-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtestMADE.py
267 lines (211 loc) · 9.38 KB
/
testMADE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import numpy as np
import theano
import time as t
from MADE.made import MADE
from dataset import Dataset
from utils import get_done_text
class Tester(object):
"""
Old tests! Some might not work anymore. Cleaner and complementary one in MADE/tests/
"""
def _get_fake_model(self, in_size, hidden_sizes):
fake_dataset = Dataset.get_fake(in_size, 1)
return MADE(fake_dataset,
# learning_rate=trainingparams['learning_rate'],
# decrease_constant=trainingparams['decrease_constant'],
hidden_sizes=hidden_sizes,
# random_seed=hyperparams['random_seed'],
# batch_size=trainingparams['batch_size'],
hidden_activation=lambda x: x,
use_cond_mask=False,
direct_input_connect="Output",
direct_output_connect=False)
def print_mask(self, model):
#import pprint
for layer in model.layers:
print "#"
if "direct_ouputs_masks" in layer.__dict__:
for l in layer.direct_ouputs_masks:
print l.get_value()
print "W"
print layer.weights_mask.get_value()
if "direct_input_weights_mask" in layer.__dict__:
print "D"
print layer.direct_input_weights_mask.get_value()
print ""
def visual_mask_test(self, in_size=3, hidden_sizes=[2, 4]):
model = self._get_fake_model(in_size, hidden_sizes)
self.print_mask(model)
print "\n|/-\\|/-\\ SHUFFLING |/-\\|/-\\\n"
model.shuffle("Ordering")
self.print_mask(model)
exit()
def _save_graph(self, name, x_label, y_label, *args):
import pylab as pl
pl.xlabel(x_label)
pl.ylabel(y_label)
pl.grid(True)
for data in args:
pl.plot(data[0], data[1], 'x-', linewidth=.5, color=data[2])
pl.savefig('{0}.png'.format(name))
return pl
def _eval_valid_multiple_shuffle(self, model, nb_test_per_step):
nb_shuffles = []
avg_nll = []
x_label = 'Nb Shuffle'
y_label = 'Avg NLL'
start_time = t.time()
print "#",
steps = [10, 100, 500]
nb_test_per_step += 1
for stepIdx in range(len(steps)):
step = range_start = steps[stepIdx]
if stepIdx != 0:
range_start = steps[stepIdx - 1] * (nb_test_per_step - 1) + step
for current_nb_shuffle in range(range_start, nb_test_per_step * step, step):
print "/{0}\\".format(current_nb_shuffle),
# TODO Fix missing variable due to change of scope
# avg_valid_nll, avg_valid_nll_std = 0, 0 # get_mean_error_and_std(model, model.valid_log_prob, validset_theano.shape.eval()[0], shuffle_mask, current_nb_shuffle)
avg_valid_nll = 0
nb_shuffles += [current_nb_shuffle]
avg_nll += [round(avg_valid_nll, 2)]
self._save_graph('{0}shuffle_test_temp'.format(step), x_label, y_label, (nb_shuffles, avg_nll, 'purple'))
print ".",
print get_done_text(start_time)
return nb_shuffles, avg_nll
def print_valid_shuffle_graph(self, model):
print "\n### Testing how tne nb of shuffle when validating affect NLL ###"
nb_test_per_step = 5
x_label = 'Nb Shuffle'
y_label = 'Avg NLL'
plots = []
colors = ['red', 'green', 'blue']
for i in range(2):
nb_shuffles, avg_nll = self._eval_valid_multiple_shuffle(model, nb_test_per_step)
plot = (nb_shuffles, avg_nll, colors[i])
plots += plot
self._save_graph('shuffle_test{0}'.format(i), x_label, y_label, plot)
self._save_graph('shuffle_test', x_label, y_label, plots).show()
exit()
def _get_masks(self, model):
return np.asarray([layer.weights_mask.get_value() for layer in model.layers])
def verify_reset_mask(self, in_size=10, hidden_sizes=[10, 3], nb_perm_mask=50):
model = self._get_fake_model(in_size, hidden_sizes)
print in_size, hidden_sizes, nb_perm_mask,
# Set all the "parameters" to one
for layer in model.layers:
for param in layer.params:
param.set_value(np.ones(param.shape.eval(), dtype=theano.config.floatX))
for perm in range(nb_perm_mask):
# Get baseline to compare with
zeroInput = np.zeros((1, in_size), dtype=theano.config.floatX)
base = model.use(zeroInput, False)
for i in range(in_size):
inp = np.zeros((1, in_size), dtype=theano.config.floatX)
inp[0][i] = 1
test = model.use(inp, False)
if base[0][i] != test[0][i]:
print "\n# BAM! Mask error #"
print "in_size", in_size
print hidden_sizes
print "After {0} shuffle.".format(perm)
model.shuffle("Full")
if not perm % 10:
model.reset_masks()
print " R ",
print ".",
print "SUCESS!"
