-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmer_api.h
679 lines (578 loc) · 19 KB
/
kmer_api.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/*
This file is a part of KMC software distributed under GNU GPL 3 licence.
The homepage of the KMC project is http://sun.aei.polsl.pl/kmc
Authors: Sebastian Deorowicz and Agnieszka Debudaj-Grabysz
Version: 3.2.1
Date : 2022-01-04
*/
#ifndef _KMER_API_H
#define _KMER_API_H
#include "kmer_defs.h"
#include <string>
#include <iostream>
#include <vector>
#include "mmer.h"
class CKMCFile;
class CKmerAPI
{
protected:
uint64 *kmer_data; // An array to store kmer's data. On 64 bits 32 symbols can be stored
// Data are shifted to let sufix's symbols to start with a border of a byte
uint32 kmer_length; // Kmer's length, in symbols
uchar byte_alignment; // A number of "empty" symbols placed before prefix to let sufix's symbols to start with a border of a byte
uint32 no_of_rows; // A number of 64-bits words allocated for kmer_data
friend class CKMCFile;
//----------------------------------------------------------------------------------
inline void clear()
{
memset(kmer_data, 0, sizeof(*kmer_data) * no_of_rows);
}
//----------------------------------------------------------------------------------
inline void insert2bits(uint32 pos, uchar val)
{
kmer_data[(pos + byte_alignment) >> 5] += (uint64)val << (62 - (((pos + byte_alignment) & 31) * 2));
}
inline uchar extract2bits(uint32 pos)
{
return (kmer_data[(pos + byte_alignment) >> 5] >> (62 - (((pos + byte_alignment) & 31) * 2))) & 3;
}
//----------------------------------------------------------------------------------
inline void SHL_insert2bits(uchar val)
{
kmer_data[0] <<= 2;
if (byte_alignment)
{
uint64 mask = ~(((1ull << 2 * byte_alignment) - 1) << (64 - 2 * byte_alignment));
kmer_data[0] &= mask;
}
for (uint32 i = 1; i < no_of_rows; ++i)
{
kmer_data[i - 1] += kmer_data[i] >> 62;
kmer_data[i] <<= 2;
}
kmer_data[no_of_rows - 1] += (uint64)val << (62 - (((kmer_length - 1 + byte_alignment) & 31) * 2));
}
//----------------------------------------------------------------------------------
inline void SHR_insert2bits(uchar val)
{
for (uint32 i = no_of_rows - 1; i > 0; --i)
{
kmer_data[i] >>= 2;
kmer_data[i] += kmer_data[i - 1] << 62;
}
kmer_data[0] >>= 2;
kmer_data[no_of_rows - 1] &= ~((1ull << ((32 - (kmer_length + byte_alignment - (no_of_rows - 1) * 32)) * 2)) - 1);//mask falling of symbol
kmer_data[0] += ((uint64)val << 62) >> (byte_alignment * 2);
}
// ----------------------------------------------------------------------------------
inline void from_binary(const char* kmer)
{
clear();
for (uint32 i = 0; i < kmer_length; ++i)
insert2bits(i, kmer[i]);
}
// ----------------------------------------------------------------------------------
inline void from_binary_rev(const char* kmer)
{
clear();
for (uint32 i = 0; i < kmer_length; ++i)
insert2bits(i, 3 - kmer[kmer_length - i - 1]);
}
// ----------------------------------------------------------------------------------
template<typename RandomAccessIterator>
inline void to_string_impl(RandomAccessIterator iter)
{
uchar *byte_ptr;
uchar c;
uchar temp_byte_alignment = byte_alignment;
uint32 cur_string_size = 0;
for (uint32 row_counter = 0; row_counter < no_of_rows; row_counter++)
{
byte_ptr = reinterpret_cast<uchar*>(&kmer_data[row_counter]);
byte_ptr += 7; // shift a pointer towards a MSB
for (uint32 i = 0; (i < kmer_length) && (i < 32); i += 4) // 32 symbols of any "row" in kmer_data
{
if ((i == 0) && temp_byte_alignment) // check if a byte_alignment placed before a prefix is to be skipped
temp_byte_alignment--;
else
{
c = 0xc0 & *byte_ptr; //11000000
c = c >> 6;
*(iter + cur_string_size++) = char_codes[c];
if (cur_string_size == kmer_length) break;
}
