-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathua.f
324 lines (310 loc) · 7.96 KB
/
ua.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
program ttt
implicit real*8 (a-h,o-z)
C compile ifort ua.f -r8 -I./fftw-3.3.4/include -L./fftw-3.3.4/lib -lfftw3
real*8 u(129),uu(129),x(129),wait(129),v(129),tt(129)
real*8 us(129),vs(129),ws(129)
real*8 w(129)
km = 129
CPI = DBLE(4.)*DATAN(DBLE(1))
do i=1,km
wait(i)=DBLE(0)
x(i)=DCOS( (DBLE(i-1)*CPI)/DBLE(km-1) )
enddo
do i=1,km,2
r=i-1
wait(i)=-DBLE(1)/DBLE(r*r-1)
enddo
wait(1)=DBLE(1)/DBLE(2)
do k=1,km
us(k)=DBLE(0)
vs(k)=DBLE(0)
ws(k)=DBLE(0)
enddo
C PROCESS MEAN STREAM VELOCITY FIRST
do i=1,200000
read(2111,'(512E24.16)') (u(K),K=1,KM)
C make symmetric
do j=1,km/2+1
tmp=(u(km+1-j)+u(j))/DBLE(2)
u(j)=tmp
u(km+1-j)=tmp
enddo
C 1st derivative in spectral space
call ctran(u)
call chebdz(u,uu,km)
call citran(uu)
do k=1,km
u(k)=uu(k)/DBLE(180)
enddo
C integral of ^2 over wall-normal direction
do k=1,km
us(k)=us(k)+(u(k)-us(k))/DBLE(i)
tt(k)=us(k)
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
sumu=su3
do k=1,km
tt(k)=(us(k)-sumu)**2
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
rmsu=su3
C PROCESS STREAMWISE REYNOLDS STRESS
read(2123,'(512E24.16)') (v(K),K=1,KM)
c make asymmetric
do j=1,km/2+1
tmp=(v(km+1-j)-v(j))/DBLE(2)
v(j)=-tmp
v(km+1-j)=tmp
enddo
C integral of ^2 over wall-normal direction
do k=1,km
vs(k)=vs(k)+(v(k)-vs(k))/DBLE(i)
tt(k)=vs(k)
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
sumv=su3
do k=1,km
tt(k)=(vs(k)-sumv)**2
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
rmsv=su3
C add into time averaging sum
do k=1,km
w(k)=u(k)-v(k)+x(k)
ws(k)=ws(k)+(w(k)-ws(k))/DBLE(i)
tt(k)=ws(k)
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
sumw=su3
do k=1,km
tt(k)=(ws(k)-sumw)**2
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
rmsw=su3
write(3117,'(i8,512E24.16)') i,
& sumu**2+rmsu,
& sumv**2+rmsv,
& sumw**2+rmsw
enddo
C PROCESS MEAN STREAM VELOCITY FIRST
do i=200001,400000
read(2211,'(512E24.16)') (u(K),K=1,KM)
C make symmetric
do j=1,km/2+1
tmp=(u(km+1-j)+u(j))/DBLE(2)
u(j)=tmp
u(km+1-j)=tmp
enddo
C 1st derivative in spectral space
call ctran(u)
call chebdz(u,uu,km)
call citran(uu)
do k=1,km
u(k)=uu(k)/DBLE(180)
enddo
C integral of ^2 over wall-normal direction
do k=1,km
us(k)=us(k)+(u(k)-us(k))/DBLE(i)
tt(k)=us(k)
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
sumu=su3
do k=1,km
tt(k)=(us(k)-sumu)**2
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
rmsu=su3
C PROCESS STREAMWISE REYNOLDS STRESS
read(2223,'(512E24.16)') (v(K),K=1,KM)
c make asymmetric
do j=1,km/2+1
tmp=(v(km+1-j)-v(j))/DBLE(2)
v(j)=-tmp
v(km+1-j)=tmp
enddo
C integral of ^2 over wall-normal direction
do k=1,km
vs(k)=vs(k)+(v(k)-vs(k))/DBLE(i)
tt(k)=vs(k)
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
sumv=su3
do k=1,km
tt(k)=(vs(k)-sumv)**2
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
rmsv=su3
C add into time averaging sum
do k=1,km
w(k)=u(k)-v(k)+x(k)
ws(k)=ws(k)+(w(k)-ws(k))/DBLE(i)
tt(k)=ws(k)
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
sumw=su3
do k=1,km
tt(k)=(ws(k)-sumw)**2
enddo
call ctran(tt)
su3=DBLE(0)
do j=1,km
su3=su3+wait(j)*tt(j)
enddo
rmsw=su3
write(3117,'(i8,512E24.16)') i,
& sumu**2+rmsu,
& sumv**2+rmsv,
& sumw**2+rmsw
enddo
end
SUBROUTINE CHEBDZ( a, b, km )
C ------------------------------
C - THIS SUBR. PUTS INTO B THE CHEB EXPANSION
C - OF THE DERIVATIVE OF THE CHEB FIELD A.
