Skip to content

Latest commit

 

History

History
157 lines (105 loc) · 10.8 KB

SOT_MODEL_ZOO.md

File metadata and controls

157 lines (105 loc) · 10.8 KB

MODEL_ZOO

Download links

Models & Raw results:

Models

VOT2018

VOT test configuration directory: experiments/siamfcpp/test/vot

Backbone Pipeline Dataset A R EAO FPS@GTX2080Ti FPS@GTX1080Ti Config. File
AlexNet SiamFCppTracker VOT2018 0.576 0.183 0.393 ~200 ~185 siamfcpp_alexnet.yaml
GoogLeNet SiamFCppTracker VOT2018 0.581 0.169 0.428 ~80 ~65 siamfcpp_googlenet.yaml
GoogLeNet* SiamFCppTracker VOT2018 0.584 0.178 0.425 ~120 / siamfcpp_googlenet.yaml
AlexNet SiamFCppOnlineTracker VOT2018 0.577 0.136 0.415 ~100 / siamfcpp_alexnet_online.yaml

* means using TensorRT to accelerate the backbone feature extraction, and you can set trt_mode True in the config yaml to enable it.

Consider using dockerfile under docs/ENVIRONMENT/DOCKER/video_analyst-vot for exact reproduction of the above results (only VOT benchmark need this dockerfile for environment control).

Multi-template

Backbone Pipeline Dataset A R EAO FPS@GTX2080Ti FPS@GTX1080Ti Config. File
AlexNet SiamFCppMultiTempTracker VOT2018 0.597 0.215 0.370 ~90 ~75 siamfcpp_alexnet-multi_temp.yaml
GoogLeNet SiamFCppMultiTempTracker VOT2018 0.587 0.150 0.467 ~50 ~45 siamfcpp_googlenet-multi_temp.yaml

Nota:

Points reported here are reproducible with PyTorch<=1.2.0. For PyTorch>=1.3.0, the reproducibility is not guaranteed due to a "breaking change" of PyTorch. See "Breaking Changes" under release 1.3.0 for detail.

However, we still recommend using the newest version of PyTorch as earlier versions usually carry numerous historical bugs (e.g. bugs with dataloader, ddp, etc.).

GOT-10k

GOT-10k test configuration directory_experiments/siamfcpp/test/got10k_

Backbone Pipeline Dataset AO (val) SR.50 (val) SR.75 (val) AO (test) SR.50 (test) SR.75 (test) Config. File
AlexNet SiamFCppTracker GOT-10k 72.0 85.0 63.3 52.6 62.5 34.7 siamfcpp_alexnet-got.yaml
AlexNet SiamFCppOnlineTracker GOT-10k 73.0 86.0 63.5 53.7 63.9 34.4 siamfcpp_alexnet-got-online.yaml
GoogLeNet SiamFCppTracker GOT-10k 76.4 90.4 71.8 60.4 73.7 46.4 siamfcpp_googlenet-got.yaml
ShuffleNetV2x0.5 SiamFCppTracker GOT-10k 74.2 87.0 67.1 52.9 61.7 38.1 siamfcpp_shufflenetv2x0_5-got.yaml
ShuffleNetV2x1.0 SiamFCppTracker GOT-10k-val 76.6 88.8 71.5 57.9 68.1 43.6 siamfcpp_shufflenetv2x1_0-got.yaml

LaSOT

Backbone Pipeline Dataset Success Precision Normalized Precision Config. File
GoogLeNet SiamFCppTracker LaSOT-test 55.7 55.6 58.9 siamfcpp_googlenet-lasot.yaml

TrackingNet

Backbone Pipeline Training Data Test Dataset Success Precision Normalized Precision Config. File
GoogLeNet SiamFCppTracker TrackingNet-TRAIN TrackingNet-TEST 74.5 68.5 79.8 siamfcpp_googlenet-trackingnet.yaml
GoogLeNet SiamFCppTracker fulldata TrackingNet-TEST 75.3 69.5 80.9 siamfcpp_googlenet-trackingnet-fulldata.yaml

P.S. fulldata denotes COCO, VID, TrackingNet-TRAIN, ILSVRC-VID/DET, LaSOT, GOT10k