if ((i == 0) && temp_byte_alignment) // check if a byte_alignment placed before a prefix is to be skipped
temp_byte_alignment--;
else
{
c = 0x30 & *byte_ptr; //00110000
c = c >> 4;
*(iter + cur_string_size++) = char_codes[c];
if (cur_string_size == kmer_length) break;
}
if ((i == 0) && temp_byte_alignment) // check if a byte_alignment placed before a prefix is to be skipped
temp_byte_alignment--;
else
{
c = 0x0c & *byte_ptr; //00001100
c = c >> 2;
*(iter + cur_string_size++) = char_codes[c];
if (cur_string_size == kmer_length) break;
}
// no need to check byte alignment as its length is at most 3
c = 0x03 & *byte_ptr; //00000011
*(iter + cur_string_size++) = char_codes[c];
if (cur_string_size == kmer_length) break;
byte_ptr--;
}
}
}
// ----------------------------------------------------------------------------------
template<typename RandomAccessIterator>
inline bool from_string_impl(const RandomAccessIterator iter, uint32 len)
{
unsigned char c_char;
uchar c_binary;
uchar temp_byte_alignment;
if (kmer_length != len)
{
if (kmer_length && kmer_data)
delete[] kmer_data;
kmer_length = len;
if (kmer_length % 4)
byte_alignment = 4 - (kmer_length % 4);
else
byte_alignment = 0;
if (kmer_length != 0)
{
no_of_rows = (((kmer_length + byte_alignment) % 32) ? (kmer_length + byte_alignment) / 32 + 1 : (kmer_length + byte_alignment) / 32);
//no_of_rows = (int)ceil((double)(kmer_length + byte_alignment) / 32);
kmer_data = new uint64[no_of_rows];
//memset(kmer_data, 0, sizeof(*kmer_data) * no_of_rows);
}
}
memset(kmer_data, 0, sizeof(*kmer_data) * no_of_rows);
temp_byte_alignment = byte_alignment;
uint32 i = 0;
uint32 i_in_string = 0;
uchar *byte_ptr;
for (uint32 row_index = 0; row_index < no_of_rows; row_index++)
{
byte_ptr = reinterpret_cast<uchar*>(&kmer_data[row_index]);
byte_ptr += 7; // shift a pointer towards a MSB
while (i < kmer_length)
{
if ((i_in_string == 0) && temp_byte_alignment) // check if a byte_alignment placed before a prefix is to be skipped
{
temp_byte_alignment--;
i++;
}
else
{
c_char = *(iter + i_in_string);
c_binary = num_codes[c_char];
c_binary = c_binary << 6; //11000000
*byte_ptr = *byte_ptr | c_binary;
i++;
i_in_string++;
if (i_in_string == kmer_length) break;
}
if ((i_in_string == 0) && temp_byte_alignment) // check if a byte_alignment placed before a prefix is to be skipped
{
temp_byte_alignment--;
i++;
}
else
{
c_char = *(iter + i_in_string);
c_binary = num_codes[c_char];
c_binary = c_binary << 4;
*byte_ptr = *byte_ptr | c_binary;
i++;
i_in_string++;
if (i_in_string == kmer_length) break;
}
//!!!if((i == 0) && temp_byte_alignment) //poprawka zg3oszona przez Maaka D3ugosza // check if a byte_alignment placed before a prefix is to be skipped
if ((i_in_string == 0) && temp_byte_alignment) // check if a byte_alignment placed before a prefix is to be skipped
{
temp_byte_alignment--;
i++;
}
else
{
c_char = *(iter + i_in_string);
c_binary = num_codes[c_char];
c_binary = c_binary << 2;
*byte_ptr = *byte_ptr | c_binary;
i++;
i_in_string++;
if (i_in_string == kmer_length) break;
}
c_char = *(iter + i_in_string);
c_binary = num_codes[c_char];
*byte_ptr = *byte_ptr | c_binary;
i++;
i_in_string++;
if (i_in_string == kmer_length) break;
if (i % 32 == 0)
break; //check if a new "row" is to be started
byte_ptr--;
}
};
return true;
}
public:
static const char char_codes[];
static char num_codes[256];
static uchar rev_comp_bytes_LUT[];
static uint64 alignment_mask[];
struct _si
{
_si()
{
for (int i = 0; i < 256; i++)
num_codes[i] = -1;
num_codes['A'] = num_codes['a'] = 0;
num_codes['C'] = num_codes['c'] = 1;
num_codes['G'] = num_codes['g'] = 2;
num_codes['T'] = num_codes['t'] = 3;
}
} static _init;
// ----------------------------------------------------------------------------------
// The constructor creates kmer for the number of symbols equal to length.
