-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcorrelation.py
44 lines (38 loc) · 1.49 KB
/
correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import csv, argparse
import numpy as np
from scipy.stats import pearsonr
from collections import defaultdict as ddict
# calculate pearson correlation for local predictions
def getCorrelationMicro(results):
pearson_list = []
with open(results, 'r') as f:
reader = csv.reader(f)
for row in reader:
target = np.array(list(map(float, row[3].strip('"[').strip(']"').split(','))))
predicted = np.array(list(map(float, row[4].strip('"[').strip(']"').split(','))))
pearson_list.append(pearsonr(target, predicted)[0])
return round(np.mean(pearson_list), 3)
# calculate pearson correlation for global predictions
def getCorrelationMacro(results):
protein_map_target = ddict(list)
protein_map_predicted = ddict(list)
with open(results, 'r') as f:
reader = csv.reader(f)
for row in reader:
protein = row[0].split('_')[0]
target = float(row[1])
predicted = float(row[2])
protein_map_target[protein].append(target)
protein_map_predicted[protein].append(predicted)
all_pearsons = []
for k, v in protein_map_target.items():
tgt = v
pred = protein_map_predicted[k]
pearson = pearsonr(np.array(tgt), np.array(pred))[0]
all_pearsons.append(pearson)
return round(np.mean(all_pearsons), 3)
parser = argparse.ArgumentParser(description='parser')
parser.add_argument('-file', help='The path to test_results.csv file')
args = parser.parse_args()
print('Local Pearson: ', getCorrelationMicro(args.file))
print('Global Pearson: ', getCorrelationMacro(args.file))