-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpretrain.py
228 lines (199 loc) · 6.76 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gc
import random
import fire
import numpy as np
import pandas as pd
import torch
import tqdm
from torchinfo import summary
import datasets.config as config
from datasets.loader import load_pretrain_data
from my_utils.generators import pretrain_data_generator
from network.loss import vicreg_loss
from network.model import VICReg
# Seed
torch.manual_seed(1)
random.seed(1)
np.random.seed(1)
def run_pretrain(
*,
ds_name: str,
supervised_data: bool = False,
num_random_patches: int = -1,
kernel: tuple = (64, 64),
stride: tuple = (32, 32),
entropy_threshold: float = 0.8,
model_type: str = "CustomCNN",
encoder_features_dim: int = 1600,
expander_features_dim: int = 1024,
epochs: int = 150,
batch_size: int = 16,
sim_loss_weight: float = 25.0,
var_loss_weight: float = 25.0,
cov_loss_weight: float = 1.0,
):
torch.cuda.empty_cache()
gc.collect()
print("--------VICREG PRETRAINING EXPERIMENT--------")
print(f"Dataset: {ds_name}")
print(f"Supervised data: {supervised_data}")
print(f"Number of random patches: {num_random_patches}")
print(f"Kernel: {kernel}")
print(f"Stride: {stride}")
print(f"Entropy threshold: {entropy_threshold}")
print(f"Model type: {model_type}")
print(f"Encoder features dimension: {encoder_features_dim}")
print(f"Expander features dimension: {expander_features_dim}")
print(f"Number of epochs: {epochs}")
print(f"Batch size: {batch_size}")
print(f"Similarity loss weight: {sim_loss_weight}")
print(f"Variance loss weight: {var_loss_weight}")
print(f"Covariance loss weight: {cov_loss_weight}")
print("----------------------------------------------------")
# 1) LOAD DATA
X = load_pretrain_data(
ds_name=ds_name,
supervised=supervised_data,
num_random_patches=num_random_patches,
kernel=kernel,
stride=stride,
entropy_threshold=entropy_threshold,
)
# 2) SET OUTPUT DIR
output_dir = config.output_dir / "VICReg"
output_dir = output_dir / f"{model_type}"
output_dir.mkdir(parents=True, exist_ok=True)
model_name = ""
if supervised_data:
model_name += "bboxes_"
else:
model_name = f"{num_random_patches}" if num_random_patches > 0 else "all"
model_name += "patches_"
model_name += f"k{'x'.join(map(str, kernel))}_"
model_name += f"s{'x'.join(map(str, stride))}_"
model_name += f"et{entropy_threshold}_"
model_name += f"encdim{encoder_features_dim}_"
model_name += f"expdim{expander_features_dim}_"
model_name += f"bs{batch_size}_"
model_name += f"ep{epochs}_"
model_name += f"sw{sim_loss_weight}_"
model_name += f"vw{var_loss_weight}_"
model_name += f"cw{cov_loss_weight}"
encoder_filepath = output_dir / f"{model_name}_encoder.pt"
# 3) PRETRAINING
logs_dict = pretrain_model(
X=X,
encoder_filepath=str(encoder_filepath),
model_type=model_type,
encoder_features_dim=encoder_features_dim,
expander_features_dim=expander_features_dim,
batch_size=batch_size,
epochs=epochs,
sim_loss_weight=sim_loss_weight,
var_loss_weight=var_loss_weight,
cov_loss_weight=cov_loss_weight,
)
# 4) SAVE RESULTS
pd.DataFrame(logs_dict).to_csv(
output_dir / f"{model_name}_train_logs.csv", index=False
)
############################################# UTILS:
def pretrain_model(
*,
X: torch.Tensor,
encoder_filepath: str,
model_type: str = "CustomCNN",
encoder_features_dim: int = 1600,
expander_features_dim: int = 1024,
batch_size: int = 16,
epochs: int = 150,
sim_loss_weight: float = 25.0,
var_loss_weight: float = 25.0,
cov_loss_weight: float = 1.0,
):
torch.cuda.empty_cache()
gc.collect()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"USING DEVICE: {device}")
# 1) LOAD DATA
train_steps = len(X) // batch_size
train_gen = pretrain_data_generator(images=X, device=device, batch_size=batch_size)
# 2) CREATE MODEL
if model_type in ["CustomCNN", "Resnet34", "Vgg19"]:
model = VICReg(
base_model=model_type,
encoder_features=encoder_features_dim,
expander_features=expander_features_dim,
)
else:
raise NotImplementedError(f"Model type {model_type} not supported")
model = model.to(device)
summary(model, input_size=[(1,) + config.INPUT_SHAPE])
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# 3) TRAINING
best_epoch = 0
best_losses = {
"sim_loss": float("inf"),
"var_loss": float("inf"),
"cov_loss": float("inf"),
"loss": float("inf"),
}
losses_acc = {
"sim_loss": [],
"var_loss": [],
"cov_loss": [],
"loss": [],
}
model.train()
for epoch in range(epochs):
print(f"Epoch {epoch + 1}/{epochs}")
# Training
broken_epoch = False
for _ in tqdm.tqdm(range(train_steps), position=0, leave=True):
xa, xb = next(train_gen)
optimizer.zero_grad()
za, zb = model(xa), model(xb)
loss_dict = vicreg_loss(
za=za,
zb=zb,
sim_loss_weight=sim_loss_weight,
var_loss_weight=var_loss_weight,
cov_loss_weight=cov_loss_weight,
)
loss = loss_dict["loss"]
if torch.isnan(loss):
broken_epoch = True
break
loss.backward()
optimizer.step()
if broken_epoch:
for k, v in losses_acc.items():
losses_acc[k].append(v[-1])
else:
for k, v in loss_dict.items():
losses_acc[k].append(v.cpu().detach().item())
print_info = []
for k, v in losses_acc.items():
print_info.append(f"{k}: {v[-1]:.4f}")
print_info = " - ".join(print_info)
print(print_info)
# Save best model
if losses_acc["loss"][-1] < best_losses["loss"]:
print(
f"Loss improved from {best_losses['loss']} to {losses_acc['loss'][-1]}. Saving encoder's weights to {encoder_filepath}"
)
best_losses = {
"sim_loss": losses_acc["sim_loss"][-1],
"var_loss": losses_acc["var_loss"][-1],
"cov_loss": losses_acc["cov_loss"][-1],
"loss": losses_acc["loss"][-1],
}
best_epoch = epoch
model.save(path=encoder_filepath)
# 4) PRINT BEST RESULTS
print(
f"Epoch {best_epoch + 1} achieved lowest loss value = {best_losses['loss']:.4f}"
)
return losses_acc
if __name__ == "__main__":
fire.Fire(run_pretrain)