This repository has been archived by the owner on Nov 5, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_results.py
53 lines (42 loc) · 1.58 KB
/
parse_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from collections import defaultdict
from math import sqrt
def timeToSpeed(ms):
s = float(ms) / 1000
return (float(nitems) / 1000000) / s
means = defaultdict(lambda: [0])
errors = defaultdict(lambda: [0])
average = defaultdict(lambda: [0])
f = open('results.csv')
nitems = int(f.readline())
for line in f:
dataset, cores, *results = line.strip().split(',')
cores = int(cores)
results = list(map(timeToSpeed, results))
mean = float(sum(results)) / len(results)
deviation = sqrt(sum((mean - x)**2 for x in results) / len(results))
means[dataset].append(mean)
average[cores].append(mean)
errors[dataset].append(deviation)
for core in sorted(average):
mean = float(sum(average[core])) / len(average[core])
deviation = sqrt(sum((mean - x) ** 2 for x in average[core]) / len(average[core]))
means['Average'].append(mean)
errors['Average'].append(0)
fig = plt.figure(figsize=(20, 10))
ax = plt.subplot(111)
tests = sorted(means, key=lambda x: '' if x == 'Average' else x)
colors = dict(zip(tests, 'bgrcmyk'))
legend = []
for key in tests:
legend.append(mpatches.Patch(color=colors[key], label=key))
ax.errorbar(range(len(means[key])), means[key], yerr=errors[key], c=colors[key], linewidth=2)
plt.xlim(0, len(means[key]))
plt.ylabel("Speed (millions/second)")
plt.xlabel("Cores")
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), handles=legend)
plt.savefig('results.png')
plt.show()