// The array kmer_data has the size of ceil((length + byte_alignment) / 32))
// IN : length - a number of symbols of a kmer
// ----------------------------------------------------------------------------------
inline CKmerAPI(uint32 length = 0)
{
if(length)
{
if(length % 4)
byte_alignment = 4 - (length % 4);
else
byte_alignment = 0;
no_of_rows = (((length + byte_alignment) % 32) ? (length + byte_alignment) / 32 + 1 : (length + byte_alignment) / 32);
//no_of_rows = (int)ceil((double)(length + byte_alignment) / 32);
kmer_data = new uint64[no_of_rows];
memset(kmer_data, 0, sizeof(*kmer_data) * no_of_rows);
}
else
{
kmer_data = NULL;
no_of_rows = 0;
byte_alignment = 0;
}
kmer_length = length;
};
//-----------------------------------------------------------------------
// The destructor
//-----------------------------------------------------------------------
inline ~CKmerAPI()
{
if (kmer_data != NULL)
delete [] kmer_data;
};
//-----------------------------------------------------------------------
// The copy constructor
//-----------------------------------------------------------------------
inline CKmerAPI(const CKmerAPI &kmer)
{
kmer_length = kmer.kmer_length;
byte_alignment = kmer.byte_alignment;
no_of_rows = kmer.no_of_rows;
kmer_data = new uint64[no_of_rows];
for(uint32 i = 0; i < no_of_rows; i++)
kmer_data[i] = kmer.kmer_data[i];
};
//-----------------------------------------------------------------------
// The operator =
//-----------------------------------------------------------------------
inline CKmerAPI& operator=(const CKmerAPI &kmer)
{
if(kmer.kmer_length != kmer_length)
{
if(kmer_length && kmer_data)
delete [] kmer_data;
kmer_length = kmer.kmer_length;
byte_alignment = kmer.byte_alignment;
no_of_rows = kmer.no_of_rows;
kmer_data = new uint64[no_of_rows];
}
for(uint32 i = 0; i < no_of_rows; i++)
kmer_data[i] = kmer.kmer_data[i];
return *this;
};
//-----------------------------------------------------------------------
// The operator ==
//-----------------------------------------------------------------------
inline bool operator==(const CKmerAPI &kmer) const
{
if(kmer.kmer_length != kmer_length)
return false;
for(uint32 i = 0; i < no_of_rows; i++)
if(kmer.kmer_data[i] != kmer_data[i])
return false;
return true;
};
//-----------------------------------------------------------------------
// Operator < . If arguments differ in length a result is undefined
//-----------------------------------------------------------------------
inline bool operator<(const CKmerAPI &kmer) const
{
if(kmer.kmer_length != kmer_length)
return false;
for(uint32 i = 0; i < no_of_rows; i++)
if(kmer.kmer_data[i] > kmer_data[i])
return true;
else
if(kmer.kmer_data[i] < kmer_data[i])
return false;
return false;
};
//-----------------------------------------------------------------------
// Return a symbol of a kmer from an indicated position (numbered form 0).
