-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
352 lines (285 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import sys, time, csv, os, random, math, argparse
import numpy as np
import torch
from tqdm import tqdm
from collections import OrderedDict
from arguments import buildParser
from model import ProteinGCN
from data import ProteinDataset, collate_pool, get_train_val_test_loader
from utils import AverageMeter, Normalizer, Logger, count_parameters, randomSeed, clearCache
import config as cfg
def main():
global args, best_error_global, best_error_local, savepath, dataset
parser = buildParser()
args = parser.parse_args()
print('Torch Device being used: ', cfg.device)
# create the savepath
savepath = args.save_dir + str(args.name) + '/'
if not os.path.exists(savepath):
os.makedirs(savepath)
# Writes to file and also to terminal
sys.stdout = Logger(savepath)
print(vars(args))
best_error_global, best_error_local = 1e10, 1e10
randomSeed(args.seed)
# create train/val/test dataset separately
assert os.path.exists(args.protein_dir), '{} does not exist!'.format(args.protein_dir)
all_dirs = [d for d in os.listdir(args.protein_dir) if not d.startswith('.DS_Store')]
dir_len = len(all_dirs)
indices = list(range(dir_len))
random.shuffle(indices)
train_size = math.floor(args.train * dir_len)
val_size = math.floor(args.val * dir_len)
test_size = math.floor(args.test * dir_len)
if val_size == 0:
print('No protein directory given for validation!! Please recheck the split ratios, ignore if this is intended.')
if test_size == 0:
print('No protein directory given for testing!! Please recheck the split ratios, ignore if this is intended.')
test_dirs = all_dirs[:test_size]
train_dirs = all_dirs[test_size:test_size + train_size]
val_dirs = all_dirs[test_size + train_size:test_size + train_size + val_size]
print('Testing on {} protein directories:'.format(len(test_dirs)))
dataset = ProteinDataset(args.pkl_dir, args.id_prop, args.atom_init, random_seed=args.seed)
print('Dataset length: ', len(dataset))
# load all model args from pretrained model
if args.pretrained is not None and os.path.isfile(args.pretrained):
print("=> loading model params '{}'".format(args.pretrained))
model_checkpoint = torch.load(args.pretrained, map_location=lambda storage, loc: storage)
model_args = argparse.Namespace(**model_checkpoint['args'])
# override all args value with model_args
args.h_a = model_args.h_a
args.h_g = model_args.h_g
args.n_conv = model_args.n_conv
args.random_seed = model_args.seed
args.lr = model_args.lr
print("=> loaded model params '{}'".format(args.pretrained))
else:
print("=> no model params found at '{}'".format(args.pretrained))
# build model
kwargs = {
'pkl_dir' : args.pkl_dir, # Root directory for data
'atom_init' : args.atom_init, # Atom Init filename
'h_a' : args.h_a, # Dim of the hidden atom embedding learnt
'h_g' : args.h_g, # Dim of the hidden graph embedding after pooling
'n_conv' : args.n_conv, # Number of GCN layers
'random_seed' : args.seed, # Seed to fix the simulation
'lr' : args.lr, # Learning rate for optimizer
}
structures, _, _ = dataset[0]
h_b = structures[1].shape[-1]
kwargs['h_b'] = h_b # Dim of the bond embedding initialization
# Use DataParallel for faster training
print("Let's use", torch.cuda.device_count(), "GPUs and Data Parallel Model.")
