-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathbase.py
525 lines (419 loc) · 15.5 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
from helper import *
import tensorflow as tf
class Model(object):
"""Abstracts a Tensorflow graph for a learning task.
We use various Model classes as usual abstractions to encapsulate tensorflow
computational graphs. Each algorithm you will construct in this homework will
inherit from a Model object.
"""
def __init__(self, params):
"""
Constructor for the main function. Loads data and creates computation graph.
Parameters
----------
params: Hyperparameters of the model
Returns
-------
"""
self.p = params
self.logger = get_logger(self.p.name, self.p.log_dir, self.p.config_dir)
self.logger.info(vars(self.p)); pprint(vars(self.p))
self.p.batch_size = self.p.batch_size
if self.p.l2 == 0.0: self.regularizer = None
else: self.regularizer = tf.contrib.layers.l2_regularizer(scale=self.p.l2)
self.load_data()
self.add_placeholders()
nn_out, self.accuracy = self.add_model()
self.loss = self.add_loss(nn_out)
self.logits = tf.nn.softmax(nn_out)
self.train_op = self.add_optimizer(self.loss)
tf.summary.scalar('accmain', self.accuracy)
self.merged_summ = tf.summary.merge_all()
self.summ_writer = None
def splitBags(self, data, chunk_size):
"""
Split bags which are too big (contains greater than chunk_size sentences)
Parameters
----------
data: Dataset as list of bags
Returns
-------
Data after preprocessing
"""
for dtype in ['train']:
for i in range(len(data[dtype])-1, -1, -1):
bag = data[dtype][i]
if len(bag['X']) > chunk_size:
del data[dtype][i]
chunks = getChunks(range(len(bag['X'])), chunk_size)
for chunk in chunks:
res = {
'Y': bag['Y'],
'SubType': bag['SubType'],
'ObjType': bag['ObjType']
}
res['X'] = [bag['X'][j] for j in chunk]
res['Pos1'] = [bag['Pos1'][j] for j in chunk]
res['Pos2'] = [bag['Pos2'][j] for j in chunk]
res['DepEdges'] = [bag['DepEdges'][j] for j in chunk]
res['ProbY'] = [bag['ProbY'][j] for j in chunk]
data[dtype].append(res)
return data
def getPdata(self, data):
"""
Creates data required for P@N metric evaluation
Parameters
----------
data: Dataset as list of bags
Returns
-------
p_one and p_two are dataset for P@100 and P@200 evaluation. P@All is the original data itself
"""
p_one = []
p_two = []
for bag in data['test']:
if len(bag['X']) < 2: continue
indx = list(range(len(bag['X'])))
random.shuffle(indx)
p_one.append({
'X': [bag['X'][indx[0]]],
'Pos1': [bag['Pos1'][indx[0]]],
'Pos2': [bag['Pos2'][indx[0]]],
'DepEdges': [bag['DepEdges'][indx[0]]],
'ProbY': [bag['ProbY'][indx[0]]],
'Y': bag['Y'],
'SubType': bag['SubType'],
'ObjType': bag['ObjType']
})
p_two.append({
'X': [bag['X'][indx[0]], bag['X'][indx[1]]],
'Pos1': [bag['Pos1'][indx[0]], bag['Pos1'][indx[1]]],
'Pos2': [bag['Pos2'][indx[0]], bag['Pos2'][indx[1]]],
'DepEdges': [bag['DepEdges'][indx[0]], bag['DepEdges'][indx[1]]],
'ProbY': [bag['ProbY'][indx[0]], bag['ProbY'][indx[1]]],
'Y': bag['Y'],
'SubType': bag['SubType'],
'ObjType': bag['ObjType']
})
return p_one, p_two
def load_data(self):
"""
Reads the data from pickle file
Parameters
----------
self.p.dataset: The path of the dataset to be loaded
Returns
-------
self.voc2id: Mapping of word to its unique identifier
self.Id2voc: Inverse of self.voc2id
self.type2id: Mapping of entity type to its unique identifier
self.type_num: Total number of entity types
self.max_pos: Maximum positional embedding
