forked from DEIB-GECO/GeneNetFusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextraction_classification.py
249 lines (207 loc) · 9.48 KB
/
extraction_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RepeatedStratifiedKFold
import warnings
from sklearn import preprocessing
from sklearn.metrics import precision_score, recall_score, roc_auc_score, roc_curve, f1_score
from sklearn.metrics import precision_score, recall_score, roc_auc_score, roc_curve, accuracy_score
from sklearn import linear_model
from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV
from tqdm import tqdm
warnings.filterwarnings('ignore')
#Concatenate Normal and Cancer matrices and retrieve the labels of patients
def prepare_data(N, C):
# Put the patients on the rows and the genes on the columns
N = N.T
C = C.T
# Put together normal patients and cancer ones
full = pd.concat([N, C])
# Change the name of the columns in numbers
full.columns = range(len(full.columns))
# Create the labels
labels = pd.DataFrame(0, columns=['Normal', 'Cancer'], index=full.index)
labels['Normal'][0:len(N)] = 1
labels['Cancer'][len(N):(len(N) + len(C))] = 1
full = pd.DataFrame(full)
return full, labels
#It allows to extract a submatrix from N and C with same dimensions of N1 and C1
def same_number(N, C, N1, C1):
full, labels = prepare_data(N, C)
full_1, labels = prepare_data(N1, C1)
sample = full.sample(len(full_1.T), axis=1)
return pd.DataFrame(sample), labels
#Extraction of important variables by means of lasso
def lasso(N, C):
full, labels = prepare_data(N, C)
y = labels['Normal'].values
clf = linear_model.Lasso(alpha=0.1)
clf.fit(full, y)
clf.predict(full)
clf.score(full, y)
###Model Lasso regression
model_lasso = LassoCV(alphas=[1, 0.1, 0.001, 0.0005]).fit(full, y)
###Model Lasso regression
coef = pd.Series(model_lasso.coef_, index=full.columns)
coef_selected = coef.iloc[coef.nonzero()]
N = N.T
C = C.T
N.columns = range(len(N.columns))
C.columns = range(len(C.columns))
lasso_norm = N[list(coef_selected.index)]
lasso_canc = C[list(coef_selected.index)]
return lasso_norm.T, lasso_canc.T
#Extraction of important variables by means of lasso starting from a random set extracted from N and C of same cardinality of N1 and C1
def lasso_sample(N, C, N1, C1):
full, labels = same_number(N, C, N1, C1)
y = labels['Normal'].values
clf = linear_model.Lasso(alpha=0.1)
clf.fit(full, y)
clf.predict(full)
clf.score(full, y)
###Model Lasso regression
model_lasso = LassoCV(alphas=[1, 0.1, 0.001, 0.0005]).fit(full, y)
###Model Lasso regression
coef = pd.Series(model_lasso.coef_, index=full.columns)
coef_selected = coef.iloc[coef.nonzero()]
N = N.T
C = C.T
N.columns = range(len(N.columns))
C.columns = range(len(C.columns))
lasso_norm = N[list(coef_selected.index)]
lasso_canc = C[list(coef_selected.index)]
return lasso_norm.T, lasso_canc.T
class RF:
def __init__(self, N, C, N_fused, C_fused, N_de, C_de, tumor):
self.normal = N
self.cancer = C
self.fused_norm = N_fused
self.fused_canc = C_fused
self.de_norm = N_de
self.de_canc = C_de
self.tumor = tumor
self.lasso_fused_norm, self.lasso_fused_canc = lasso(self.fused_norm, self.fused_canc)
self.lasso_fused_norm.to_csv('./Extracted/lasso_norm' + str(tumor) + '.csv', sep=';')
self.lasso_fused_canc.to_csv('./Extracted/lasso_canc' + str(tumor) + '.csv', sep=';')
pd.DataFrame(N.index[self.lasso_fused_norm.index]).to_csv('./Extracted/genes_comm_lasso_' + str(tumor) + '.csv')
self.lasso_de_norm, self.lasso_de_canc = lasso(self.de_norm, self.de_canc)
self.lasso_random_values = self.RF_classifier_random(self.normal, self.cancer, self.fused_norm, self.fused_canc, self.tumor)
self.lasso_de_values = self.RF_classifier(self.lasso_de_norm, self.lasso_de_canc, self.tumor, 'DE')
self.extracted_values = self.RF_classifier(self.lasso_fused_norm, self.lasso_fused_canc, self.tumor,'IC')
#One hundred times normal/cancer classification of samples