model = ProteinGCN(**kwargs)
model = torch.nn.DataParallel(model)
model.cuda()
print('Trainable Model Parameters: ', count_parameters(model))
# Create dataloader to iterate through the dataset in batches
train_loader, val_loader, test_loader = get_train_val_test_loader(dataset, train_dirs, val_dirs, test_dirs,
collate_fn = collate_pool,
num_workers = args.workers,
batch_size = args.batch_size,
pin_memory = False)
try:
print('Training data : ', len(train_loader.sampler))
print('Validation data : ', len(val_loader.sampler))
print('Testing data : ', len(test_loader.sampler))
except Exception as e:
# sometimes test may not be defined
print('\nException Cause: {}'.format(e.args[0]))
# obtain target value normalizer
if len(dataset) < args.avg_sample: sample_data_list = [dataset[i] for i in tqdm(range(len(dataset)))]
else: sample_data_list = [dataset[i] for i in tqdm(random.sample(range(len(dataset)), args.avg_sample))]
_, _, sample_target = collate_pool(sample_data_list)
normalizer_global = Normalizer(sample_target[0])
normalizer_local = Normalizer(torch.tensor([0.0]))
normalizer_local = Normalizer(sample_target[1])
# load the model state dict from given pretrained model
if args.pretrained is not None and os.path.isfile(args.pretrained):
print("=> loading model '{}'".format(args.pretrained))
checkpoint = torch.load(args.pretrained, map_location=lambda storage, loc: storage)
print('Best error global: ', checkpoint['best_error_global'])
print('Best error local: ', checkpoint['best_error_local'])
best_error_global = checkpoint['best_error_global']
best_error_local = checkpoint['best_error_local']
model.module.load_state_dict(checkpoint['state_dict'])
model.module.optimizer.load_state_dict(checkpoint['optimizer'])
normalizer_local.load_state_dict(checkpoint['normalizer_local'])
normalizer_global.load_state_dict(checkpoint['normalizer_global'])
else:
print("=> no model found at '{}'".format(args.pretrained))
# Main training loop
for epoch in range(args.epochs):
# Training
[train_error_global, train_error_local, train_loss] = trainModel(train_loader, model, normalizer_global, normalizer_local, epoch=epoch)
# Validation
[val_error_global, val_error_local, val_loss] = trainModel(val_loader, model, normalizer_global, normalizer_local, epoch=epoch, evaluation=True)
# check for error overflow
if (val_error_global != val_error_global) or (val_error_local != val_error_local):
print('Exit due to NaN')
sys.exit(1)
# remember the best error and possibly save checkpoint
is_best = val_error_global < best_error_global
best_error_global = min(val_error_global, best_error_global)
best_error_local = val_error_local
# save best model
if args.save_checkpoints:
model.module.save({
'epoch' : epoch,
'state_dict' : model.module.state_dict(),
'best_error_global' : best_error_global,
'best_error_local' : best_error_local,
'optimizer' : model.module.optimizer.state_dict(),
'normalizer_global' : normalizer_global.state_dict(),
'normalizer_local' : normalizer_local.state_dict(),
'args' : vars(args)
}, is_best, savepath)
# test best model using saved checkpoints
if args.save_checkpoints and len(test_loader):
print('---------Evaluate Model on Test Set---------------')
# this try/except allows the code to test on the go or by defining a pretrained path separately
try:
best_checkpoint = torch.load(savepath + 'model_best.pth.tar')
except Exception as e:
best_checkpoint = torch.load(args.pretrained)
model.module.load_state_dict(best_checkpoint['state_dict'])
[test_error_global, test_error_local, test_loss] = trainModel(test_loader, model, normalizer_global, normalizer_local, testing=True)
def trainModel(data_loader, model, normalizer_global, normalizer_local, epoch=None, evaluation=False, testing=False):
"""
The function to train/test the model for one epoch. Also, writes the test results to a file 'test_results.csv' in the end
Parameters
----------
data_loader : The data iterator to generate batches
model : The model to train
normalizer_global : The normalizer for global gdt targets
normalizer_local : The normalizer for local lddt targets
epoch : The current epoch
evaluation : (bool) Denotes if the model is in eval mode (True for both testing and validation)
testing : (bool) Denotes if the model is in test mode (True only while testing)
Returns
-------
avg_errors_global : The average global MAE error
avg_errors_local : The average local MAE error
losses : The average MSE loss
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
avg_errors_global = AverageMeter()
avg_errors_local = AverageMeter()
# placeholders to store results to write to file
if testing:
test_targets_global = []
test_preds_global = []
test_targets_local = []
test_preds_local = []
test_cif_ids = []
test_amino_crystal = []
end = time.time()