OTB-2015

Backbone Pipeline Dataset Success Precision Config. File
AlexNet SiamFCppTracker OTB2015 68.0 88.4 siamfcpp_alexnet-otb.yaml
GoogLeNet SiamFCppTracker OTB2015 68.2 89.6 siamfcpp_googlenet-otb.yaml

UAV123

Backbone Pipeline Dataset Success Precision Success Rate Config. File
AlexNet SiamFCppTracker UAV123 62.3 78.1 76.6 siamfcpp_alexnet-uav123.yaml
GoogLeNet SiamFCppTracker UAV123 63.1 79.5 76.9 siamfcpp_googlenet-uav123.yaml

P.S. The hyper-parameter and model weights are the same with vot test dataset. You can get better results with parameter adaption carefully.

Improvements

Large Search Region (x_size)

Augmenting the search region may further improve the performance on some benchmarks. Here we report some of them.

Large x_size on GOT-10k

Backbone Pipeline Dataset x_size score_size AO (val) SR.50 (val) SR.75 (val) AO (test) SR.50 (test) SR.75 (test) Config. File
GoogLeNet SiamFCppTracker GOT-10k 303 19 76.4 90.4 71.8 60.4 73.7 46.4 siamfcpp_googlenet-got.yaml
GoogLeNet SiamFCppTracker GOT-10k 335 23 76.6 90.6 71.9 61.0 74.2 46.7 x_size/siamfcpp_googlenet-got.yaml

Large x_size on LaSOT

Backbone Pipeline Dataset x_size score_size Success Precision Normalized Precision Config. File
GoogLeNet SiamFCppTracker LaSOT-test 303 19 55.7 55.6 58.9 siamfcpp_googlenet-lasot.yaml
GoogLeNet SiamFCppTracker LaSOT-test 351 25 56.4 56.4 59.8 -
GoogLeNet SiamFCppTracker LaSOT-test 367 27 56.6 56.4 60.0 -
GoogLeNet SiamFCppTracker LaSOT-test 383 29 57.1 57.2 60.5 -
GoogLeNet SiamFCppTracker LaSOT-test 399 31 57.7 58.2 61.3 x_size/siamfcpp_googlenet-lasot.yaml
GoogLeNet SiamFCppTracker LaSOT-test 415 33 57.4 57.7 60.9 -

P.S. window_influence may require tuning as search region size slightly change the shape of window of score penalization.

Pipeline

Remarks

  • The results reported in our paper were produced by the implement under the internal deep learning framework. Afterwards, we reimplement our tracking method under PyTorch and there could be some differences between the reported results (under internal framework) and the real results (under PyTorch).
  • Differences in hardware configuration (e.g. CPU style / GPU style) may influence some indexes (e.g. FPS)
    • Raw results here have been produced on a shared computing node equipped with Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz and Nvidia GeForce RTX 2080Ti .
    • "~" in the colomns for FPS denotes approximate values. FPS may vary due to factors other than code (e.g. hardware configuration / running status of machine).
  • For VOT benchmark, models have been trained on ILSVRC-VID/DET, YoutubeBB, COCO, LaSOT, and GOT-10k (as described in our paper).

Reproducibility

We have already observed several issues that are related to the reproducibility of the results under VOT benchmark. For example, under pytorch==1.1.0/1.2.0, the results of siamfcpp-googlenet are correct while under pytorch==1.3.0/1.4.0 not.

Following issues would influence the reproducibility of the results of existing models on VOT benchmark:

We recommend keeping up-to-date with latest package version, and thus the points reported here counld be slightly away from the real points. Feel free to point them out in Issues if it is the case so that we can correct them.

Nevertheless, reproducibility of training under GOT-10k has been confirmed with repetition. Thus, there are no need to change software version (package/CUDA/CUDNN) unless you are obligated to verify the VOT result.

In addition, we strongly recommend to train and benchmark trackers on datasets like GOT-10k, not only because of its rigurous split of train/val/test, but also due to its large scale and diversity which make results stable.

[UPDATE 2020/07/14] We provide under a dockerfile docs/ENVIRONMENT/DOCKER/video_analyst-vot from which you can build a Docker container that exactly reproduce the VOT results reported here.