forked from vecoveco/gpm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathirs.py
135 lines (95 loc) · 3.11 KB
/
irs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import h5py
import numpy as np
import wradlib
import glob
from scipy import stats, linspace
import wradlib as wrl
from osgeo import osr
import matplotlib.pyplot as plt
from pcc import get_my_cmap2
# Threshold ATBD GPM 2016
#thresh = [0.2, 0.5, 0.2, 12.0, 18.0, 12.0]
thresh = [0.2, 0.5, 0.2, 15.0, 15.0, 15.0]
def corcorcor(A,B):
mask = ~np.isnan(A) & ~np.isnan(B)
diffi = A[mask]- B[mask]
bias = np.nansum(diffi)/len(diffi)
slope, intercept, r_value, p_value, std_err = stats.linregress(A[mask], B[mask])
line = slope * A +intercept
return r_value, std_err, bias
para = ['NS', 'HS','MS']
freq = ['13.6 GHz','35.5 GHz','35.5 GHz']
band = ['Ku','Ka','Ka']
pp = 0
#dataS = np.load('/automount/ags/velibor/gpmdata/dumpdata/npy/SS_'+str(para[pp])+'.npy')
#dataW = np.load('/automount/ags/velibor/gpmdata/dumpdata/npy/WS_'+str(para[pp])+'.npy')
dataall = np.load('/automount/ags/velibor/gpmdata/dumpdata/npy/all'+str(para[pp])+'.npy')
data = dataall
#gx = data[0,:]
#gy = data[1,:]
#g_bbh = data[2,:]
#g_bbh[g_bbh<=0]=np.nan
#g_bbw = data[3,:]
#g_bbw[g_bbw<=0]=np.nan
#g_top = data[4,:]
#g_type = data[5,:]
#g_phase = data[6,:]
g_p2d = data[7,:]
g_p2d[g_p2d<=0]=np.nan
g_z2d = data[8,:]
g_z2d[g_z2d<=0]=np.nan
g_ry = data[9,:]
g_ry[g_ry<=0]=np.nan
g_rx = data[10,:]
g_rx[g_rx<=0]=np.nan
#Threshold bestimmen
A,B = g_p2d.copy(), g_ry.copy()
A[A<0.1]=np.nan; B[B<0.1]=np.nan
C, D = g_z2d.copy(), g_rx.copy()
C[C<15]=np.nan; D[D<15]=np.nan
maske_p = ~np.isnan(A) & ~np.isnan(B)
maske_z = ~np.isnan(C) & ~np.isnan(D)
corr,eror,bias = corcorcor(A,B)
corr2,eror2,bias2 = corcorcor(C,D)
ff, ff2 = 20, 20
xbins = 10**np.arange(-1, 2.08, 0.07)
ybins = 10**np.arange(-1, 2.08, 0.07)
counts, _, _ = np.histogram2d(A[maske_p],B[maske_p], bins=(xbins, ybins))
'''
fig, ax = plt.subplots(figsize=(8,8))
#ax1 = fig.add_subplot(221, aspect='equal')
plt.pcolormesh(xbins, ybins, counts.T, cmap=get_my_cmap2(),vmin=0.1,vmax=600 )
cb = plt.colorbar()
cb.set_label('number of samples', fontsize=ff)
ax.set_xscale('log')
ax.set_yscale('log')
plt.xlabel('DPR Rainrate in mm/h',fontsize=ff)
plt.ylabel('Radolan Rainrate in mm/h',fontsize=ff)
plt.xticks(fontsize=ff)
plt.yticks(fontsize=ff)
plt.title('Winter Corr: ' + str(round(corr,3)) + r'$\pm$'+ str(round(eror,3)), fontsize=20)
plt.grid()
plt.show()
#plt.savefig('/automount/ags/velibor/plot/IRS/NSwinter_RR.png')
#plt.close()
'''
fig =plt.figure(figsize=(8,8))
ax2 = fig.add_subplot(111, aspect='equal')
plt.hist2d(C[maske_z],D[maske_z], bins=60, cmap=get_my_cmap2(),vmin=0.1, vmax=400)
cbar = plt.colorbar(shrink=0.7)
cbar.set_label('number of samples', fontsize=ff2)
#cbar.set_ticks(labelsize=20)
cbar.ax.tick_params(labelsize=ff)
cx,cy = np.arange(0,80,1),np.arange(0,80,1)
plt.plot(cx,cy, color='black')
plt.title('Winter Corr: ' + str(round(corr2,3)) + r'$\pm$'+ str(round(eror2,3)), fontsize=ff2)
plt.xlim(15,70)
plt.ylim(15,70)
plt.xlabel('DPR Reflectivity in dBZ',fontsize=ff2)
plt.ylabel('Radolan Reflectivity in dBZ',fontsize=ff2)
plt.grid()
plt.xticks(fontsize=ff)
plt.yticks(fontsize=ff)
#plt.savefig('/automount/ags/velibor/plot/IRS/NSwinter_Ref.png')
#plt.close()
plt.show()