Skip to content

Latest commit

 

History

History
135 lines (122 loc) · 5.53 KB

README.md

File metadata and controls

135 lines (122 loc) · 5.53 KB

aiRbnb

RaukR 2019 project

Aim of the work:

To present Airbnb data collection as a shiny application.

To do:

  • a map showing regions of a city depending on price, distance to the city center etc.
  • wordcloud for apartment descriptions, reviews etc.
  • basic statistic for a city or specific regions of a city

Airbnb dataset

http://insideairbnb.com/get-the-data.html

Data structure

Input is a table in .csv format.

  • id - just id
  • listing_url
  • scrape_id
  • last_scraped
  • name
  • summary
  • space
  • description - apartment description (for wordcloud plot)
  • experiences_offered
  • neighborhood_overview - description of a district
  • notes
  • transit
  • access
  • interaction
  • house_rules
  • thumbnail_url
  • medium_url
  • picture_url
  • xl_picture_url
  • host_id
  • host_url
  • host_name
  • host_since
  • host_location
  • host_about
  • host_response_time
  • host_response_rate
  • host_acceptance_rate
  • host_is_superhost
  • host_thumbnail_url
  • host_picture_url
  • host_neighbourhood
  • host_listings_count
  • host_total_listings_count
  • host_verifications
  • host_has_profile_pic
  • host_identity_verified
  • street
  • neighbourhood - district name
  • neighbourhood_cleansed
  • neighbourhood_group_cleansed
  • city
  • state
  • zipcode
  • market
  • smart_location
  • country_code
  • country
  • latitude - apartment position on map - ggmap()
  • longitude - apartment position on map - ggmap()
  • is_location_exact
  • property_type
  • room_type
  • accommodates
  • bathrooms
  • bedrooms
  • beds
  • bed_type
  • amenities - amenities included in the apartment (for wordcloud plot)
  • square_feet
  • price
  • weekly_price
  • monthly_price
  • security_deposit
  • cleaning_fee
  • guests_included
  • extra_people
  • minimum_nights
  • maximum_nights
  • minimum_minimum_nights
  • maximum_minimum_nights
  • minimum_maximum_nights
  • maximum_maximum_nights
  • minimum_nights_avg_ntm
  • maximum_nights_avg_ntm
  • calendar_updated
  • has_availability
  • availability_30
  • availability_60
  • availability_90
  • availability_365
  • calendar_last_scraped
  • number_of_reviews
  • number_of_reviews_ltm
  • first_review
  • last_review
  • review_scores_rating
  • review_scores_accuracy
  • review_scores_cleanliness
  • review_scores_checkin
  • review_scores_communication
  • review_scores_location
  • review_scores_value
  • requires_license
  • license
  • jurisdiction_names
  • instant_bookable
  • is_business_travel_ready
  • cancellation_policy
  • require_guest_profile_picture
  • require_guest_phone_verification
  • calculated_host_listings_count
  • calculated_host_listings_count_entire_homes
  • calculated_host_listings_count_private_rooms
  • calculated_host_listings_count_shared_rooms
  • reviews_per_month

Other analysis of Airbnb data

https://www.kaggle.com/djonafegnem/airbnb-data-analysis-in-r

http://rpubs.com/xyz8031/NewYorkCityAirbnbDataVisualizationWithR

https://towardsdatascience.com/airbnb-rental-listings-dataset-mining-f972ed08ddec