exit()
def visual_verify_reset_mask(self, in_size=5, hidden_sizes=[4, 2], nb_shuffle=3):
model = self._get_fake_model(in_size, hidden_sizes)
print in_size, hidden_sizes, nb_shuffle
print model.parameters
for i in range(nb_shuffle):
self.print_mask(model)
print "shuffle", i
model.shuffle("Full")
self.print_mask(model)
print "###### RESET ######\n"
model.reset("Full")
for i in range(nb_shuffle):
self.print_mask(model)
print "shuffle", i
model.shuffle("Full")
self.print_mask(model)
exit()
def verify_gradients(model, data):
epsilon = 1e-6
print model.parameters[0], model.parameters[0].get_value()
model.learn(1, True)
print model.parameters[0], model.parameters[0].get_value()
model.shuffle("Full")
model.shuffle("Full")
model.shuffle("Full")
model.shuffle("Full")
model.shuffle("Full")
model.shuffle("Full")
parameters_gradient = model.learngrad(1, True)
emp_grad_weights = [p.get_value() for p in model.parameters]
print model.parameters[0], model.parameters[0].get_value()
# for em in model.parameters:
# print em, em.get_value()
def updateValParam(epsilon):
param = model.parameters[h].get_value()
param[idx] += epsilon
model.parameters[h].set_value(param)
print model.parameters
for h in range(len(model.parameters)):
print "Computing empirical gradient for {}".format(model.parameters[h])
for idx in np.ndindex(tuple(model.parameters[h].shape.eval())):
updateValParam(epsilon)
a = model.useloss(data, data, False)
updateValParam(-epsilon)
updateValParam(-epsilon)
b = model.useloss(data, data, False)
updateValParam(epsilon)
emp_grad_weights[h][idx] = (a - b) / (2.0 * epsilon)
print ""
for h in range(len(model.parameters)):
print '{0} grad diff : {1}'.format(model.parameters[h], np.mean(np.abs(parameters_gradient[h].ravel() - emp_grad_weights[h].ravel())))
def _get_conditioning_mask_model(dataset, input_size, hidden_sizes):
import theano.tensor as T
return MADE(dataset,
# learning_rate=trainingparams['learning_rate'],
# decrease_constant=trainingparams['decrease_constant'],
hidden_sizes=hidden_sizes,
# random_seed=hyperparams['random_seed'],
# batch_size=trainingparams['batch_size'],
#hidden_activation=lambda x: x,
hidden_activation=T.nnet.sigmoid,
use_cond_mask=True,
direct_input_connect="None",
direct_output_connect=False,
weights_initialization="Diagonal")
def visual_conditioning_weight():
input_size = 7
hidden_sizes = [5]
fake_dataset = Dataset.get_permutation(input_size)
model = _get_conditioning_mask_model(fake_dataset, input_size, hidden_sizes)
for i, l in enumerate(model.layers):
print "## layer", i
for p in l.params:
print p, ":\n", p.get_value()
print "weights_mask:"
print l.weights_mask.get_value()
# import theano.printing as printing
# for i, p in enumerate(model.parameters):
# model.parameters[i] = printing.Print('{0}{1}'.format(p, i))(model.parameters[i])
# for i, l in enumerate(model.layers):
# model.layers[i].lin_output = printing.Print('output{0}'.format(i))(model.layers[i].lin_output)
# print fake_dataset['train']['data'][0].eval()
print model.use([np.ones_like(fake_dataset['train']['data'][0].eval())], False)
if __name__ == '__main__':
Tester().visual_mask_test(3, [2]) # TEST ##
# Tester().visual_verify_reset_mask()
# visual_conditioning_weight()
## Difference Fini (verify gradient) This TEST must be run in float64 on the CPU and the activation must be Sigmoid (not hinge)##
# dataset = Dataset.get_permutation(7)
# model = _get_conditioning_mask_model(dataset, 7, [5])
# d, batch_size = 1, 100
# verify_gradients(model, dataset['train']['data'][d * batch_size:(d + 1) * batch_size].eval())
# Tester().print_valid_shuffle_graph(model) # TEST ##