diff --git a/src/mvesuvio/analysis_fitting.py b/src/mvesuvio/analysis_fitting.py index 3d5e4cb..55a63b0 100644 --- a/src/mvesuvio/analysis_fitting.py +++ b/src/mvesuvio/analysis_fitting.py @@ -147,7 +147,7 @@ def subtractAllMassesExceptFirst(ic, ws, ncpForEachMass): mask = np.all(ws.extractY() == 0, axis=0) dataY[:, mask] = 0 - wsSubMass = CloneWorkspace(InputWorkspace=ws, OutputWorkspace=ws.name() + "_Mass0") + wsSubMass = CloneWorkspace(InputWorkspace=ws, OutputWorkspace=ws.name() + "_m0") passDataIntoWS(dataX, dataY, dataE, wsSubMass) wsMask, maskList = ExtractMask(ws) MaskDetectors(Workspace=wsSubMass, MaskedWorkspace=wsMask) @@ -185,7 +185,7 @@ def ySpaceReduction(wsTOF, mass0, yFitIC, ncp): # Normalize spectra of specieal workspace wsJoYN = Divide( - wsJoYB, wsJoYInt, OutputWorkspace=wsJoYB.name() + "_Normalised" + wsJoYB, wsJoYInt, OutputWorkspace=wsJoYB.name() + "_norm" ) wsJoYAvg = weightedAvgXBins(wsJoYN, xp) return wsJoYN, wsJoYAvg @@ -208,7 +208,7 @@ def ySpaceReduction(wsTOF, mass0, yFitIC, ncp): def convertToYSpace(wsTOF, mass0): - wsJoY = ConvertToYSpace(wsTOF, Mass=mass0, OutputWorkspace=wsTOF.name() + "_JoY") + wsJoY = ConvertToYSpace(wsTOF, Mass=mass0, OutputWorkspace=wsTOF.name() + "_joy") return wsJoY @@ -217,10 +217,10 @@ def rebinAndNorm(wsJoY, rebinPars): InputWorkspace=wsJoY, Params=rebinPars, FullBinsOnly=True, - OutputWorkspace=wsJoY.name() + "_Rebinned", + OutputWorkspace=wsJoY.name() + "_rebin", ) - wsJoYInt = Integration(wsJoYR, OutputWorkspace=wsJoYR.name() + "_Integrated") - wsJoYNorm = Divide(wsJoYR, wsJoYInt, OutputWorkspace=wsJoYR.name() + "_Normalised") + wsJoYInt = Integration(wsJoYR, OutputWorkspace=wsJoYR.name() + "_integrated") + wsJoYNorm = Divide(wsJoYR, wsJoYInt, OutputWorkspace=wsJoYR.name() + "_norm") return wsJoYNorm, wsJoYInt @@ -301,7 +301,7 @@ def weightedAvgXBins(wsXBins, xp): DataY=meansY, DataE=meansE, NSpec=1, - OutputWorkspace=wsXBins.name() + "_WeightedAvg", + OutputWorkspace=wsXBins.name() + "_wavg", ) return wsYSpaceAvg @@ -365,7 +365,7 @@ def weightedAvgCols(wsYSpace): DataY=meanY, DataE=meanE, NSpec=1, - OutputWorkspace=wsYSpace.name() + "_WeightedAvg", + OutputWorkspace=wsYSpace.name() + "_wavg", ) return wsYSpaceAvg @@ -474,7 +474,7 @@ def symmetrizeWs(avgYSpace): else: dataYS, dataES = weightedSymArr(dataY, dataE) - wsSym = CloneWorkspace(avgYSpace, OutputWorkspace=avgYSpace.name() + "_Symmetrised") + wsSym = CloneWorkspace(avgYSpace, OutputWorkspace=avgYSpace.name() + "_sym") wsSym = passDataIntoWS(dataX, dataYS, dataES, wsSym) return wsSym @@ -893,14 +893,21 @@ def createFitResultsWorkspace( ): """Creates workspace similar to the ones created by Mantid Fit.""" - wsMinFit = CreateWorkspace( + ws_fit_profile = CreateWorkspace( + DataX=dataX, + DataY=dataY, + DataE=dataE, + NSpec=1, + OutputWorkspace=wsYSpaceSym.name() + "_minuit", + ) + ws_fit_complete = CreateWorkspace( DataX=np.concatenate((dataX, dataX, dataX)), DataY=np.concatenate((dataY, dataYFit, Residuals)), DataE=np.concatenate((dataE, dataYSigma, np.zeros(len(dataE)))), NSpec=3, - OutputWorkspace=wsYSpaceSym.name() + "_Fitted_Minuit", + OutputWorkspace=wsYSpaceSym.name() + "_minuit_Workspace", ) - return