-
Notifications
You must be signed in to change notification settings - Fork 4
/
positionIMUCameraUKF.m
186 lines (143 loc) · 5.25 KB
/
positionIMUCameraUKF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
% Position-only UKF
%% UKF parameters
ukf_alpha = 0.1;
ukf_beta = 2;
%% x: state vector
% p_w_i = x(1:3); % IMU position in the world frame
%% P: state covariance matrix
%% u: process inputs
% u = v_w(1:3, i); % IMU velocity measured in the world frame as
% reported by the simulator
%% n: process noise
%% Q: process noise covariance matrix
% Q = std_v_w^2 * eye(3);
Q = 0.1^2 *eye(3);
%Q=0*eye(3);
%% z: measurements
% See section 4.3 Measurement Model on page 11
% z is a 2n-by-1 column vector of observed pixel coordinates in the
% form [x1 y1 ... xn yn]' where n is the number of 3D feature points
%% R: measurement noise covariance matrix
% The associated block-daigonal covariance matrix of z
% R = diag(R1 ... Rn)
%% Starting index
i = 1;
j = 1;
nowTime = -0.01;
%% Initial estimate
expected_rad_error = .001 * pi / 180;
init_rad_error = 0.2* expected_rad_error;
rand_quat = matrix2quaternion(rotx(init_rad_error)*roty(init_rad_error)*rotz(init_rad_error));
nx=3+3+4; % p_w_i, p_i_c, q_i_c
nP=3+3+3; % p_w_i, p_i_c, de_i_c
x=zeros(nx,1);
%x(1:3,1) = p_w(:,i); % Let's make this easy and set it to the ground truth location
%x(1:3)=p_w_i(:,1)+rand(3,1); x(4:6)=2*randn(3,1); x(7:end)=q_i_c+rand_quat;
%qstart=q_i_c+rand(4,1);
x(1:3)=p_w_i(:,1); x(4:6)=10*rand(3,1); x(7:end)=rand_quat;%normalize(qstart);
xstart=x;
%x(1:3,1) = [0.4 0.4 0.4]';
%P = diag([0.5 0.5 0.5]);
P=.001*eye(nP);
%% Initialize storage matrices
numCamMeasurements = size(observed_pts_c, 2);
numImuMeasurements = length(imuData);
numPoses = numImuMeasurements + numCamMeasurements;
accumPoses = zeros(3,numPoses);
accumOrient = NaN * ones(3,numPoses);
distanceQuatError = zeros(1, numPoses);
distancePosError = zeros(1, numPoses);
%% Begin Kalman filter
ukf_N = length(x);
count = 1;
while (i <= numImuMeasurements && j <= numCamMeasurements )
% Read the timestamp for the next data input
imuTime = imuData(i,3);
camTime = camData(j,3);
if (imuTime < camTime)
%% Prediction step
pastTime = nowTime;
nowTime = imuTime;
dt = nowTime - pastTime;
%u = noisy_v_w(1:3, i);
u=v_w(1:3,i);
process_params{1} = u;
process_params{2} = dt;
process_handle = @processModelTranslation;
[xpred Ppred] = predictUKF(x(1:3), process_handle, process_params, P(1:3,1:3), Q, ukf_alpha, ukf_beta);
x(1:3)=xpred;
P(1:3,1:3)=Ppred;
i = i + 1;
else
%% Correction Step
% Perform correction step
%z = noisy_observed_pts_c(:,j);
z=observed_pts_c(:,j);
% R = reshape(camData(j,11:46), 6, 6);
% R = std_pixel_noise^2 * eye(length(z));
%R = 0.1^2 * eye(length(z));
R=0.0001^2*eye(length(z));
x_se = [0 0 0]'; % State error vector in MRP
xbar=[x(1:6);x_se];
ukf_N = length(xbar);
%p_IMU_camera = repmat(p_i_c, 1, 2*ukf_N+1);
q_world_IMU = repmat(q_w_i(:,j), 1, 2*ukf_N+1);
%q_IMU_camera = repmat(q_i_c, 1, 2*ukf_N+1);
p_world_pts = pts_w(1:3, :);
%K = eye(3);
%obs_params{1} = p_IMU_camera;
obs_params{1}=x(7:10);
obs_params{2} = q_world_IMU;
%obs_params{3} = q_IMU_camera;
obs_params{3} = p_world_pts;
obs_params{4} = K;
obs_handle = @measurementModelPositionIMUCamera;
[ xbar1, P ] = correctUKF( xbar, P, R, z, obs_handle, obs_params, ukf_alpha, ukf_beta );
mrp_error = xbar1(7:9);
% Convert MRP error vector to quaternion error
norm_mrp_error = sqrt(sum(mrp_error.^2, 1));
dq0 = (1 - norm_mrp_error) ./ (1 + norm_mrp_error);
q_error = [ dq0;
bsxfun(@times,(1+dq0),mrp_error)];
% q_error = q_error./norm(q_error);
quat_new = quaternionproduct(q_error, x(7:10))';
quat_new = quat_new ./ norm(quat_new);
x(7:10) = quat_new;
x(1:6)=xbar1(1:6);
j = j + 1;
end
%% Distance error
distanceQuatError(1,count) = findQuaternionError(x(7:10), q_i_c);
distancePosError(1,count)=norm(x(1:6) - [p_w(:,i);p_i_c]);
%% Plot
accumPoses(:,count) = x(1:3);
% accumOrient(:,count) = cmatrix(x(1:3))*[0 0 1]';
count = count + 1;
x
if mod(count, 10) == 1
figure(1)
clf
subplot(3,1,1);
plot3(accumPoses(1,1:count-1), accumPoses(2,1:count-1), accumPoses(3,1:count-1),'.');
hold on;
plot3(p_w(1,1:i), p_w(2,1:i), p_w(3,1:i), 'g');
% hold on;
% plot3(pts_w(1, :), pts_w(2, :), pts_w(3, :), 'r.');
axis equal
axis vis3d
subplot(3,1,2);
plot(1:count,distancePosError(1:count));
maxPosErr = max(distancePosError);
axis([0 numPoses 0 maxPosErr]);
xlabel('Time');
ylabel('Distance to ground truth');
title('Squared Error for position');
subplot(3,1,3);
plot(1:count,distanceQuatError(1:count));
maxQuatErr = max(distanceQuatError);
axis([0 numPoses 0 maxQuatErr]);
xlabel('Time');
ylabel('Distance to ground truth');
title('Squared Error for quaternion');
end
end