self.num_class: Total number of relations to be predicted
self.num_deLabel: Number of dependency labels
self.wrd_list: Words in vocabulary
self.test_one: Data required for P@100 evaluation
self.test_two: Data required for P@200 evaluation
self.data: Datatset as a list of bags, where each bag is a dictionary as described
"""
data = pickle.load(open(self.p.dataset, 'rb'))
self.voc2id = data['voc2id']
self.id2voc = data['id2voc']
self.type2id = data['type2id']
self.type_num = len(data['type2id'])
self.max_pos = data['max_pos'] # Maximum position distance
self.num_class = len(data['rel2id'])
self.num_deLabel = 1
# Get Word List
self.wrd_list = list(self.voc2id.items()) # Get vocabulary
self.wrd_list.sort(key=lambda x: x[1]) # Sort vocabulary based on ids
self.wrd_list,_ = zip(*self.wrd_list)
self.test_one,\
self.test_two = self.getPdata(data)
self.data = data
# self.data = self.splitBags(data, self.p.chunk_size) # Activate if bag sizes are too big
self.logger.info('Document count [{}]: {}, [{}]: {}'.format('train', len(self.data['train']), 'test', len(self.data['test'])))
def padData(self, data, seq_len):
"""
Pads the data in a batch | Used as a helper function by pad_dynamic
Parameters
----------
data: batch to be padded
seq_len: maximum number of words in the batch
Returns
-------
Padded data and mask
"""
pad_data = np.zeros((len(data), seq_len), np.int32)
mask = np.zeros((len(data), seq_len), np.float32)
for i, ele in enumerate(data):
pad_data[i, :len(ele)] = ele[:seq_len]
mask [i, :len(ele)] = np.ones(len(ele[:seq_len]), np.float32)
return pad_data, mask
def getOneHot(self, data, num_class, isprob=False):
"""
Generates the one-hot representation
Parameters
----------
data: Batch to be padded
num_class: Total number of relations
Returns
-------
One-hot representation of batch
"""
temp = np.zeros((len(data), num_class), np.int32)
for i, ele in enumerate(data):
for rel in ele:
if isprob: temp[i, rel-1] = 1
else: temp[i, rel] = 1
return temp
def add_placeholders(self):
"""
Adds placeholder variables to tensorflow computational graph.
Tensorflow uses placeholder variables to represent locations in a
computational graph where data is inserted. These placeholders are used as
inputs by the rest of the model building code and will be fed data during
training.
See for more information:
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#placeholders
"""
raise NotImplementedError("Each Model must re-implement this method.")
def create_feed_dict(self, input_batch, label_batch):
"""
Creates the feed_dict for training the given step.
A feed_dict takes the form of:
feed_dict = {
<placeholder>: <tensor of values to be passed for placeholder>,
....
}
If label_batch is None, then no labels are added to feed_dict.
Hint: The keys for the feed_dict should be a subset of the placeholder
tensors created in add_placeholders.
Args:
input_batch: A batch of input data.
label_batch: A batch of label data.
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
raise NotImplementedError("Each Model must re-implement this method.")
def add_model(self, input_data):
"""
Implements core of model that transforms input_data into predictions.
The core transformation for this model which transforms a batch of input
data into a batch of predictions.
Args:
input_data: A tensor of shape (batch_size, n_features).
Returns:
out: A tensor of shape (batch_size, n_classes)
"""
raise NotImplementedError("Each Model must re-implement this method.")