# It classify a set of features N1 and C1
def RF_classifier(self, N1, C1, tumor, what):
n_reps = 100
auc_scores = np.zeros(n_reps)
accuracy_scores = np.zeros(n_reps)
f1_scores = np.zeros(n_reps)
auc_scores1 = np.zeros(n_reps)
accuracy_scores1 = np.zeros(n_reps)
f1_scores1 = np.zeros(n_reps)
higher = 0
lower = 0
maximum = 0
minimum = 100
for u in range(0, n_reps):
fused, labels = prepare_data(N1, C1)
# prepare the data
X = fused
X = X.values
y = labels
y = y['Normal'].values
# save all the predictions
y_train_all = []
y_test_all = []
y_pred_all = []
y_predictions_all = []
train_probs_all = []
train_predictions_all = []
# cross validation
skf = RepeatedStratifiedKFold(n_splits=5, n_repeats=10, random_state=50)
for train_index, test_index in skf.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# scale the data
scaler = preprocessing.StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
# Create the random forest instance
mod = RandomForestClassifier(n_estimators=20, max_features=0.4, max_depth=10, min_samples_leaf=2)
# Fit the data
mod.fit(X_train, y_train)
# Predict the data
y_pred = [x[1] for x in mod.predict_proba(X_test)]
y_predictions = mod.predict(X_test)
train_predictions = mod.predict(X_train)
train_probs = [x[1] for x in mod.predict_proba(X_train)]
# Save all the predictions
y_pred_all += list(y_pred)
y_predictions_all += list(y_predictions)
y_train_all += list(y_train)
y_test_all += list(y_test)
train_predictions_all += list(train_predictions)
train_probs_all += list(train_probs)
auc_scores[u] = roc_auc_score(y_test_all, y_pred_all)
accuracy_scores[u] = accuracy_score(y_test_all, y_predictions_all)
f1_scores[u] = f1_score(y_test_all, y_predictions_all)
values = pd.DataFrame(columns=['auc', 'accuracy', 'f1'])
values['auc'] = auc_scores
values['accuracy'] = accuracy_scores
values['f1'] = f1_scores
values.to_csv('./Auc_acc_f1/auc_acc_f1_'+str(what)+'_' + str(tumor) + '.csv')
return values
#It classify a set of features extracted with lasso from a random set of genes starting from the same dimensions of N1 and C1
def RF_classifier_random(self, N, C, N1, C1, tumor):
n_reps = 100
auc_scores = np.zeros(n_reps)
accuracy_scores = np.zeros(n_reps)
f1_scores = np.zeros(n_reps)
for u in tqdm(range(0, n_reps)):
sample_l_n, sample_l_c = lasso_sample(N, C, N1, C1)
sample, labels = prepare_data(sample_l_n, sample_l_c)
# prepare the data
X = sample
X = X.values
y = labels
y = y['Normal'].values
# save all the predictions
y_train_all = []
y_test_all = []
y_pred_all = []
y_predictions_all = []
train_probs_all = []
train_predictions_all = []
# cross validation
skf = RepeatedStratifiedKFold(n_splits=5, n_repeats=10, random_state=50)
for train_index, test_index in skf.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# scale the data
scaler = preprocessing.StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
# Create the random forest instance
mod = RandomForestClassifier(n_estimators=20, max_features=0.4, max_depth=10, min_samples_leaf=2)
# Fit the data
mod.fit(X_train, y_train)
# Predict the data
y_pred = [x[1] for x in mod.predict_proba(X_test)]
y_predictions = mod.predict(X_test)
train_predictions = mod.predict(X_train)
train_probs = [x[1] for x in mod.predict_proba(X_train)]
# Save all the predictions
y_pred_all += list(y_pred)
y_predictions_all += list(y_predictions)
y_train_all += list(y_train)
y_test_all += list(y_test)
train_predictions_all += list(train_predictions)
train_probs_all += list(train_probs)
auc_scores[u] = roc_auc_score(y_test_all, y_pred_all)
accuracy_scores[u] = accuracy_score(y_test_all, y_predictions_all)
f1_scores[u] = f1_score(y_test_all, y_predictions_all)
values = pd.DataFrame(columns=['auc', 'accuracy', 'f1'])
values['auc'] = auc_scores
values['accuracy'] = accuracy_scores
values['f1'] = f1_scores
values.to_csv('./Auc_acc_f1/auc_acc_f1_random_' + str(tumor) + '.csv')
return values