C
DIMENSION a(km), b(km)
b(km)=DBLE(0)
b(km-1)=a(km)*DBLE(2*(km-1))
do k=km-2,1,-1
b(k)=b(k+2)+DBLE(2*k)*a(k+1)
enddo
RETURN
END
SUBROUTINE CHEBDZINV( b, a, km )
C ------------------------------
C - INVERSE OF CHEBDZ
C
DIMENSION a(km), b(km)
a(km)=b(km-1)/DBLE(2*(km-1))
a(1)=DBLE(0)
do k=2,km-1
a(k)=(b(k-1)-b(k+1))/DBLE(2*(k-1))
enddo
RETURN
END
SUBROUTINE CITRAN(W)
C --------------------
C - THIS SUBR. EVALUATES A CHEB EXPANSION AT COLLOC POINTS :
C - ZK = COS((K-1)*PI/(KM-1)). THE FIRST TERM IN THE EXPANSION
C - IS WILL BE MULTIPLED BY HALF ( BUT NOT THE LAST TERM).
C
C - THE DIMENSION OF W SHOULD BE AT LEAST 2*KM
C - KM SHOULD BE OF THE FORM 2**M + 1
C
DIMENSION W(2*129)
KM=129
C
W(KM) = DBLE(2)*W(KM)
CALL DCT(W,KM)
C
RETURN
END
SUBROUTINE CTRAN(W)
C -------------------
C - THIS SUBR. APPROXIMATES THE THE CHEB EXPANSION COEFFS.
C - OF A FUNCTION GIVEN ITS VALUE AT KM COLLOCATION POINTS.
C - THE POINTS ARE ZK = COS((K-1)*PI/(KM-1)).
C - W MUST BE DIMENSIONED WITH SIZE AT LEAST 2*KM
C - KM MUST BE OF THE FORM 2**M + 1.
C
DIMENSION W(2*129)
KM=129
C
CALL DCT(W,KM)
C
N = KM - 1
FACTOR = DBLE(2)/DBLE(N)
DO 10 K = 1, KM
W(K) = FACTOR*W(K)
10 CONTINUE
W(KM) = W(KM)/DBLE(2)
C
RETURN
END
SUBROUTINE DCT(X,KM)
C **********************************************************************
C * THIS ROUTINE PERFORMS A DISCRETE CHEBYSHEV TRANSFORM *
C * ROUTINE IS NOT THREAD SAFE! *
C * X - INPUT VECTOR DIM X(KM) *
C * Y - OUTPUT VECTOR DIM Y(KM) *
C **********************************************************************
INCLUDE 'fftw3.f'
DIMENSION X(KM)
DIMENSION XX(KM-1)
DIMENSION YY(KM+1)
DIMENSION WSAVE(KM)
DT = DBLE(4)*DATAN(DBLE(1))/DBLE(KM-1)
DO K=2,KM/2
WSAVE(K) = DBLE(2)*DSIN(DBLE(K-1)*DT)
WSAVE(KM+1-K) = DBLE(2)*DCOS(DBLE(K-1)*DT)
ENDDO
FAC=DBLE(1)/DBLE(2)
MODN = MOD(KM,2)
CALL DFFTW_PLAN_R2R_1D(PLAN,KM-1,XX,YY,FFTW_R2HC,
* FFTW_ESTIMATE+FFTW_UNALIGNED)
C1 = X(1)-X(KM)
XX(1) = X(1)+X(KM)
DO K=2,KM/2
T1 = X(K)+X(KM+1-K)
T2 = X(K)-X(KM+1-K)
C1 = C1+WSAVE(KM+1-K)*T2
T2 = WSAVE(K)*T2
XX(K) = T1-T2
XX(KM+1-K) = T1+T2
ENDDO
IF (MODN .NE. 0) XX(KM/2+1)=X(KM/2+1)+X(KM/2+1)
CALL DFFTW_EXECUTE_R2R(PLAN,XX,YY)
X(1)=YY(1)*FAC
X(2) = C1*FAC
DO K=2,KM/2
X(2*K) = X(2*K-2)-YY(KM+1-K)*FAC
X(2*K-1) = YY(K)*FAC
ENDDO
IF (MODN .NE. 0) X(KM) = YY(KM/2+1)*FAC
CALL DFFTW_DESTROY_PLAN(PLAN)
RETURN
END