Skip to content

Latest commit

 

History

History
35 lines (28 loc) · 1.41 KB

README.md

File metadata and controls

35 lines (28 loc) · 1.41 KB

UPF-Cobalt Metric for Machine Translation Evaluation

UPF-Cobalt is a MT evaluation metric that exploits alignment and syntactic context to assess MT quality.

Installation

  1. Install Stanford Parser (http://nlp.stanford.edu/software/corenlp.shtml)
  2. Download dependency-based word vectors from https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/ (optional)
  3. Download upf-cobalt

git clone https://github.com/mfomicheva/upf-cobalt.git

Usage

To use the metric, run evaluate.py with the following parameters:

Parameter Description
-r parsed reference file
-t parsed system output file
-v file containing word vectors - optional
-a output alignments - optional
-o specify output directory - optional (default is "./Data")

If no parameters are specified the metric will process the example files stored in Data folder.

Citation

@inproceedings{fomicheva2016cobaltf,
  title={CobaltF: a fluent metric for MT evaluation},
  author={Fomicheva, Marina and Bel Rafecas, N{\'u}ria and Specia, Lucia and da Cunha Fanego, Iria and Malinovsiy, Anton},
  booktitle={The 54th Annual Meeting of the Association for Computational Linguistics. Proceedings of the First Conference on Machine Translation (WMT); 2016 Aug 7-12; Berlin, Germany},
  year={2016},
  pages={483--490},
  organization={ACL (Association for Computational Linguistics)}
}