-
Notifications
You must be signed in to change notification settings - Fork 73
/
conr.py
292 lines (245 loc) · 11.6 KB
/
conr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import torch
from model.backbone import ResEncUnet
from model.shader import CINN
from model.decoder_small import RGBADecoderNet
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def UDPClip(x):
return torch.clamp(x, min=0, max=1) # NCHW
class CoNR():
def __init__(self, args):
self.args = args
self.udpparsernet = ResEncUnet(
backbone_name='resnet50_danbo',
classes=4,
pretrained=(args.local_rank == 0),
parametric_upsampling=True,
decoder_filters=(512, 384, 256, 128, 32),
map_location=device
)
self.target_pose_encoder = ResEncUnet(
backbone_name='resnet18_danbo-4',
classes=1,
pretrained=(args.local_rank == 0),
parametric_upsampling=True,
decoder_filters=(512, 384, 256, 128, 32),
map_location=device
)
self.DIM_SHADER_REFERENCE = 4
self.shader = CINN(self.DIM_SHADER_REFERENCE)
self.rgbadecodernet = RGBADecoderNet(
)
self.device()
self.parser_ckpt = None
def dist(self):
args = self.args
if args.distributed:
self.udpparsernet = torch.nn.parallel.DistributedDataParallel(
self.udpparsernet,
device_ids=[
args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=True
)
self.target_pose_encoder = torch.nn.parallel.DistributedDataParallel(
self.target_pose_encoder,
device_ids=[
args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=True
)
self.shader = torch.nn.parallel.DistributedDataParallel(
self.shader,
device_ids=[
args.local_rank],
output_device=args.local_rank,
broadcast_buffers=True
)
self.rgbadecodernet = torch.nn.parallel.DistributedDataParallel(
self.rgbadecodernet,
device_ids=[
args.local_rank],
output_device=args.local_rank,
broadcast_buffers=True
)
def load_model(self, path):
self.udpparsernet.load_state_dict(
torch.load('{}/udpparsernet.pth'.format(path), map_location=device))
self.target_pose_encoder.load_state_dict(
torch.load('{}/target_pose_encoder.pth'.format(path), map_location=device))
self.shader.load_state_dict(
torch.load('{}/shader.pth'.format(path), map_location=device))
self.rgbadecodernet.load_state_dict(
torch.load('{}/rgbadecodernet.pth'.format(path), map_location=device))
def save_model(self, ite_num):
self._save_pth(self.udpparsernet,
model_name="udpparsernet", ite_num=ite_num)
self._save_pth(self.target_pose_encoder,
model_name="target_pose_encoder", ite_num=ite_num)
self._save_pth(self.shader,
model_name="shader", ite_num=ite_num)
self._save_pth(self.rgbadecodernet,
model_name="rgbadecodernet", ite_num=ite_num)
def _save_pth(self, net, model_name, ite_num):
args = self.args
to_save = None
if args.distributed:
if args.local_rank == 0:
to_save = net.module.state_dict()
else:
to_save = net.state_dict()
if to_save:
model_dir = os.path.join(
os.getcwd(), 'saved_models', args.model_name + os.sep + "checkpoints" + os.sep + "itr_%d" % (ite_num)+os.sep)
os.makedirs(model_dir, exist_ok=True)
torch.save(to_save, model_dir + model_name + ".pth")
def train(self):
self.udpparsernet.train()
self.target_pose_encoder.train()
self.shader.train()
self.rgbadecodernet.train()
def eval(self):
self.udpparsernet.eval()
self.target_pose_encoder.eval()
self.shader.eval()
self.rgbadecodernet.eval()
def device(self):
self.udpparsernet.to(device)
self.target_pose_encoder.to(device)
self.shader.to(device)
self.rgbadecodernet.to(device)
def data_norm_image(self, data):
with torch.cuda.amp.autocast(enabled=False):
for name in ["character_labels", "pose_label"]:
if name in data:
data[name] = data[name].to(
device, non_blocking=True).float()
for name in ["pose_images", "pose_mask", "character_images", "character_masks"]:
if name in data:
data[name] = data[name].to(
device, non_blocking=True).float() / 255.0
if "pose_images" in data:
data["num_pose_images"] = data["pose_images"].shape[1]
data["num_samples"] = data["pose_images"].shape[0]
if "character_images" in data:
data["num_character_images"] = data["character_images"].shape[1]
data["num_samples"] = data["character_images"].shape[0]
if "pose_images" in data and "character_images" in data:
assert (data["pose_images"].shape[0] ==
data["character_images"].shape[0])
return data
def reset_charactersheet(self):
self.parser_ckpt = None
def model_step(self, data, training=False):
self.eval()
with torch.cuda.amp.autocast(enabled=False):
pred = {}
if self.parser_ckpt:
pred["parser"] = self.parser_ckpt
else:
pred = self.character_parser_forward(data, pred)
self.parser_ckpt = pred["parser"]
pred = self.pose_parser_sc_forward(data, pred)
pred = self.shader_pose_encoder_forward(data, pred)
pred = self.shader_forward(data, pred)
return pred
def shader_forward(self, data, pred={}):
assert ("num_character_images" in data), "ERROR: No Character Sheet input."
