Skip to content

Latest commit

 

History

History
20 lines (15 loc) · 805 Bytes

answer.md

File metadata and controls

20 lines (15 loc) · 805 Bytes
1.1

把(1.1)代入(1.2)中得到误差函数:$$ \sum\limits_{n=1}^{N} (w_0 + w_1x_n + ... + w_mx_n^m - t_n)^2 $$ 设矩阵$$ B $$其中$$ B_{ij} = x_i^j $$我们的误差函数就变成的$$ (BW - y)^T(BW - y) $$,使其微分等于0得:$$ B^TBW = B^Ty $$整理可得

$$ \sum\limits_{j=0}^MA_{ij}w_j = T_i $$ 其中 $$ A_{ij} = \sum\limits_{n=1}^N(x_n)^{i + j} , T_i = \sum\limits_{n=1}^N(x_n)^it_n $$

1.2

代入(1.4)可得出差函数$$ (BW - y)^T(BW - y) + \frac{\lambda}{2}W^TW $$,使其微分等于0得:$$ (B^TB + \lambda I)W = B^Ty $$所以: $$ \widetilde{A}{ij} =A{ij} + \lambda I_{ij} $$

1.3

$$ p(a) = p(a|r)p(r) + p(a|b)p(b) + p(a|g)p(g) = 0.34 $$ 根据贝叶斯定理得: $$ p(g|o) = \frac{p(o|g)p(g)}{p(o)} = \frac{0.3*0.6}{0.36} = 0.5 $$