for protein_batch_iter, (input_data, batch_data, target_tuples) in enumerate(data_loader):
batch_protein_ids = batch_data[0]
batch_amino_crystal = batch_data[1]
batch_size = len(batch_protein_ids)
# measure data loading time
data_time.update(time.time() - end)
# move inputs and targets to cuda
input_var, target_var = getInputs(input_data, target_tuples, normalizer_global, normalizer_local)
if not evaluation and not testing:
# Switch to train mode
model.train()
out = model(input_var)
out = model.module.mask_remove(out)
assert out[1].shape[0] == target_var[1].shape[0] , "Predicted Outputs Amino & Target Outputs Amino don't match"
model.module.fit(out, target_var, batch_protein_ids)
else:
# evaluate one iteration
with torch.no_grad():
# Switch to evaluation mode
model.eval()
predicted = model(input_var)
predicted = model.module.mask_remove(predicted)
assert predicted[1].shape[0] == target_var[1].shape[0] , "Predicted Outputs Amino & Target Outputs Amino don't match"
model.module.fit(predicted, target_var, batch_protein_ids, pred=True)
# Calculate the accuracy between the denormalized values
model.module.accuracy[0] = model.module.accuracy[0] * normalizer_global.std
model.module.accuracy[1] = model.module.accuracy[1] * normalizer_local.std
# measure accuracy and record loss
losses.update(model.module.loss.item(), batch_size)
avg_errors_global.update(model.module.accuracy[0].item(), batch_size)
avg_errors_local.update(model.module.accuracy[1].item(), batch_size)
# Collect all the results that needs to be written to file
if testing and batch_size != 1:
test_pred_global = normalizer_global.denorm(model.module.outputs[0].data).squeeze().tolist()
test_target_global = target_tuples[0].squeeze()
test_preds_global += test_pred_global
test_targets_global += test_target_global.tolist()
test_amino_crystal += batch_amino_crystal.tolist()
test_pred_local = normalizer_local.denorm(model.module.outputs[1].data).squeeze().tolist()
test_target_local = target_tuples[1].squeeze().tolist()
res1, res2 = OrderedDict(), OrderedDict()
for i, idx in enumerate(batch_amino_crystal):
if idx not in res1: res1[idx] = []
if idx not in res2: res2[idx] = []
res1[idx].append(test_target_local[i])
res2[idx].append(test_pred_local[i])
test_target_local = [v for _, v in res1.items()]
test_pred_local = [v for _, v in res2.items()]
test_preds_local += test_pred_local
test_targets_local += test_target_local
test_cif_ids += batch_protein_ids
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print progress between steps
if protein_batch_iter % args.print_freq == 0:
if evaluation or testing:
print('Test: [{0}][{1}]/{2}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'ERRG {avg_errors_global.val:.3f} ({avg_errors_global.avg:.3f})\t'
'ERRL {avg_errors_local.val:.3f} ({avg_errors_local.avg:.3f})'.format(
epoch, protein_batch_iter, len(data_loader), batch_time=batch_time, loss=losses,
avg_errors_global=avg_errors_global, avg_errors_local=avg_errors_local))
else:
print('Epoch: [{0}][{1}]/{2}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'ERRG {avg_errors_global.val:.3f} ({avg_errors_global.avg:.3f})\t'
'ERRL {avg_errors_local.val:.3f} ({avg_errors_local.avg:.3f})'.format(
epoch, protein_batch_iter, len(data_loader), batch_time=batch_time,
data_time=data_time, loss=losses, avg_errors_global=avg_errors_global,
avg_errors_local=avg_errors_local))
if protein_batch_iter % args.print_freq == 0:
clearCache()
# write results to file
if testing:
star_label = '**'
with open(savepath + 'test_results.csv', 'w') as f:
writer = csv.writer(f)
for cif_id, targets_global, preds_global, targets_local, preds_local in zip(test_cif_ids,
test_targets_global,
test_preds_global,
test_targets_local,
test_preds_local):
writer.writerow((cif_id, targets_global, preds_global, targets_local, preds_local))
elif evaluation:
star_label = '*'
else:
star_label = '##'
print(' {star} ERRG {avg_errors_global.avg:.3f} ERRL {avg_errors_local.avg:.3f} LOSS {avg_loss.avg:.3f}'.format(
star=star_label, avg_errors_global=avg_errors_global, avg_errors_local=avg_errors_local, avg_loss=losses))
return avg_errors_global.avg, avg_errors_local.avg, losses.avg
def getInputs(inputs, target_tuples, normalizer_global, normalizer_local):
"""Move inputs and targets to cuda"""
input_var = [inputs[0].cuda(), inputs[1].cuda(), inputs[2].cuda(), inputs[4].cuda(), inputs[5].cuda()]
target_global = target_tuples[0].cuda()
target_local = target_tuples[1].cuda()
target_global_normed = normalizer_global.norm(target_global)
target_local_normed = normalizer_local.norm(target_local)
target_var = [target_global_normed.cuda(), target_local_normed.cuda()]
return input_var, target_var
if __name__ == '__main__':
start = time.time()
main()
print('Time taken: ', time.time() - start)