character_images_rgb_nmchw, num_character_images = data[
"character_images"], data["num_character_images"]
# build x_reference_rgb_a_sudp in the draw call
shader_character_a_nmchw = data["character_masks"]
assert torch.any(torch.mean(shader_character_a_nmchw, (0, 2, 3, 4)) >= 0.95) == False, "ERROR: \
No transparent area found in the image, PLEASE separate the foreground of input character sheets.\
The website waifucutout.com is recommended to automatically cut out the foreground."
if shader_character_a_nmchw is None:
shader_character_a_nmchw = pred["parser"]["pred"][:, :, 3:4, :, :]
x_reference_rgb_a = torch.cat([shader_character_a_nmchw[:, :, :, :, :] * character_images_rgb_nmchw[:, :, :, :, :],
shader_character_a_nmchw[:,
:, :, :, :],
], 2)
assert (x_reference_rgb_a.shape[2] == self.DIM_SHADER_REFERENCE)
# build x_reference_features in the draw call
x_reference_features = pred["parser"]["features"]
# run cinn shader
retdic = self.shader(
pred["shader"]["target_pose_features"], x_reference_rgb_a, x_reference_features)
pred["shader"].update(retdic)
# decode rgba
if True:
dec_out = self.rgbadecodernet(
retdic["y_last_remote_features"])
y_weighted_x_reference_RGB = dec_out[:, 0:3, :, :]
y_weighted_mask_A = dec_out[:, 3:4, :, :]
y_weighted_warp_decoded_rgba = torch.cat(
(y_weighted_x_reference_RGB*y_weighted_mask_A, y_weighted_mask_A), dim=1
)
assert(y_weighted_warp_decoded_rgba.shape[1] == 4)
assert(
y_weighted_warp_decoded_rgba.shape[-1] == character_images_rgb_nmchw.shape[-1])
# apply decoded mask to decoded rgb, finishing the draw call
pred["shader"]["y_weighted_warp_decoded_rgba"] = y_weighted_warp_decoded_rgba
return pred
def character_parser_forward(self, data, pred={}):
if not("num_character_images" in data and "character_images" in data):
return pred
pred["parser"] = {"pred": None} # create output
inputs_rgb_nmchw, num_samples, num_character_images = data[
"character_images"], data["num_samples"], data["num_character_images"]
inputs_rgb_fchw = inputs_rgb_nmchw.view(
(num_samples * num_character_images, inputs_rgb_nmchw.shape[2], inputs_rgb_nmchw.shape[3], inputs_rgb_nmchw.shape[4]))
encoder_out, features = self.udpparsernet(
(inputs_rgb_fchw-0.6)/0.2970)
pred["parser"]["features"] = [features_out.view(
(num_samples, num_character_images, features_out.shape[1], features_out.shape[2], features_out.shape[3])) for features_out in features]
if (encoder_out is not None):
pred["parser"]["pred"] = UDPClip(encoder_out.view(
(num_samples, num_character_images, encoder_out.shape[1], encoder_out.shape[2], encoder_out.shape[3])))
return pred
def pose_parser_sc_forward(self, data, pred={}):
if not("num_pose_images" in data and "pose_images" in data):
return pred
inputs_aug_rgb_nmchw, num_samples, num_pose_images = data[
"pose_images"], data["num_samples"], data["num_pose_images"]
inputs_aug_rgb_fchw = inputs_aug_rgb_nmchw.view(
(num_samples * num_pose_images, inputs_aug_rgb_nmchw.shape[2], inputs_aug_rgb_nmchw.shape[3], inputs_aug_rgb_nmchw.shape[4]))
encoder_out, _ = self.udpparsernet(
(inputs_aug_rgb_fchw-0.6)/0.2970)
encoder_out = encoder_out.view(
(num_samples, num_pose_images, encoder_out.shape[1], encoder_out.shape[2], encoder_out.shape[3]))
# apply sigmoid after eval loss
pred["pose_parser"] = {"pred":UDPClip(encoder_out)[:,0,:,:,:]}
return pred
def shader_pose_encoder_forward(self, data, pred={}):
pred["shader"] = {} # create output
if "pose_images" in data:
pose_images_rgb_nmchw = data["pose_images"]
target_gt_rgb = pose_images_rgb_nmchw[:, 0, :, :, :]
pred["shader"]["target_gt_rgb"] = target_gt_rgb
shader_target_a = None
if "pose_mask" in data:
pred["shader"]["target_gt_a"] = data["pose_mask"]
shader_target_a = data["pose_mask"]
shader_target_sudp = None
if "pose_label" in data:
shader_target_sudp = data["pose_label"][:, :3, :, :]
if self.args.test_pose_use_parser_udp:
shader_target_sudp = None
if shader_target_sudp is None:
shader_target_sudp = pred["pose_parser"]["pred"][:, 0:3, :, :]
if shader_target_a is None:
shader_target_a = pred["pose_parser"]["pred"][:, 3:4, :, :]
# build x_target_sudp_a in the draw call
x_target_sudp_a = torch.cat((
shader_target_sudp*shader_target_a,
shader_target_a
), 1)
pred["shader"].update({
"x_target_sudp_a": x_target_sudp_a
})
_, features = self.target_pose_encoder(
(x_target_sudp_a-0.6)/0.2970, ret_parser_out=False)
pred["shader"]["target_pose_features"] = features
return pred