wsMinFit + return ws_fit_complete def saveMinuitPlot(yFitIC, wsMinuitFit, mObj): @@ -927,7 +934,7 @@ def saveMinuitPlot(yFitIC, wsMinuitFit, mObj): def createCorrelationTableWorkspace(wsYSpaceSym, parameters, corrMatrix): tableWS = CreateEmptyTableWorkspace( - OutputWorkspace=wsYSpaceSym.name() + "_Fitted_Minuit_NormalizedCovarianceMatrix" + OutputWorkspace=wsYSpaceSym.name() + "_minuit_NormalizedCovarianceMatrix" ) tableWS.setTitle("Minuit Fit") tableWS.addColumn(type="str", name="Name") @@ -1211,7 +1218,7 @@ def createFitParametersTableWorkspace( ): # Create Parameters workspace tableWS = CreateEmptyTableWorkspace( - OutputWorkspace=wsYSpaceSym.name() + "_Fitted_Minuit_Parameters" + OutputWorkspace=wsYSpaceSym.name() + "_minuit_Parameters" ) tableWS.setTitle("Minuit Fit") tableWS.addColumn(type="str", name="Name") @@ -1297,7 +1304,8 @@ def fitProfileMantidFit(yFitIC, wsYSpaceSym, wsRes): else: raise ValueError("fitmodel not recognized.") - outputName = wsYSpaceSym.name() + "_Fitted_" + minimizer + suffix = 'lm' if minimizer=="Levenberg-Marquardt" else minimizer.lower() + outputName = wsYSpaceSym.name() + "_" + suffix CloneWorkspace(InputWorkspace=wsYSpaceSym, OutputWorkspace=outputName) Fit( @@ -1314,17 +1322,17 @@ def printYSpaceFitResults(wsJoYName): print("\nFit in Y Space results:") foundWS = [] try: - wsFitLM = mtd[wsJoYName + "_Fitted_Levenberg-Marquardt_Parameters"] + wsFitLM = mtd[wsJoYName + "_lm_Parameters"] foundWS.append(wsFitLM) except KeyError: pass try: - wsFitSimplex = mtd[wsJoYName + "_Fitted_Simplex_Parameters"] + wsFitSimplex = mtd[wsJoYName + "_simplex_Parameters"] foundWS.append(wsFitSimplex) except KeyError: pass try: - wsFitMinuit = mtd[wsJoYName + "_Fitted_Minuit_Parameters"] + wsFitMinuit = mtd[wsJoYName + "_minuit_Parameters"] foundWS.append(wsFitMinuit) except KeyError: pass @@ -1353,7 +1361,7 @@ def __init__(self, ic, yFitIC, wsFinalName, wsYSpaceAvgName): wsResSum = mtd[wsFinalName + "_Resolution_Sum"] wsJoYAvg = mtd[wsYSpaceAvgName] - wsSubMassName = wsYSpaceAvgName.split("_JoY_")[0] + wsSubMassName = wsYSpaceAvgName.split("_joy_")[0] wsMass0 = mtd[wsSubMassName] self.finalRawDataY = wsFinal.extractY() @@ -1367,19 +1375,19 @@ def __init__(self, ic, yFitIC, wsFinalName, wsYSpaceAvgName): poptList = [] perrList = [] try: - wsFitMinuit = mtd[wsJoYAvg.name() + "_Fitted_Minuit_Parameters"] + wsFitMinuit = mtd[wsJoYAvg.name() + "_minuit_Parameters"] poptList.append(wsFitMinuit.column("Value")) perrList.append(wsFitMinuit.column("Error")) except: pass try: - wsFitLM = mtd[wsJoYAvg.name() + "_Fitted_Levenberg-Marquardt_Parameters"] + wsFitLM = mtd[wsJoYAvg.name() + "_lm_Parameters"] poptList.append(wsFitLM.column("Value")) perrList.append(wsFitLM.column("Error")) except: pass try: - wsFitSimplex = mtd[wsJoYAvg.name() + "_Fitted_Simplex_Parameters"] + wsFitSimplex = mtd[wsJoYAvg.name() + "_simplex_Parameters"] poptList.append(wsFitSimplex.column("Value")) perrList.append(wsFitSimplex.column("Error")) except: