-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_dst.py
148 lines (123 loc) · 4.1 KB
/
train_dst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import gym
from datetime import datetime
import uuid
class Actor(nn.Module):
def __init__(self, nS):
super(Actor, self).__init__()
self.out = nn.Sequential(
nn.Linear(nS,50),
nn.Tanh(),
nn.Linear(50,4)
)
# self.out = nn.Linear(7,2)
def forward(self, x):
x = self.out(x)
x = F.log_softmax(x, dim=-1)
return x
class Critic(nn.Module):
def __init__(self, nS, c=11):
super(Critic, self).__init__()
self.c = c
self.common = nn.Sequential(
nn.Linear(nS, 50),
nn.Tanh(),
nn.Linear(50, 50),
nn.Tanh(),
)
self.critic = nn.Linear(50, c**2)
def forward(self, x):
x = self.common(x)
x = self.critic(x)
x = F.softmax(x, dim=1)
x = x.view(-1, self.c, self.c)
return x
def utility(values):
debt = 45; deadline = 10; penalty = -10
ut = F.softplus(values[:,0]-debt)
# everything lower than deadline yields 0, otherwise, additional steps are squared
uf = -(values[:,1].abs()-deadline).clamp(0)**2
uf[uf.nonzero()] += penalty
return (ut+uf).view(-1,1)
def stepwise_utility(values, utility_function, gamma):
utilities = []
for v in values:
steps = -int(v[1])
utility = utility_function(torch.tensor([[v[0], -1.]]))
for _ in range(steps-1):
utility = utility*gamma + utility_function(torch.tensor([[0., -1.]]))
utilities.append(utility.item())
return torch.tensor(utilities).view(-1, 1)
def all_returns(env, gamma):
returns = torch.empty(0,2)
for k, v in env.unwrapped._treasures().items():
steps = sum(k)
r = torch.tensor([[v*gamma**steps, sum([-1*gamma**i for i in range(steps)])]])
returns = torch.cat((returns, r), dim=0)
return returns
def make_weighted_sum(env, gamma, weights, normalize=False):
min_u, max_u = 0., 1.
if normalize:
returns = all_returns(env, gamma)
values = torch.sum(returns*weights, dim=-1)
min_u, max_u = values.min(), values.max()
def utility(values):
v = torch.sum(values*weights, dim=-1, keepdim=True)
v = (v-min_u)/(max_u-min_u)
return v
return utility
if __name__ == '__main__':
from agents.mocac import MOCAC
from policies.policy import Categorical
from memory.memory import Memory
from gym.wrappers import TimeLimit
from wrappers.one_hot import OneHotEnv
from envs.dst import DeepSeaTreasureEnv
from log.plotter import Plotter
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--gamma', default=0.95, type=float)
parser.add_argument('--w', default=0., type=float)
parser.add_argument('--timesteps', default=1000000, type=int)
args = parser.parse_args()
print(args)
c = 11
gamma = args.gamma
w = args.w
n_steps_update = 10
e_coef = 0.1
env = DeepSeaTreasureEnv()
env = TimeLimit(env, 100)
env = OneHotEnv(env, env.nS)
actor = Actor(env.nS)
critic = Critic(env.nS, c=c)
utility_function = utility
# utility_function = make_weighted_sum(env, gamma, torch.tensor([[w, 1.-w]]), True)
logdir = f'runs/deep_sea_treasure/gamma_{gamma}/w_{w}/lr_{args.lr}/e_coef_{e_coef}/n_steps_update_{n_steps_update}/'
logdir += datetime.now().strftime('%Y-%m-%d_%H-%M-%S_') + str(uuid.uuid4())[:4] + '/'
agent = MOCAC(
env,
Categorical(),
Memory(),
actor,
critic,
gamma=gamma,
lr=args.lr,
utility=utility_function,
logdir=logdir,
c=c,
e_coef=e_coef,
n_steps_update=n_steps_update,
v_min=[0., -20.1],
v_max=[100.1, 0.1],
)
agent.train(timesteps=args.timesteps, eval_freq=np.inf)
breakpoint()
Plotter(logdir)
returns = all_returns(env, gamma)
print(utility_function(returns))
print(stepwise_utility(returns, utility_function, gamma))