// The symbol is returned as an ASCI character A/C/G/T
// IN : pos - a position of a symbol
// RET : symbol - a symbol placed on a position pos
//-----------------------------------------------------------------------
inline char get_asci_symbol(unsigned int pos)
{
if(pos >= kmer_length)
return 0;
uint32 current_row = (pos + byte_alignment) / 32;
uint32 current_pos = ((pos + byte_alignment) % 32) * 2;
uint64 mask = 0xc000000000000000 >> current_pos;
uint64 symbol = kmer_data[current_row] & mask;
symbol = symbol >> (64 - current_pos - 2);
return char_codes[symbol];
};
//-----------------------------------------------------------------------
// Return a symbol of a kmer from an indicated position (numbered form 0)
// The symbol is returned as a numerical value 0/1/2/3
// IN : pos - a position of a symbol
// RET : symbol - a symbol placed on a position pos
//-----------------------------------------------------------------------
inline uchar get_num_symbol(unsigned int pos)
{
if (pos >= kmer_length)
return 0;
uint32 current_row = (pos + byte_alignment) / 32;
uint32 current_pos = ((pos + byte_alignment) % 32) * 2;
uint64 mask = 0xc000000000000000 >> current_pos;
uint64 symbol = kmer_data[current_row] & mask;
symbol = symbol >> (64 - current_pos - 2);
uchar* byte_ptr = reinterpret_cast<uchar*>(&symbol);
return *byte_ptr;
};
//-----------------------------------------------------------------------
// Convert kmer into string (an alphabet ACGT)
// RET : string kmer
//-----------------------------------------------------------------------
inline std::string to_string()
{
std::string string_kmer;
string_kmer.resize(kmer_length);
to_string_impl(string_kmer.begin());
return string_kmer;
};
//-----------------------------------------------------------------------
// Convert kmer into string (an alphabet ACGT). The function assumes enough memory was allocated
// OUT : str - string kmer.
//-----------------------------------------------------------------------
inline void to_string(char *str)
{
to_string_impl(str);
str[kmer_length] = '\0';
};
inline void to_long(std::vector<uint64>& kmer)
{
kmer.resize(no_of_rows);
uint32 offset = 62 - ((kmer_length - 1 + byte_alignment) & 31) * 2;
if (offset)
{
for (int32 i = no_of_rows - 1; i >= 1; --i)
{
kmer[i] = kmer_data[i] >> offset;
kmer[i] += kmer_data[i - 1] << (64 - offset);
}
kmer[0] = kmer_data[0] >> offset;
}
else
{
for (int32 i = no_of_rows - 1; i >= 0; --i)
kmer[i] = kmer_data[i];
}
}
//-----------------------------------------------------------------------
// Convert kmer into string (an alphabet ACGT)
// OUT : str - string kmer
//-----------------------------------------------------------------------
inline void to_string(std::string &str)
{
str.resize(kmer_length);
to_string_impl(str.begin());
};
//-----------------------------------------------------------------------
// Convert a string of an alphabet ACGT into a kmer of a CKmerAPI
// IN : kmer_string - a string of an alphabet ACGT
// RET : true - if succesfull
//-----------------------------------------------------------------------
inline bool from_string(const char* kmer_string)
{
uint32 len = 0;
for (; kmer_string[len] != '\0' ; ++len)
{
if (num_codes[(uchar)kmer_string[len]] == -1)
return false;
}
return from_string_impl(kmer_string, len);
}
//-----------------------------------------------------------------------
// Convert a string of an alphabet ACGT into a kmer of a CKmerAPI
// IN : kmer_string - a string of an alphabet ACGT
// RET : true - if succesfull
//-----------------------------------------------------------------------
inline bool from_string(const std::string& kmer_string)
{
for (uint32 ii = 0; ii < kmer_string.size(); ++ii)
