-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlearn_concepts.py
79 lines (61 loc) · 3.44 KB
/
learn_concepts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import pickle
import argparse
import torch
import numpy as np
from glob import glob
from tqdm import tqdm
from torch.utils.data import DataLoader
from concept_utils import learn_concept_bank, ListDataset
from model_utils import get_model
def config():
parser = argparse.ArgumentParser()
parser.add_argument("--concept-dir", required=True, type=str,
help="Directory containing concept images. See below for a detailed description.")
parser.add_argument("--out-dir", default="/oak/stanford/groups/jamesz/merty/cce", type=str,
help="Where to save the concept bank.")
parser.add_argument("--model-name", default="resnet18", type=str, help="Name of the model to use.")
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--batch-size", default=32, type=int)
parser.add_argument("--num-workers", default=4, type=int)
parser.add_argument("--seed", default=42, type=int, help="Random seed")
parser.add_argument("--C", nargs="+", default=[1e-5, 1e-4, 0.001, 0.01, 0.1, 1.0], type=float,
help="Regularization parameter for SVMs. Can specify multiple values.")
parser.add_argument("--n-samples", default=50, type=int,
help="Number of pairs of positive/negative samples used to train SVMs.")
return parser.parse_args()
def main(args):
np.random.seed(args.seed)
# Concept images are expected in the following format:
# args.concept_dir/concept_name/positives/1.jpg, args.concept_dir/concept_name/positives/2.jpg, ...
# args.concept_dir/concept_name/negatives/1.jpg, args.concept_dir/concept_name/negatives/2.jpg, ...
concept_names = os.listdir(args.concept_dir)
# Get the backbone
backbone, _, preprocess = get_model(args)
backbone = backbone.to(args.device)
backbone = backbone.eval()
print(f"Attempting to learn {len(concept_names)} concepts.")
concept_lib = {C: {} for C in args.C}
for concept in concept_names:
pos_ims = glob(os.path.join(args.concept_dir, concept, "positives", "*"))
neg_ims = glob(os.path.join(args.concept_dir, concept, "negatives", "*"))
pos_dataset = ListDataset(pos_ims, preprocess=preprocess)
neg_dataset = ListDataset(neg_ims, preprocess=preprocess)
print(len(pos_dataset), len(neg_dataset))
pos_loader = torch.utils.data.DataLoader(pos_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
neg_loader = torch.utils.data.DataLoader(neg_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
cav_info = learn_concept_bank(pos_loader, neg_loader, backbone, args.n_samples, args.C, device=args.device)
# Store CAV train acc, val acc, margin info for each regularization parameter and each concept
for C in args.C:
concept_lib[C][concept] = cav_info[C]
print(f"{concept} with C={C}: Training Accuracy: {cav_info[C][1]:.2f}, Validation Accuracy: {cav_info[C][2]:.2f}")
# Save CAV results
os.makedirs(args.out_dir, exist_ok=True)
for C in concept_lib.keys():
lib_path = os.path.join(args.out_dir, f"{args.model_name}_{C}_{args.n_samples}.pkl")
with open(lib_path, "wb") as f:
pickle.dump(concept_lib[C], f)
print(f"Saved to: {lib_path}")
if __name__ == "__main__":
args = config()
main(args)