forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpretability_helpers.py
68 lines (54 loc) · 2.38 KB
/
interpretability_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2021 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helpers to visualize gradients and other interpretability analysis."""
import numpy as np
import tensorflow.compat.v2 as tf
def rotate_by_right_angle_multiple(image, rot=90):
"""Rotate an image by right angles."""
if rot not in [0, 90, 180, 270]:
raise ValueError(f"Cannot rotate by non-90 degree angle {rot}")
if rot in [90, -270]:
image = np.transpose(image, (1, 0, 2))
image = image[::-1]
elif rot in [180, -180]:
image = image[::-1, ::-1]
elif rot in [270, -90]:
image = np.transpose(image, (1, 0, 2))
image = image[:, ::-1]
return image
def compute_gradient(images, evaluator, is_training=False):
inputs = tf.Variable(images[None], dtype=tf.float32)
with tf.GradientTape() as tape:
tape.watch(inputs)
time_sigma = evaluator.model(inputs, None, is_training)
grad_time = tape.gradient(time_sigma[:, 0], inputs)
return grad_time, time_sigma
def compute_grads_for_rotations(images, evaluator, is_training=False):
test_gradients, test_outputs = [], []
for rotation in np.arange(0, 360, 90):
images_rot = rotate_by_right_angle_multiple(images, rotation)
grads, time_sigma = compute_gradient(images_rot, evaluator, is_training)
grads = np.squeeze(grads.numpy())
inv_grads = rotate_by_right_angle_multiple(grads, -rotation)
test_gradients.append(inv_grads)
test_outputs.append(time_sigma.numpy())
return np.squeeze(test_gradients), np.squeeze(test_outputs)
def compute_grads_for_rotations_and_flips(images, evaluator):
grads, time_sigma = compute_grads_for_rotations(images, evaluator)
grads_f, time_sigma_f = compute_grads_for_rotations(images[::-1], evaluator)
grads_f = grads_f[:, ::-1]
all_grads = np.concatenate([grads, grads_f], 0)
model_outputs = np.concatenate((time_sigma, time_sigma_f), 0)
return all_grads, model_outputs