{
if (num_codes[(uchar)kmer_string[ii]] == -1)
return false;
}
return from_string_impl(kmer_string.begin(), static_cast<uint32>(kmer_string.length()));
}
//-----------------------------------------------------------------------
// Convert k-mer to its reverse complement
//-----------------------------------------------------------------------
inline bool reverse()
{
if (kmer_data == NULL)
{
return false;
}
// number of bytes used to store the k-mer in the 0-th row
const uint32 size_in_byte = ((kmer_length + byte_alignment) / 4) - 8 * (no_of_rows - 1);
uchar* byte1;
uchar* byte2;
if (no_of_rows == 1)
{
*kmer_data <<= 2 * byte_alignment;
byte1 = reinterpret_cast<uchar*>(kmer_data) + 8 - size_in_byte;
byte2 = reinterpret_cast<uchar*>(kmer_data) + 7;
for (uint32 i_bytes = 0; i_bytes < size_in_byte / 2; ++i_bytes)
{
unsigned char temp = rev_comp_bytes_LUT[*byte1];
*byte1 = rev_comp_bytes_LUT[*byte2];
*byte2 = temp;
++byte1;
--byte2;
}
if (size_in_byte % 2)
{
*byte1 = rev_comp_bytes_LUT[*byte1];
}
}
else
{
uint64 to_less_sign_row = 0;
if (size_in_byte != 8) {
// move bits right
for (uint32 i_rows = no_of_rows - 1; i_rows > 0; --i_rows)
{
// more significant rows
kmer_data[i_rows] >>= 64 - 8 * size_in_byte - 2 * byte_alignment;
uint64 previous = kmer_data[i_rows - 1];
previous <<= 8 * size_in_byte + 2 * byte_alignment;
kmer_data[i_rows] |= previous;
byte1 = reinterpret_cast<uchar*>(kmer_data + i_rows);
byte2 = reinterpret_cast<uchar*>(kmer_data + i_rows) + 7;
for (int i_bytes = 0; i_bytes < 4; ++i_bytes)
{
unsigned char temp = rev_comp_bytes_LUT[*byte1];
*byte1 = rev_comp_bytes_LUT[*byte2];
*byte2 = temp;
++byte1;
--byte2;
}
}
kmer_data[0] >>= 64 - 8 * size_in_byte - 2 * byte_alignment;
kmer_data[0] <<= 64 - 8 * size_in_byte;
}
else
{
// move bits left
for (uint32 i_rows = no_of_rows - 1; i_rows > 0; --i_rows)
{
// more significant rows
uint64 from_less_sign_row = to_less_sign_row;
if (byte_alignment != 0)
{
to_less_sign_row = kmer_data[i_rows];
to_less_sign_row >>= 64 - 2 * byte_alignment;
}
kmer_data[i_rows] <<= 2 * byte_alignment;
kmer_data[i_rows] |= from_less_sign_row;
byte1 = reinterpret_cast<uchar*>(kmer_data + i_rows);
byte2 = reinterpret_cast<uchar*>(kmer_data + i_rows) + 7;
for (int i_bytes = 0; i_bytes < 4; ++i_bytes)
{
unsigned char temp = rev_comp_bytes_LUT[*byte1];
*byte1 = rev_comp_bytes_LUT[*byte2];
*byte2 = temp;
++byte1;
--byte2;
}
}
kmer_data[0] <<= 2 * byte_alignment;
}
kmer_data[0] |= to_less_sign_row;
byte1 = reinterpret_cast<uchar*>(kmer_data) + 8 - size_in_byte;
byte2 = reinterpret_cast<uchar*>(kmer_data) + 7;
for (uint32 i_bytes = 0; i_bytes < size_in_byte / 2; ++i_bytes)
{
unsigned char temp = rev_comp_bytes_LUT[*byte1];
*byte1 = rev_comp_bytes_LUT[*byte2];
*byte2 = temp;
++byte1;
--byte2;
}
if (size_in_byte % 2)
{
*byte1 = rev_comp_bytes_LUT[*byte1];
}
for (uint32 i_rows = 0; i_rows < no_of_rows / 2; ++i_rows)
{
std::swap(kmer_data[i_rows], kmer_data[no_of_rows - i_rows - 1]);
}
}
// clear alignment
*kmer_data &= alignment_mask[byte_alignment];
return true;
}
//-----------------------------------------------------------------------
// Counts a signature of an existing kmer
// IN : sig_len - the length of a signature
// RET : signature value
//-----------------------------------------------------------------------
uint32 get_signature(uint32 sig_len)
{
uchar symb;
CMmer cur_mmr(sig_len);
for(uint32 i = 0; i < sig_len; ++i)
{
symb = get_num_symbol(i);
cur_mmr.insert(symb);
}
CMmer min_mmr(cur_mmr);
for (uint32 i = sig_len; i < kmer_length; ++i)
{
symb = get_num_symbol(i);
cur_mmr.insert(symb);
if (cur_mmr < min_mmr)
min_mmr = cur_mmr;
}
return min_mmr.get();
}
};
#endif
// ***** EOF