-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgan.py
223 lines (168 loc) · 6.96 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from pandas import read_csv
import pandas
from pandas import DataFrame
import os
from sklearn.preprocessing import LabelEncoder
from pathClassifier import PathClassifier
import time
from keras.utils import np_utils
import matplotlib.pyplot as plt
import sys
import numpy as np
from pylab import *
class GAN():
def __init__(self):
self.img_rows = 19
self.img_cols = 13
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build and compile the generator
self.generator = self.build_generator()
self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)
# The generator takes noise as input and generated imgs
z = Input(shape=(100,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The valid takes generated images as input and determines validity
valid = self.discriminator(img)
# The combined model (stacked generator and discriminator) takes
# noise as input => generates images => determines validity
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
noise_shape = (100,)
model = Sequential()
model.add(Dense(256, input_shape=noise_shape))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=noise_shape)
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
img_shape = (self.img_rows, self.img_cols, self.channels)
model = Sequential()
model.add(Flatten(input_shape=img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=img_shape)
validity = model(img)
return Model(img, validity)
def loadData(self, path='dataset/'):
files = os.listdir(path)
data = []
labels = []
for fn in files:
ffn = os.path.join(path, fn)
df = read_csv(ffn, index_col=None, header=None)
df[df==2]=0
data.append(df.values)
label = int(fn[0:2])
labels.append(label)
data = np.array(data)
return data, labels
def train(self, epochs, batch_size=2, save_interval=10):
# Load the dataset
X_train, y_ = self.loadData()
X_train = 2 * (X_train.astype(np.float32)) - 1
X_train = np.expand_dims(X_train, axis=3)
half_batch = int(batch_size / 2)
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], half_batch)
imgs = X_train[idx]
noise = np.random.normal(0, 1, (half_batch, 100))
# Generate a half batch of new images
gen_imgs = self.generator.predict(noise)
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
noise = np.random.normal(0, 1, (batch_size, 100))
# The generator wants the discriminator to label the generated samples
# as valid (ones)
valid_y = np.array([1] * batch_size)
# Train the generator
g_loss = self.combined.train_on_batch(noise, valid_y)
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
if epoch % save_interval == 0:
self.save_imgs(epoch, X_train, y_)
def save_imgs(self, epoch, X_train, y_):
r, c = 4, 5
noise = np.random.normal(0, 1, (r * c, 100))
gen_imgs = self.generator.predict(noise)
gen_imgs2 = gen_imgs.reshape(gen_imgs.shape[0], gen_imgs.shape[1]*gen_imgs.shape[2]).astype('float32')
####################
'''perform the classification of generated paths'''
cl = PathClassifier()
lblEnc = LabelEncoder()
labels = lblEnc.fit_transform(y_)
data = X_train
num_pixels = data.shape[1] * data.shape[2]
data = data.reshape(data.shape[0], num_pixels).astype('float32')
labels = np_utils.to_categorical(labels)
num_classes = labels.shape[1]
model = cl.train_model(data, labels)
classes = model.predict(gen_imgs2)
classes = np.argmax(classes, axis=1)
######################
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
for i in range(r*c):
gm = gen_imgs[i].reshape(gen_imgs[i].shape[0], gen_imgs[i].shape[1])
df = DataFrame(gm)
df.to_csv("gen/paths_%d_%d.csv" % (epoch, i), header=False, index=False)
fig, axs = plt.subplots(r, c, figsize=(4.5,5))
cnt = 0
fig.subplots_adjust(hspace=0.5)
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap=plt.cm.gray)
axs[i,j].set_title('class ' + str(classes[cnt]))
axs[i,j].axis('off')
autoAxis = axs[i,j].axis()
rec = Rectangle((autoAxis[0]-0.1,autoAxis[2]-0.2),(autoAxis[1]-autoAxis[0])+.2,(autoAxis[3]-autoAxis[2])+0.1,fill=False, lw=0.5)
rec = axs[i,j].add_patch(rec)
rec.set_clip_on(False)
cnt += 1
fig.savefig("images/paths_%d.png" % epoch, dpi=300)
plt.close()
if __name__ == '__main__':
gan = GAN()
start_time = time.time()
gan.train(epochs=10001, batch_size=64, save_interval=200)
print("total time: %s seconds ---" % (time.time() - start_time))