def add_loss(self, nn_out):
"""
Computes loss based on logits and actual labels
Parameters
----------
nn_out: Logits for each bag in the batch
Returns
-------
loss: Computes loss based on prediction and actual labels of the bags
"""
with tf.name_scope('Loss_op'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=nn_out, labels=self.input_y))
if self.regularizer != None: loss += tf.contrib.layers.apply_regularization(self.regularizer, tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
return loss
def add_optimizer(self, loss):
"""
Add optimizer for training variables
Parameters
----------
loss: Computed loss
Returns
-------
train_op: Training optimizer
"""
with tf.name_scope('Optimizer'):
if self.p.opt == 'adam' and not self.p.restore:
optimizer = tf.train.AdamOptimizer(self.p.lr)
else:
optimizer = tf.train.GradientDescentOptimizer(self.p.lr)
train_op = optimizer.minimize(loss)
return train_op
def predict(self, sess, data, wLabels=True, shuffle=False, label='Evaluating on Test'):
"""
Evaluate model on valid/test data
Parameters
----------
sess: Session of tensorflow
data: Data to evaluate on
wLabels: Does data include labels or not
shuffle: Shuffle data while before creates batches
label: Log label to be used while logging
Returns
-------
losses: Loss over the entire data
accuracies: Overall Accuracy
y: Actual label
y_pred: Predicted labels
logit_list: Logit list for each bag in the data
y_actual_hot: One hot represetnation of actual label for each bag in the data
"""
losses, accuracies, y_pred, y, logit_list, y_actual_hot = [], [], [], [], [], []
bag_cnt = 0
for step, batch in enumerate(self.getBatches(data, shuffle)):
loss, logits, accuracy = sess.run([self.loss, self.logits, self.accuracy], feed_dict = self.create_feed_dict(batch, split='test'))
losses. append(loss)
accuracies.append(accuracy)
pred_ind = logits.argmax(axis=1)
logit_list += logits.tolist()
y_actual_hot += self.getOneHot(batch['Y'], self.num_class).tolist()
y_pred += pred_ind.tolist()
y += np.argmax(self.getOneHot(batch['Y'], self.num_class), 1).tolist()
bag_cnt += len(batch['sent_num'])
if step % 100 == 0:
self.logger.info('{} ({}/{}):\t{:.5}\t{:.5}\t{}'.format(label, bag_cnt, len(self.data['test']), np.mean(accuracies)*100, np.mean(losses), self.p.name))
self.logger.info('Test Accuracy: {}'.format(accuracy))
return np.mean(losses), np.mean(accuracies)*100, y, y_pred, logit_list, y_actual_hot
def run_epoch(self, sess, data, epoch, shuffle=True):
"""
Runs one epoch of training
Parameters
----------
sess: Session of tensorflow
data: Data to train on
epoch: Epoch number
shuffle: Shuffle data while before creates batches
Returns
-------
losses: Loss over the entire data
Accuracy: Overall accuracy
"""
losses, accuracies = [], []
bag_cnt = 0
for step, batch in enumerate(self.getBatches(data, shuffle)):
feed = self.create_feed_dict(batch)
summary_str, loss, accuracy, _ = sess.run([self.merged_summ, self.loss, self.accuracy, self.train_op], feed_dict=feed)
losses. append(loss)
accuracies.append(accuracy)
bag_cnt += len(batch['sent_num'])
if step % 10 == 0:
self.logger.info('E:{} Train Accuracy ({}/{}):\t{:.5}\t{:.5}\t{}\t{:.5}'.format(epoch, bag_cnt, len(self.data['train']), np.mean(accuracies)*100, np.mean(losses), self.p.name, self.best_train_acc))
self.summ_writer.add_summary(summary_str, epoch*len(self.data['train']) + bag_cnt)
accuracy = np.mean(accuracies) * 100.0
self.logger.info('Training Loss:{}, Accuracy: {}'.format(np.mean(losses), accuracy))
return np.mean(losses), accuracy
def calc_prec_recall_f1(self, y_actual, y_pred, none_id):
"""
Calculates precision recall and F1 score
Parameters
----------
y_actual: Actual labels
y_pred: Predicted labels
none_id: Identifier used for denoting NA relation
Returns
-------
precision: Overall precision
recall: Overall recall
f1: Overall f1
"""
