-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathestimate_reprdim_allmodels.py
218 lines (180 loc) · 9.96 KB
/
estimate_reprdim_allmodels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
Compute intrinsic dimension of representations in neural nets (all models/datasets)
"""
# environment setup
# imports
from src.utils import *
from src.vizutils import *
from src.nnutils import *
from src.dimensionality import *
from src.dataset import *
import os
from tqdm import tqdm
import numpy as np
import random
# torch
import torch
from torchvision.models import resnet18, resnet34, resnet50, vgg13, vgg16, vgg19
# GPU settings
device_ids = [0] # indices of devices for models, data and otherwise
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(i) for i in device_ids)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
use_cuda = torch.cuda.is_available()
print('running on {}'.format(device))
# set random seed
seed = 1337
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# hyperparams
# use if you have statedicts saved from nn.DataParallel training:
parallel_trained_statedicts = False
# model and input dataset
models = [resnet18, resnet34, resnet50, vgg13, vgg16, vgg19]
dataset_names = ['brats', 'dbc', 'oai', 'chexpert', 'mura', 'rsna', 'prostate'] + ['MNIST', 'CIFAR10', 'SVHN', 'ImageNet']
#dataset_names = ['isic']
labelings = ['default']
training_sizes = list(range(500, 1750+250, 250))
test_size = 750
input_dataset_batchsize = 64 # to compute activations for input dataset
img_size = 224
# activation intrinsic dim estimation
id_estimators = ['twonn'] # or 'mle'
estimator_batchsize = 1000
# options
which_repr_layer = "penultimate"
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# logger
log_dir = 'logs/repr_dimensionality/allmodels_alldata'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logger = Logger('custom', log_dir)
header = ' '.join([
'dataset',
'n_train',
'labeling',
'model',
'layer',
'layer_depth',
'estimator',
'ID'
])
logger.write_msg(header)
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# master loop for all experiments:
for intrinsic_dim_estimator in id_estimators:
for dataset_name in dataset_names:
for train_size in training_sizes:
for labeling in labelings:
for model in models:
# find statedict fname
checkpoint_dir = "saved_models/generalization/{}".format(dataset_name)
statedict_fname = None
statedict_fnames = [f for f in os.listdir(checkpoint_dir) if f.endswith(".h5")]
keep_statedict_fnames = []
for fn in statedict_fnames:
fn_split = fn.split("_")
if (fn_split[:3] == [model.__name__, str(train_size), str(test_size)]) and (fn_split[5] == labeling):
keep_statedict_fnames.append(fn)
if len(keep_statedict_fnames) == 0:
raise FileNotFoundError("no saved model found for setting: {}".format([dataset_name, model.__name__, train_size, test_size, labeling]))
for statedict_fname in keep_statedict_fnames:
if dataset_name in natural_dataset_names:
chosen_classes = statedict_fname.split("_")[6:8]
chosen_classes = [int(c) for c in chosen_classes]
# load data
if dataset_name in natural_dataset_names:
trainset, _ = get_datasets(dataset_name,
subset_size=train_size+test_size,
test_size=test_size,
labeling=labeling,
img_size=img_size,
class1=chosen_classes[0],
class2=chosen_classes[1]
)
else:
trainset, _ = get_datasets(dataset_name,
subset_size=train_size+test_size,
test_size=test_size,
labeling=labeling,
img_size=img_size,
special_medicalisrgb = dataset_name in special_rgb_medical_dataset_names
)
input_dataloader = DataLoader(trainset,
batch_size=input_dataset_batchsize)
# instantiate model, put on device
net = model()
net.eval()
# load checkpoint
net_path = os.path.join(checkpoint_dir, statedict_fname)
state_dict = torch.load(net_path, map_location='cpu')['net']
if not parallel_trained_statedicts:
# for loading models created in parallel, but not in parallel
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
# fix first lyr if one channel needed
if dataset_name in natural_dataset_names and dataset_name != "MNIST":
print("net takes 3 channels as input.")
elif dataset_name in special_rgb_medical_dataset_names:
print("net takes 3 channels as input.")
else:
print("making net take 1 input channel.")
make_netinput_onechannel(net, model)
net.load_state_dict(state_dict, strict=False)
print('network loaded: {} for {}.'.format(os.path.basename(net_path), dataset_name))
# get layers of interest for the given model
layers, layer_names, layer_depths = get_activation_layers(net, model)
# iterate through the layers
net = net.to(device)
if parallel_trained_statedicts:
net = torch.nn.DataParallel(net, device_ids = range(len(device_ids)))
for layer_idx, layer in enumerate(layers):
if layer_depths[layer_idx] != get_repr_layer_depth(model.__name__, mode=which_repr_layer):
continue
if type(layer) != str: # first "layer" may just be a str.
# register hook to save activations
activations = []
def hook(net, input, output):
activations.append(output.detach().cpu())
handle = layer.register_forward_hook(hook)
# compute activations by passing data through net
for batch_idx, (x_in, _) in tqdm(enumerate(input_dataloader),
desc='completing forward passes...',
total=len(trainset)//input_dataset_batchsize
):
x_in = x_in.to(device)
output = net(x_in)
# memory management/get things off GPU
del output
activation_data = torch.cat(activations)
handle.remove() # remove hook so earlier layers aren't tracked
activation_data = activation_data.to('cpu')
# memory management/get things off GPU
# load activations into dataset
if dataset_name in natural_dataset_names:
# get labels without filename placeholder
lbls = [l[1] for l in trainset.dataset.labels]
activation_dataset = LayerActivationsDataset(activation_data, lbls)
else:
activation_dataset = LayerActivationsDataset(activation_data, trainset.dataset.labels)
# compute intrinsic dim
try:
layer_activations_intrinsic_dim = estimate_intrinsic_dim(activation_dataset,
dataset_name, intrinsic_dim_estimator,
batchsize=estimator_batchsize)
except (ValueError, OverflowError) as e:
# NaN or inf result for ID
print(e)
continue
# log it
log_msg = ' '.join([
dataset_name,
str(train_size),
labeling,
model.__name__,
layer_names[layer_idx],
str(layer_depths[layer_idx]),
intrinsic_dim_estimator,
str(layer_activations_intrinsic_dim)
])
logger.write_msg(log_msg)