update_name_tr' f)
(Abs (x, dummyT, Syntax_Trans.const_abs_tr' k) :: ts)
| annassign_tr' _ = raise Match;
fun dest_list (Const (@{const_syntax Nil}, _)) = []
| dest_list (Const (@{const_syntax Cons}, _) $ x $ xs) = x :: dest_list xs
| dest_list xs = [xs];
fun new_Pair a b =
(Const (@{const_syntax Pair}, dummyT) $ a $ b)
fun dest_prod (Const (@{const_syntax Pair}, _) $ a $ b) = (a, b)
| dest_prod _ = raise Match;
fun dest_upt (Const (@{const_syntax upt},_) $ m $ n) = (m, n)
| dest_upt _ = raise Match;
fun dest_apar (Const (@{const_syntax annpar_ext}, _) $ r $ p $ q $ _) = (r, p, q)
| dest_apar _ = raise Match;
fun prg_tr' const aconst xs pqa =
let val (c, apr) = dest_prod pqa
val (R, P, Q) = dest_apar apr
fun fake (Const (@{const_syntax UNIV},_)) = true
| fake _ = false
val const' = if fake R then const else aconst
val ys = if fake R then [] else [R, P, Q]
in list_comb (Syntax.const const', xs @ ys @ [c])
end
fun prgs_lst_tr'
[Const (@{const_syntax map}, _) $ Abs (i, T, p) $ upt] =
let val (j, k) = dest_upt upt
in prg_tr' @{syntax_const "_PrgScheme"} @{syntax_const "_AnnPrgScheme"}
[j, Free (i, T), k] (snd(dest_absL (i, T, p)))
end
| prgs_lst_tr' [p] =
prg_tr' @{syntax_const "_Prg"} @{syntax_const "_AnnPrg"} [] p
| prgs_lst_tr' (p :: ps) =
prg_tr' @{syntax_const "_Prgs"} @{syntax_const "_AnnPrgs"} [] p $
prgs_lst_tr' ps
| prgs_lst_tr' _ = raise Match
fun Parallel_tr (cs :: _) =
let val cs' = dest_list cs
in Syntax.const @{syntax_const "_PAR"} $
prgs_lst_tr' cs' end
| Parallel_tr _ = raise Match;
fun Basic_tr (Abs (x, _, f $ k $ Bound 0) :: ts) =
quote_tr' (Syntax.const @{syntax_const "_Assign"} $ Syntax_Trans.update_name_tr' f)
(Abs (x, dummyT, Syntax_Trans.const_abs_tr' k) :: ts)
| Basic_tr ((f $ k) :: ts) = quote_tr' (Syntax.const @{syntax_const "_Assign"} $ Syntax_Trans.update_name_tr' f)
(k :: ts)
| Basic_tr _ = raise Match;
\<close>
print_translation \<open>
[(@{const_syntax Collect}, K assert_tr'),
(@{const_syntax Basic}, K Basic_tr),
(@{const_syntax Parallel}, K Parallel_tr)]
\<close>
end