pos_pred, pos_gt, true_pos = 0.0, 0.0, 0.0
for i in range(len(y_actual)):
if y_actual[i] != none_id:
pos_gt += 1.0
for i in range(len(y_pred)):
if y_pred[i] != none_id:
pos_pred += 1.0 # classified as pos example (Is-A-Relation)
if y_pred[i] == y_actual[i]:
true_pos += 1.0
precision = true_pos / (pos_pred + self.p.eps)
recall = true_pos / (pos_gt + self.p.eps)
f1 = 2 * precision * recall / (precision + recall + self.p.eps)
return precision, recall, f1
def getPscore(self, sess, data, label='P@N Evaluation'):
"""
Computes P@N for N = 100, 200, and 300
Parameters
----------
data: Data for P@N evaluation
label: Log label to be used while logging
Returns
-------
P@100 Precision @ 100
P@200 Precision @ 200
P@300 Precision @ 300
"""
test_loss, test_acc, y, y_pred, logit_list, y_hot = self.predict(sess, data, label)
y_true = np.array([e[1:] for e in y_hot]). reshape((-1))
y_scores = np.array([e[1:] for e in logit_list]).reshape((-1))
allprob = np.reshape(np.array(y_scores), (-1))
allans = np.reshape(y_true, (-1))
order = np.argsort(-allprob)
def p_score(n):
corr_num = 0.0
for i in order[:n]:
corr_num += 1.0 if (allans[i] == 1) else 0
return corr_num / n
return p_score(100), p_score(200), p_score(300)
def fit(self, sess):
"""
Trains the model and finally evaluates on test
Parameters
----------
sess: Tensorflow session object
Returns
-------
"""
self.summ_writer = tf.summary.FileWriter('tf_board/{}'.format(self.p.name), sess.graph)
saver = tf.train.Saver()
save_dir = 'checkpoints/{}/'.format(self.p.name); make_dir(save_dir)
res_dir = 'results/{}/'.format(self.p.name); make_dir(res_dir)
save_path = os.path.join(save_dir, 'best_model')
# Restore previously trained model
if self.p.restore:
saver.restore(sess, save_path)
''' Train model '''
if not self.p.only_eval:
self.best_train_acc = 0.0
for epoch in range(self.p.max_epochs):
train_loss, train_acc = self.run_epoch(sess, self.data['train'], epoch)
self.logger.info('[Epoch {}]: Training Loss: {:.5}, Training Acc: {:.5}\n'.format(epoch, train_loss, train_acc))
# Store the model with least train loss
if train_acc > self.best_train_acc:
self.best_train_acc = train_acc
saver.save(sess=sess, save_path=save_path)
''' Evaluation on Test '''
saver.restore(sess, save_path)
test_loss, test_acc, y, y_pred, logit_list, y_hot = self.predict(sess, self.data['test'])
test_prec, test_rec, test_f1 = self.calc_prec_recall_f1(y, y_pred, 0) # 0: ID for 'NA' relation
y_true = np.array([e[1:] for e in y_hot]). reshape((-1))
y_scores = np.array([e[1:] for e in logit_list]).reshape((-1))
area_pr = average_precision_score(y_true, y_scores)
self.logger.info('Final results: Prec:{} | Rec:{} | F1:{} | Area:{}'.format(test_prec, test_rec, test_f1, area_pr))
# Store predictions
pickle.dump({'logit_list': logit_list, 'y_hot': y_hot}, open("results/{}/precision_recall.pkl".format(self.p.name), 'wb'))
''' P@N Evaluation '''
# P@1
one_100, one_200, one_300 = self.getPscore(sess, self.test_one, label='P@1 Evaluation')
self.logger.info('TEST_ONE: P@100: {}, P@200: {}, P@300: {}'.format(one_100, one_200, one_300))
one_avg = (one_100 + one_200 + one_300)/3
# P@2
two_100, two_200, two_300 = self.getPscore(sess, self.test_two, label='P@2 Evaluation')
self.logger.info('TEST_TWO: P@100: {}, P@200: {}, P@300: {}'.format(two_100, two_200, two_300))
two_avg = (two_100 + two_200 + two_300)/3
# P@All
all_100, all_200, all_300 = self.getPscore(sess, self.data['test'], label='P@All Evaluation')
self.logger.info('TEST_THREE: P@100: {}, P@200: {}, P@300: {}'.format(all_100, all_200, all_300))
all_avg = (all_100 + all_200 + all_300)/3
pprint ({
'one_100': one_100,
'one_200': one_200,
'one_300': one_300,
'mean_one': one_avg,
'two_100': two_100,
'two_200': two_200,
'two_300': two_300,
'mean_two': two_avg,
'all_100': all_100,
'all_200': all_200,
'all_300': all_300,
'mean_all': all_avg,
})