-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
157 lines (140 loc) · 5.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from pathlib import Path
import click
from loguru import logger
from tqdm import tqdm
from sklearn import linear_model, svm, tree, kernel_ridge
from backend.config import Settings
from backend import crud, utils
from backend.db_tools import DBEngine
from backend.models import (
Bevolking,
Bodemgebruik,
Regios,
Burgstaat,
CategoryGroup,
Geslacht,
Leeftijd,
Perioden,
)
from backend.utils import (
get_data_from_cbs,
get_metadata_from_cbs,
parse_parquet_to_db,
train_models,
)
@click.command()
@click.option(
"--callapi", is_flag=True, help="Call CBS Statline API to get metadata and data."
)
@click.option(
"--num-processes",
default=4,
help="Number of processes to use for downloading data from CBS Statline API.",
)
@click.option(
"--process-parquet",
default="",
help="Path to folder with parquet files to process and upsert into database.",
)
@click.option(
"--setup-models", is_flag=True, help="Train models and save to ml_models folder."
)
def main(callapi: bool, num_processes: int, process_parquet: str, setup_models: bool):
# Connect to database and create engine
db_engine = DBEngine(**Settings().model_dump())
if callapi:
# Get metadata from CBS Statline API and upsert into database
models_dict = {
"BurgerlijkeStaat": Burgstaat,
"CategoryGroups": CategoryGroup,
"Geslacht": Geslacht,
"Leeftijd": Leeftijd,
"Perioden": Perioden,
"RegioS": Regios,
}
get_metadata_from_cbs(db_engine=db_engine, models_dict=models_dict)
# Get data from CBS Statline API and save as parquet files
get_data_from_cbs(
object=Bodemgebruik,
url="https://opendata.cbs.nl/ODataFeed/odata/70262ned/TypedDataSet",
num_processes=num_processes,
)
get_data_from_cbs(
object=Bevolking,
url="https://opendata.cbs.nl/ODataFeed/odata/03759ned/TypedDataSet",
num_processes=num_processes,
)
if process_parquet != "":
# Get regio keys from database
regios = crud.select_table_from_db(db_engine=db_engine, table=Regios)
regio_keys = regios["regio_key"].unique()
# Parse parquet files and upsert into database
folders = {
Bodemgebruik: Path(f"{process_parquet}/bodemgebruik"),
Bevolking: Path(f"{process_parquet}/bevolking"),
}
for object, folder in folders.items():
parquetFiles = folder.rglob("*.parquet")
nrows = len(list(parquetFiles))
logger.info(f"Found {nrows} parquet files in {folder}.")
for file in tqdm(folder.iterdir(), total=nrows):
if file.suffix == ".parquet":
parse_parquet_to_db(
path=file, object=object, db_engine=db_engine, regios=regio_keys
)
if setup_models:
# Train models and save them to the ml_models folder
df_bevolking = crud.get_data_gemeentes(_db_engine=db_engine)
df_bodem = crud.get_data_gemeentes_bodemgebruik(_db_engine=db_engine)
# Preprocessing of data, such as only using regio's that are in both datasets, and filling null values
regios = df_bevolking["regio"].to_list()
exclude_cols = ["regio", "jaar", "geslacht", "catgroup", "burgerlijkestaat"]
devdf_bodem = df_bodem.filter(df_bodem["regio"].is_in(regios))
devdf_bodem = devdf_bodem.fill_null(strategy="zero")
devdf_bodem = utils.growth_columns_by_year(
df=devdf_bodem, columns_to_exclude=exclude_cols
)
devdf_bodem = devdf_bodem[
[s.name for s in devdf_bodem if not (s.null_count() == devdf_bodem.height)]
]
devdf_bodem = devdf_bodem.drop_nulls("bevolking_1_januari_growth")
devdf_bodem = devdf_bodem.select(
[
col
for col in devdf_bodem.columns
if (col in exclude_cols) or (col.endswith("growth"))
]
)
# Use a clone of the data for model training, and pick the features with the highest correlations
include_cols = [
"wegverkeersterrein_growth",
"woonterrein_growth",
"bedrijventerrein_growth",
"begraafplaats_growth",
"sportterrein_growth",
"volkstuin_growth",
"overig_agrarisch_terrein_growth",
"jaar",
"bevolking_1_januari_growth",
]
model_df = devdf_bodem.clone().select(include_cols).to_pandas()
model_df.set_index("jaar", inplace=True)
# Split the data into train and test sets
X = model_df[
[
col
for col in model_df.columns
if col not in ["bevolking_1_januari_growth", "jaar"]
]
]
y = model_df["bevolking_1_januari_growth"]
models = {
"LinearRegression": linear_model.LinearRegression(),
"SVM": svm.SVR(),
"DecisionTreeRegressor": tree.DecisionTreeRegressor(),
"KernelRidgeRegression": kernel_ridge.KernelRidge(),
}
# Train the models and save them to the ml_models folder
train_models(X=X, y=y, models=models)
if __name__ == "__main__":
main()