-
Notifications
You must be signed in to change notification settings - Fork 0
/
webcam.js
113 lines (96 loc) · 3.63 KB
/
webcam.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
/**
* A class that wraps webcam video elements to capture Tensor4Ds.
*/
class Webcam {
/**
* @param {HTMLVideoElement} webcamElement A HTMLVideoElement representing the
* webcam feed.
*/
constructor(webcamElement) {
this.webcamElement = webcamElement;
}
/**
* Captures a frame from the webcam and normalizes it between -1 and 1.
* Returns a batched image (1-element batch) of shape [1, w, h, c].
*/
capture() {
return tf.tidy(() => {
// Reads the image as a Tensor from the webcam <video> element.
const webcamImage = tf.browser.fromPixels(this.webcamElement);
const reversedImage = webcamImage.reverse(1);
// Crop the image so we're using the center square of the rectangular
// webcam.
const croppedImage = this.cropImage(reversedImage);
// Expand the outer most dimension so we have a batch size of 1.
const batchedImage = croppedImage.expandDims(0);
// Normalize the image between -1 and 1. The image comes in between 0-255,
// so we divide by 127 and subtract 1.
return batchedImage.toFloat().div(tf.scalar(127)).sub(tf.scalar(1));
});
}
/**
* Crops an image tensor so we get a square image with no white space.
* @param {Tensor4D} img An input image Tensor to crop.
*/
cropImage(img) {
const size = Math.min(img.shape[0], img.shape[1]);
const centerHeight = img.shape[0] / 2;
const beginHeight = centerHeight - (size / 2);
const centerWidth = img.shape[1] / 2;
const beginWidth = centerWidth - (size / 2);
return img.slice([beginHeight, beginWidth, 0], [size, size, 3]);
}
/**
* Adjusts the video size so we can make a centered square crop without
* including whitespace.
* @param {number} width The real width of the video element.
* @param {number} height The real height of the video element.
*/
adjustVideoSize(width, height) {
const aspectRatio = width / height;
if (width >= height) {
this.webcamElement.width = aspectRatio * this.webcamElement.height;
} else if (width < height) {
this.webcamElement.height = this.webcamElement.width / aspectRatio;
}
}
async setup() {
return new Promise((resolve, reject) => {
navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia || navigator.mozGetUserMedia ||
navigator.msGetUserMedia;
if (navigator.getUserMedia) {
navigator.getUserMedia(
{video: {width: 224, height: 224}},
stream => {
this.webcamElement.srcObject = stream;
this.webcamElement.addEventListener('loadeddata', async () => {
this.adjustVideoSize(
this.webcamElement.videoWidth,
this.webcamElement.videoHeight);
resolve();
}, false);
},
error => {
reject(error);
});
} else {
reject();
}
});
}
}