-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPrelims.thy
142 lines (110 loc) · 3.74 KB
/
Prelims.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
(* *********************************************************************
Theory Prelims.thy is part of a framework for modelling,
verification and transformation of concurrent imperative
programs. Copyright (c) 2021 M. Bortin
The framework is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
For more details see the license agreement (LICENSE) you should have
received along with the framework.
******************************************************************* *)
theory Prelims
imports Main
begin
lemma choice' :
"\<exists>f. \<forall>x. P x (f x) \<Longrightarrow> \<forall>x. \<exists>y. P x y"
by force
lemma choice'' :
"\<forall>i. P i \<longrightarrow> (\<exists>j. Q i j) \<Longrightarrow> \<exists>\<phi>. \<forall>i. P i \<longrightarrow> Q i (\<phi> i)"
by(rule choice, fast)
lemma least_ix :
"P (j :: nat) \<Longrightarrow>
\<exists>i\<le>j. P i \<and> (\<forall>k<i. \<not> P k)"
apply(rule_tac x="LEAST j. P j" in exI)
apply(rule conjI)
apply(erule Least_le)
apply(rule conjI)
apply(erule LeastI)
apply clarify
apply(drule not_less_Least)
by clarify
lemma Int_Image :
"(R \<inter> S) `` A \<subseteq> (R `` A) \<inter> (S `` A)"
apply clarify
apply simp
apply(rule conjI)
apply(erule ImageI, assumption)+
done
lemma Int_Image_singleton_sub :
"(R `` {a}) \<inter> (S `` {a}) \<subseteq> (R \<inter> S) `` {a}"
by blast
lemma Int_Image_singleton :
"(R \<inter> S) `` {a} = (R `` {a}) \<inter> (S `` {a})"
apply(rule equalityI)
apply(rule Int_Image)
by(rule Int_Image_singleton_sub)
lemma pred_less :
"(0::nat) < x \<Longrightarrow> x - 1 < x"
by simp
lemma inj_on_imp_surj :
"inj_on \<sigma> A \<Longrightarrow>
finite A \<Longrightarrow>
\<forall>a\<in>A. \<sigma> a \<in> A \<Longrightarrow>
\<forall>b\<in>A. \<exists>a\<in>A. \<sigma> a = b"
apply clarsimp
apply(rule ccontr, simp)
apply(subgoal_tac "\<sigma> ` A \<subset> A")
apply(frule psubset_card_mono, assumption)
apply(drule card_image)
apply simp
apply(rule psubsetI)
apply fastforce
apply(rule notI)
apply(drule equalityD2)
apply(drule subsetD, assumption)
apply fastforce
done
corollary inj_on_surj_set_intv :
"inj_on \<sigma> {0..<(n :: nat)} \<Longrightarrow>
\<forall>i<n. \<sigma> i < n \<Longrightarrow>
\<forall>j<n. \<exists>i<n. \<sigma> i = j"
apply(drule inj_on_imp_surj, simp, simp)
by fastforce
lemma mem_nth :
"x \<in> set xs \<Longrightarrow> \<exists>i<length xs. x = xs!i"
apply(induct xs, simp_all)
apply(erule disjE, clarsimp)
apply(rule_tac x=0 in exI, simp)
apply clarsimp
apply(rule_tac x="Suc i" in exI, simp)
done
lemma zip_nthD :
"(a, b) \<in> set(zip xs zs) \<Longrightarrow>
\<exists>i<length xs. a = xs!i \<and> b = zs!i"
apply(induct zs arbitrary: a b xs)
apply simp
apply(case_tac xs, simp)
apply clarsimp
apply(erule disjE, clarsimp)
apply(rule_tac x=0 in exI, simp)
by fastforce
lemma map_zip_aux :
"\<forall>sq \<in> set sqs. length sq = n \<Longrightarrow> length ps = length sqs \<Longrightarrow>
map (\<lambda>x. (case x of (x, sq) \<Rightarrow> sq @ [x]) ! n) (zip ps sqs) = ps"
apply(induct ps arbitrary: sqs)
apply simp
apply clarsimp
apply(case_tac sqs, simp)
apply clarsimp
done
lemma map_zip_aux2 :
"\<forall>sq \<in> set sqs. length sq = n \<Longrightarrow> m < n \<Longrightarrow> length ps = length sqs \<Longrightarrow>
map ((\<lambda>x. x ! m) \<circ> (\<lambda>(x, sq). sq @ [x])) (zip ps sqs) = map (\<lambda>x. x ! m) sqs"
apply(induct ps arbitrary: sqs)
apply simp
apply clarsimp
apply(case_tac sqs, simp)
apply clarsimp
apply(subst nth_append, simp)
done
end